Question One (8 marks)

a) What is the common difference of the arithmetic series $2 + \frac{1}{2} - 1 + \dots$? 1

b) Evaluate
$$\sum_{k=3}^{6} k^2$$
 2

c) In a geometric series the 3rd term is 16 and the 7th term is 256. Find the common ratio of the series.
 3

d) Find
$$f''(x)$$
 if $f(x) = 2x^4$ 2

Question Two (8 marks)

- a) Simplify $\cos 15^{\circ} \sin 30^{\circ} \sin 15^{\circ} \cos 30^{\circ}$ (Do not evaluate) 2
- b) Prove the following identity: $\frac{2\sin^2 x 1}{\sin x + \cos x} \equiv \sin x \cos x$ 3
- c) Solve $3\cos\theta + 4\sin\theta = -3$ for $0^{\circ} \le \theta \le 360^{\circ}$ using the substitution $t = \tan\frac{\theta}{2}$. 3

Question Three (8 marks)

- a) Prove the following result using Mathematical Induction: $1^3 + 2^3 + 3^3 + ... + n^3 = \frac{1}{4}n^2(n+1)^2$ where *n* is a positive integer 4
- b) *L* is the fixed point (-1,4) and *P* is a variable point on the parabola $x^2 = 8y$. *M* is the midpoint of *LP*. Find the equation of the locus of *M*. **4**

Question Four (9 marks)

- a) Show that $\frac{x^2 + 9}{x 4} = x + 4 + \frac{25}{x 4}$
- b) Sketch $y = \frac{x^2 + 9}{x 4}$ showing all turning points, intercepts and asymptotes. (Do not find any points of inflexion)
- c) Consider this graph, which has a point of inflexion at x = b.

For what values of x is f'(x) > 0?

2		
-		
	•	

1

6

Question Five (8 marks)

b)

a) Consider the series: $(x+3) - (x+3)^2 + (x+3)^3 - (x+3)^4 + ...$

i.	i. For what values of x does this series have a limiting sum?		
ii.	Find the limiting sum in terms of <i>x</i> .	2	
iii.	Hence show that the limiting sum of this series cannot be greater than 1	1	
The f	Formula for the <i>n</i> th term of a series is $T_n = (n+2)^3 - (n+1)^3$.		
i.	Evaluate S_5 for this series.	2	
ii.	Find the sum of the first 100 terms of this series.	1	

Question Six (9 marks)

a) Show by Mathematical Induction that $5n - 7 \le 2^n$ where *n* is an integer greater than 2.

3

- b) f(x) is the function $y = x^3 ax^2 + b$, where a and b are positive.
 - i. Show that graph of y = f(x) has a non-horizontal point of inflexion at $x = \frac{a}{3}$. 3

ii. Given that
$$x_0 \le \frac{2a}{3}$$
, show that $f(x_0) \le b$. 3

Question One (8 marks)

a)
$$-1.5$$

b) $3^{2} + 4^{2} + 5^{2} + 6^{2} = 86$
c)
 $ar^{6} = 256 - (1)$
 $ar^{2} = 16 - (2)$
 $(1) \div (2)$
 $r^{4} = 16$
 $r = \pm 2$
d)
 $f'(x) = 8x^{3}$
 $f''(x) = 24x^{2}$

Question Two (8 marks) a) sin(30-15) $= sin15^{\circ}$ b)

$$lhs = \frac{2\sin^2 x - 1}{\sin x + \cos x}$$
$$= \frac{2\sin^2 x - (\sin^2 x + \cos^2 x)}{\sin x + \cos x}$$
$$= \frac{\sin^2 x - \cos^2 x}{\sin x + \cos x}$$
$$= \frac{(\sin x + \cos x)(\sin x - \cos x)}{\sin x + \cos x}$$
$$= \sin x - \cos x$$
$$= rhs$$

c)

$$\frac{3 \times (1 - t^2)}{1 + t^2} + \frac{4 \times 2t}{1 + t^2} = -3$$

- 3t² + 8t + 3 = -3(1 + t²)
= -3 - 3t²
8t + 6 = 0
$$t = -\frac{3}{4}$$

$$\tan \frac{\theta}{2} = -\frac{3}{4}$$

$$\frac{\theta}{2} = 143.1301..., 0 \le \frac{\theta}{2} \le 180$$

$$\theta = 286^{\circ}16'$$

 $lhs = 3\cos(180^\circ) + 4\sin(180^\circ)$ $= 3 \times -1 + 4 \times 0$ = -3= rhs

So $\theta = 180, 286^{\circ}16'$

Question Three (7 marks)

a) When n=1:

$$lhs = 1^{3}$$

$$= 1$$

$$rhs = \left(\frac{1}{4} \times 1^{2} \times (1+1)^{2}\right)$$

$$= 1$$

$$= lhs$$

So the statement is true when n = 1

Let k be a value of *n* for which the statement is true Then

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} = \frac{1}{4}k^{2}(k+1)^{2}$$

We want to show that

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = \frac{1}{4}(k+1)^{2}(k+2)^{2}$$

$$lhs = \frac{1}{4}k^{2}(k+1)^{2} + (k+1)^{3}$$
$$= \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$
$$= (k+1)^{2}\left[\frac{k^{2}}{4} + k + 1\right]$$
$$= (k+1)^{2}\left(\frac{k^{2} + 4k + 4}{4}\right)$$
$$= (k+1)^{2}\left(\frac{(k+2)^{2}}{4}\right)$$
$$= \frac{1}{4}(k+1)^{2}(k+2)^{2}$$
$$= rhs$$

So if the statement is true when n = k then it is also true when n = k + 1. Since the statement is true when n = 1 it must also be true for n = 2, and since it is

Choole $\Delta = 100$.

true for n = 2, it must also be true for n = 3 and so on for all positive integers *n*.

b)
$$4a = 8$$

 $a = 2$

So P has coordinates $(2ap, ap^2)$ i.e. $(4p, 2p^2)$

Let (X, Y) be the coordinates of M. Using the midpoint formula:

$$X = \frac{-1+4p}{2} - (1) \text{ and}$$

$$Y = \frac{4+2p^2}{2}$$

$$= 2+p^2 - (2)$$
From (1) $p = \frac{2X+1}{4}$
Into (2) :
$$Y = 2 + \left(\frac{2X+1}{4}\right)^2$$
So the locus is the parabola
$$\left(x+\frac{1}{4}\right)^2 = 4(x-2)$$

Question Four (6 marks)

a)
i)

$$\frac{x^2 + 9}{x - 4} = \frac{x(x - 4) + 4(x - 4) + 25}{x - 4}$$

$$= x + 4 + \frac{25}{x - 4}$$

ii)

1² 2 J

The vertical asymptote occurs at x - 4 = 0i.e. x = 4.

As
$$x \longrightarrow \infty$$
, $\frac{25}{x-4} \longrightarrow 0$ so
 $y \longrightarrow x+4$

So y = x + 4 is an oblique asymptote

Since $x^2 + 9$ cannot equal zero there are no *x*-intercepts.

The *y*-intercept is
$$y = \frac{0^2 + 9}{0 - 4}$$
 i.e. $y = -\frac{9}{4}$

$$y' = \frac{(x-4)(2x) - (x^2 + 9)(1)}{(x-4)^2}$$

Stationary points will occur when $(x-4)(2x) - (x^2 + 9)(1) = 0$ $x^2 - 8x - 9 = 0$ $(x-4)^2 = 9 + 16$ $x = 4 \pm \sqrt{25}$ x = -1,9

x	-2	-1	0	9	10
<i>y</i> ′	11	0	9	0	11
	36		$-\frac{16}{16}$		36

There is a maximum turning point at x = -1 and a minimum turning point at x = 9.

When x = -1 y = -2 and when x = 9y = 18

b) x < a, c < x < d, x > d

Question Five (6 marks)

i)

$$-1 < -(x+3) < 1$$

 $-1 < x+3 < 1$
 $-4 < x < -2$

ii)

$$\frac{a}{1-r} = \frac{x+3}{1--(x+3)}$$
$$= \frac{x+3}{x+4}$$

iii) now, for all x

x + 3 < x + 4

We can divide both sides by x + 4 since from part (i) x + 4 > 0

 $\frac{x+3}{x+4} < 1$

So the limiting sum cannot be greater than one.

Alternative proof:

Suppose the limiting sum were greater than one.

Then $\frac{x+3}{x+4} > 1$.

We can multiply both sides by x + 4since from part (i) x + 4 > 0

x + 3 > x + 4

But this would mean that 3 > 4 which is false. This means that our original assumption must be false so the limiting sum cannot be greater than one.

b)

$$S_{5} = (1+2)^{3} - (1+1)^{3} + (2+2)^{3} - (2+1)^{3}$$

+ (3+2)^{3} - (3+1)^{3} + (4+2)^{3} - (4+1)^{3}
+ (5+2)^{3} - (5+1)^{3}.
= 3^{3} - 2^{3} + 4^{3} - 3^{3} + 5^{3} - 4^{3} + 6^{3} - 5^{3}
+ 7³ - 6³
= 335

$$S_{100} = (1+2)^3 - (1+1)^3 + (2+2)^3 - (2+1)^3$$

+ (3+2)^3 - (3+1)^3 ... + (100+2)^3
- (100+1)^3
= 3^3 - 2^3 + 4^3 - 3^3 + 5^3
- 4^3 + ... + 102^3 - 101^3

Almost every term in the sum cancels so

$$S_{100} = 102^3 - 2^3$$

= 1061200

Question Six (7 marks)

Let
$$n=3$$

 $lhs = 5(3) - 7$
 $= 8$
 $rhs = 2^{3}$
 $= 8$
 $\ge lhs$

a)

Let *k* be a value of *n* for which the statement is true i.e. $5k - 7 \le 2^n$

we want to show that $5(k+1) - 7 \le 2^{k+1}$

note that since $k \ge 3$,

$$2^k \ge 2^3$$
$$= 8$$

So if the statement is true when n = kthen it is also true when n = k + 1.

Since the statement is true when n = 3 it must also be true for n = 4, and since it is true for n = 4, it must also be true for n = 5 and so on for all positive integers n.

b)

i.

$$f(x) = x^{3} - ax^{2} + b$$

$$f'(x) = 3x^{2} - 2ax$$

$$f''(x) = 6x - 2a$$

$$x = x^{3} - 2a$$

When $x = \frac{a}{3}$,

$$f''(x) = 6\left(\frac{a}{3}\right) - 2a$$
$$= 0$$

$$f'(x) = 3\left(\frac{a}{3}\right)^2 - 2a\left(\frac{a}{3}\right)$$
$$= -\frac{a^2}{3}$$
$$< 0, \text{ since } a > 0$$

When $x < \frac{a}{3}$

$$6x < \frac{6a}{3}$$

so
$$6x - 2a < \frac{6a}{3} - 2a$$
$$= 0$$

i.e. f''(x) < 0

When >

$$6x > \frac{6a}{3}$$

so
$$6x - 2a > \frac{6a}{3} - 2a$$
$$= 0$$

i.e. f''(x) > 0

So when $x = \frac{a}{3}$, the second derivative equals zero and changes signs and the first derivative is not zero i.e. there is a non-

horizontal point of inflexion at $x = \frac{a}{3}$.

ii) Note that since f(x) is a polynomial, the graph of y = f(x) is continuous.

Stationary points occur when f'(x) = 0

$$3x^{2} - 2ax = 0$$
$$x(3x - 2a) = 0$$
$$x = 0, \frac{2a}{3}$$

When x = 0

$$f''(x) = 6(0) - 2a$$

= -2a
< 0 since $a > 0$

So there is a maximum turning point at (0,b)

When
$$x = \frac{2a}{3}$$
,
 $f''(x) = 6(\frac{2a}{3}) - 2a$
 $= 2a$
 > 0 since $a > 0$

So there is minimum turning point at $x = \frac{2a}{3}$

The location of these points depends on *a* and b but we can conclude that the *shape* of the graph is:

So when
$$x_0 \leq \frac{2a}{3}$$
, show that $f(x_0) \leq b$.