Question One (8 marks)

a) What is the common difference of the arithmetic series $2+\frac{1}{2}-1+\ldots$?
b) Evaluate $\sum_{k=3}^{6} k^{2}$
c) In a geometric series the $3^{\text {rd }}$ term is 16 and the $7^{\text {th }}$ term is 256 . Find the
common ratio of the series.

Question Two (8 marks)

a) Simplify $\cos 15^{\circ} \sin 30^{\circ}-\sin 15^{\circ} \cos 30^{\circ} \quad$ (Do not evaluate)
b) Prove the following identity: $\frac{2 \sin ^{2} x-1}{\sin x+\cos x} \equiv \sin x-\cos x$
c) Solve $3 \cos \theta+4 \sin \theta=-3$ for $0^{\circ} \leq \theta \leq 360^{\circ}$ using the substitution

$$
t=\tan \frac{\theta}{2} .
$$

Question Three (8 marks)

a) Prove the following result using Mathematical Induction:
$1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2} \quad$ where n is a positive integer
b) L is the fixed point $(-1,4)$ and P is a variable point on the parabola $x^{2}=8 y . M$ is the midpoint of $L P$. Find the equation of the locus of M.

Question Four (9 marks)

a) Show that $\frac{x^{2}+9}{x-4}=x+4+\frac{25}{x-4}$
b) Sketch $y=\frac{x^{2}+9}{x-4}$ showing all turning points, intercepts and asymptotes. (Do not find any points of inflexion)
c) Consider this graph, which has a point of inflexion at $x=b$.

For what values of x is $f^{\prime}(x)>0$?

Question Five (8 marks)

a) Consider the series: $(x+3)-(x+3)^{2}+(x+3)^{3}-(x+3)^{4}+\ldots$
i. For what values of x does this series have a limiting sum?
ii. Find the limiting sum in terms of x.
iii. Hence show that the limiting sum of this series cannot be greater than 1
b) The formula for the nth term of a series is $T_{n}=(n+2)^{3}-(n+1)^{3}$.
i. Evaluate S_{5} for this series.
ii. Find the sum of the first 100 terms of this series.

Question Six (9 marks)

a) Show by Mathematical Induction that $5 n-7 \leq 2^{n}$ where n is an integer greater than 2.
b) $f(x)$ is the function $y=x^{3}-a x^{2}+b$, where a and b are positive.
i. Show that graph of $y=f(x)$ has a non-horizontal point of inflexion at $x=\frac{a}{3}$.
ii. Given that $x_{0} \leq \frac{2 a}{3}$, show that $f\left(x_{0}\right) \leq b$.

Question One (8 marks)

a) -1.5
b) $3^{2}+4^{2}+5^{2}+6^{2}=86$
c)
$a r^{6}=256-(1)$
$a r^{2}=16-(2)$
(1) \div (2)
$r^{4}=16$
$r= \pm 2$
d)

$$
\begin{aligned}
& f^{\prime}(x)=8 x^{3} \\
& f^{\prime \prime}(x)=24 x^{2}
\end{aligned}
$$

Question Two (8 marks)

a)

$$
\begin{aligned}
& \sin (30-15) \\
& =\sin 15^{\circ}
\end{aligned}
$$

b)

$$
\begin{aligned}
\text { lhs } & =\frac{2 \sin ^{2} x-1}{\sin x+\cos x} \\
& =\frac{2 \sin ^{2} x-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin x+\cos x} \\
& =\frac{\sin ^{2} x-\cos ^{2} x}{\sin x+\cos x} \\
& =\frac{(\sin x+\cos x)(\sin x-\cos x)}{\sin x+\cos x} \\
& =\sin x-\cos x \\
& =r h s
\end{aligned}
$$

c)

$$
\begin{aligned}
\frac{3 \times\left(1-t^{2}\right)}{1+t^{2}}+\frac{4 \times 2 t}{1+t^{2}} & =-3 \\
-3 t^{2}+8 t+3 & =-3\left(1+t^{2}\right) \\
& =-3-3 t^{2} \\
8 t+6 & =0 \\
t & =-\frac{3}{4} \\
\tan \frac{\theta}{2} & =-\frac{3}{4} \\
\frac{\theta}{2} & =143.1301 \ldots, 0 \leq \frac{\theta}{2} \leq 180 \\
\theta & =286^{\circ} 16^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& l h s=3 \cos \left(180^{\circ}\right)+4 \sin \left(180^{\circ}\right) \\
& =3 \times-1+4 \times 0 \\
& =-3 \\
& =r h s
\end{aligned}
$$

So $\theta=180,286^{\circ} 16^{\prime}$

Question Three (7 marks)

a)

When $\mathrm{n}=1$:

$$
\begin{aligned}
l h s & =1^{3} \\
& =1 \\
r h s & =\left(\frac{1}{4} \times 1^{2} \times(1+1)^{2}\right) \\
& =1 \\
& =l h s
\end{aligned}
$$

So the statement is true when $n=1$
Let k be a value of n for which the statement is true
Then

$$
1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\frac{1}{4} k^{2}(k+1)^{2}
$$

We want to show that

$$
\begin{aligned}
1^{3} & +2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}=\frac{1}{4}(k+1)^{2}(k+2)^{2} \\
l h s & =\frac{1}{4} k^{2}(k+1)^{2}+(k+1)^{3} \\
& =\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3} \\
& =(k+1)^{2}\left[\frac{k^{2}}{4}+k+1\right] \\
& =(k+1)^{2}\left(\frac{k^{2}+4 k+4}{4}\right) \\
& =(k+1)^{2}\left(\frac{(k+2)^{2}}{4}\right) \\
& =\frac{1}{4}(k+1)^{2}(k+2)^{2} \\
& =r h s
\end{aligned}
$$

So if the statement is true when $n=k$ then it is also true when $n=k+1$.
Since the statement is true when $n=1$ it must also be true for $n=2$, and since it is
true for $n=2$, it must also be true for $n=3$ and so on for all positive integers n.
b)
$4 a=8$
$a=2$

So P has coordinates $\left(2 a p, a p^{2}\right)$ i.e.
($4 p, 2 p^{2}$)
Let (X, Y) be the coordinates of M .
Using the midpoint formula:
$X=\frac{-1+4 p}{2}-(1)$ and

$$
\begin{aligned}
Y & =\frac{4+2 p^{2}}{2} \\
& =2+p^{2}-(2)
\end{aligned}
$$

From (1) $p=\frac{2 X+1}{4}$
Into (2) :
$Y=2+\left(\frac{2 X+1}{4}\right)^{2}$
So the locus is the parabola
$\left(x+\frac{1}{2}\right)^{2}=4(y-2)$

Question Four (6 marks)

a)
i)

$$
\begin{aligned}
\frac{x^{2}+9}{x-4} & =\frac{x(x-4)+4(x-4)+25}{x-4} \\
& =x+4+\frac{25}{x-4}
\end{aligned}
$$

ii)

The vertical asymptote occurs at $x-4=0$ i.e. $x=4$.

As $x \longrightarrow \infty, \frac{25}{x-4} \longrightarrow 0$ so
$y \longrightarrow x+4$
So $y=x+4$ is an oblique asymptote
Since $x^{2}+9$ cannot equal zero there are no x-intercepts.
The y-intercept is $y=\frac{0^{2}+9}{0-4}$ i.e. $y=-\frac{9}{4}$
$y^{\prime}=\frac{(x-4)(2 x)-\left(x^{2}+9\right)(1)}{(x-4)^{2}}$
Stationary points will occur when

$$
\begin{aligned}
& (x-4)(2 x)-\left(x^{2}+9\right)(1)=0 \\
& x^{2}-8 x-9=0 \\
& (x-4)^{2}=9+16 \\
& x=4 \pm \sqrt{25} \\
& x=-1,9
\end{aligned}
$$

x	-2	-1	0	9	10
y^{\prime}	$\frac{11}{36}$	0	$-\frac{9}{16}$	0	$\frac{11}{36}$

There is a maximum turning point at $x=-1$ and a minimum turning point at $x=9$.

When $x=-1 \quad y=-2$ and when $x=9$
$y=18$

b) $x<a, c<x<d, x>d$

Question Five (6 marks)

a)
i)

$$
\begin{aligned}
& -1<-(x+3)<1 \\
& -1<x+3<1 \\
& -4<x<-2
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \frac{a}{1-r}=\frac{x+3}{1--(x+3)} \\
& =\frac{x+3}{x+4}
\end{aligned}
$$

iii)

now, for all x
$x+3<x+4$

We can divide both sides by $x+4$ since from part (i) $x+4>0$
$\frac{x+3}{x+4}<1$

So the limiting sum cannot be greater than one.

Alternative proof:
Suppose the limiting sum were greater than one.

Then $\frac{x+3}{x+4}>1$.

We can multiply both sides by $x+4$ since from part (i) $x+4>0$
$x+3>x+4$
But this would mean that $3>4$ which is false. This means that our original assumption must be false so the limiting sum cannot be greater than one.
b)

$$
\begin{aligned}
S_{5}= & (1+2)^{3}-(1+1)^{3}+(2+2)^{3}-(2+1)^{3} \\
& +(3+2)^{3}-(3+1)^{3}+(4+2)^{3}-(4+1)^{3} \\
& +(5+2)^{3}-(5+1)^{3} . \\
& =3^{3}-2^{3}+4^{3}-3^{3}+5^{3}-4^{3}+6^{3} .-5^{3} \\
& +7^{3}-6^{3} \\
= & 335
\end{aligned}
$$

$$
\begin{aligned}
S_{100} & =(1+2)^{3}-(1+1)^{3}+(2+2)^{3}-(2+1)^{3} \\
& +(3+2)^{3}-(3+1)^{3} \ldots+(100+2)^{3} \\
& -(100+1)^{3} \\
& =3^{3}-2^{3}+4^{3}-3^{3}+5^{3} \\
& -4^{3}+\ldots+102^{3}-101^{3}
\end{aligned}
$$

Almost every term in the sum cancels so

$$
\begin{aligned}
S_{100} & =102^{3}-2^{3} \\
& =1061200
\end{aligned}
$$

Question Six (7 marks)

a)

Let $n=3$

$$
\begin{aligned}
l h s & =5(3)-7 \\
& =8 \\
r h s & =2^{3} \\
& =8 \\
& \geq l h s
\end{aligned}
$$

Let k be a value of n for which the statement is true
i.e. $5 k-7 \leq 2^{n}$
we want to show that $5(k+1)-7 \leq 2^{k+1}$
note that since $k \geq 3$,

$$
\begin{aligned}
2^{k} & \geq 2^{3} \\
& =8
\end{aligned}
$$

So if the statement is true when $n=k$ then it is also true when $n=k+1$.

Since the statement is true when $n=3$ it must also be true for $n=4$, and since it is true for $n=4$, it must also be true for $n=5$ and so on for all positive integers n.
b)
$f(x)=x^{3}-a x^{2}+b$
$f^{\prime}(x)=3 x^{2}-2 a x$
$f^{\prime \prime}(x)=6 x-2 a$

When $x=\frac{a}{3}$,

$$
\begin{aligned}
f^{\prime \prime}(x) & =6\left(\frac{a}{3}\right)-2 a \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =3\left(\frac{a}{3}\right)^{2}-2 a\left(\frac{a}{3}\right) \\
& =-\frac{a^{2}}{3} \\
& <0, \text { since } a>0
\end{aligned}
$$

When $x<\frac{a}{3}$

$$
6 x<\frac{6 a}{3}
$$

so $6 x-2 a<\frac{6 a}{3}-2 a$

$$
=0
$$

i.e. $f^{\prime \prime}(x)<0$

When

$$
6 x>\frac{6 a}{3}
$$

so $6 x-2 a>\frac{6 a}{3}-2 a$

$$
=0
$$

i.e. $f^{\prime \prime}(x)>0$

So when $x=\frac{a}{3}$, the second derivative equals zero and changes signs and the first derivative is not zero i.e. there is a nonhorizontal point of inflexion at $x=\frac{a}{3}$.
ii) Note that since $f(x)$ is a polynomial, the graph of $y=f(x)$ is continuous.
$3 x^{2}-2 a x=0$
$x(3 x-2 a)=0$
$x=0, \frac{2 a}{3}$

When $x=0$

$$
\begin{aligned}
& f^{\prime \prime}(x)=6(0)-2 a \\
& =-2 a \\
& <0 \text { since } a>0
\end{aligned}
$$

So there is a maximum turning point at (0,b)

When $x=\frac{2 a}{3}$,
$f^{\prime \prime}(x)=6\left(\frac{2 a}{3}\right)-2 a$
$=2 a$
>0 since $a>0$
So there is minimum turning point at
$x=\frac{2 a}{3}$
The location of these points depends on a and b but we can conclude that the shape of the graph is:

So when $x_{0} \leq \frac{2 a}{3}$, show that $f\left(x_{0}\right) \leq b$.

Stationary points occur when $f^{\prime}(x)=0$

