

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC Mathematics Extension 1

Assessment Task 2

Term 12012

Mathematics Class: \qquad

Time Allowed: 55 minutes + 2 minutes reading time
Available Marks: 38

Instructions:

Question 1 (a) Multiple choice (5 marks)

- Indicate your answer by colouring the appropriate circle on the answer sheet provided

Question 1 b) and c), Question 2 and Question 3 Free response

- Write your answers on the examination booklet provided
- Write on one side of the page only
- Do not work in columns
- Attempt all questions
- Show all necessary working
- Marks may be deducted for incomplete or poorly arranged work

Question	1 a	1 bc	2ab	2c	3a	3 bc	Total
PE3	12				16		$/ 8$
PE4		17					17
HE2				14			$/ 4$
HE7	13	13	17			16	$/ 19$

Question 1 (15 marks)

(a) Multiple Choice (1 mark each) Answer on the multiple choice answer sheet provided
(i) The largest four digit number to be found in the arithmetic sequence $2,9,16,23, \ldots$ is
(A) 9995
(B) 9996
(C) 9998
(D) 9999
(ii) The series $2^{x}+5 \times 2^{-x}+25 \times 2^{-3 x}+.$. \qquad .can be expressed as
(A) $\sum_{k=1}^{\infty} 5^{1-k} 2^{-2 x}$
(B) $\sum_{k=1}^{\infty} 5^{k-1} 2^{(3-2 k) x}$
(C) $\sum_{k=1}^{\infty} 5^{k-1} 2^{3-2 k}$
(D) $\sum_{k=0}^{\infty} 5^{k} 2^{x}$
(iii) Observe that $1^{3}+2^{3}+3^{3}=(1+2+3)^{2}$ and $1^{3}+2^{3}+3^{3}+4^{3}=(1+2+3+4)^{2}$. If the same pattern works for all positive integers, then which of the following expressions is equivalent to $\sqrt{1^{3}+2^{3}+3^{3}+\ldots .+k^{3}}$?
(A) $\frac{k}{2}(k+1)$
(B) $\left[\frac{k}{2}(k+1)\right]^{2}$
(C) $\sqrt{(1+2+3+\ldots . .+k)}$
(D) $\sqrt{k^{3}}$
(iv) The parametric equations $x=2 t^{2}$ and $y=3-t$ have the Cartesian equation
(A) $y=3-\frac{x}{2}$
(B) $x=2(3-y)^{2}$
(C) $x=\frac{(3-y)^{2}}{2}$
(D) $x^{2}=2(3-y)^{2}$
(v) Given $(p+q)^{2}=8 p q$ and T has coordinates $(a(p+q), a p q)$ then the locus of T is
(A) $x^{2}=8 a y$
(B) $x^{2}=\frac{8 y}{a}$
(C) $y=\frac{8 x^{2}}{a}$
(D) $y=8 a x^{2}$

Question 1 continued on next page

Question 1 (continued) Use a new booklet
(b) On the way to work, Kelly passes through a particular intersection. She notices that the traffic lights are red for 2 minutes, amber for 20 seconds and green for 1 minute.
(i) Find the probability that the lights will be green as a fraction in simplest terms.
(ii) Find the probability that at least one light will be green if Kelly drives through the intersection on three successive occasions.
(c) (i) Show that the equation of the tangent to $x^{2}=12 y$ at the point $\left(6 t, 3 t^{2}\right)$ is $y=t x-3 t^{2}$.
(ii) Find the values of t for which the tangent could pass through the point $(13,-10)$.
(iii) Hence state the equations of the tangents to $x^{2}=12 y$ passing through $(13,-10)$.

Question 2 (11 marks) Use a new booklet
(a) Find the value(s) of k for which the series $3+3 k^{2}+3 k^{4}+\ldots \ldots .$. has a limiting sum of $\frac{49}{8}$.
(b) In a TV game show, Bella is to spin the prize wheel twice. The wheel is divided into sectors labelled WIN or LOSE. If the wheel stops on a WIN both times she wins a major prize, if it stops on a WIN only once she wins a minor prize.

Let the probability that the wheel stops on WIN be p, where $p<0.5$.
(i) What is the probability that the wheel will stop on LOSE, in terms of p ?
(ii) Given that the probability that Bella wins a minor prize is 32%, find the value of p.
(iii) Find the probability that she wins a major prize, as a fraction in simplest terms.
(c) Prove by Mathematical Induction that

$$
\frac{1}{2 \times 5}+\frac{1}{5 \times 8}+\frac{1}{8 \times 11}+\ldots \ldots \ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{2(3 n+2)}
$$

Question 3 (12 marks) Use a new booklet
(a) The distinct points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$. The points P and Q are constrained to move such that $Q R \perp P R$ where R is the fixed point $(2 a, a)$ which also lies on the parabola.
(i) Show that $p q+p+q=-5$
(ii) If Q has coordinates $(-4 a, 4 a)$ find the coordinates of P.
(iii) By drawing a diagram, or otherwise, find the values of p and q for which the relationship $Q R \perp P R$ is not possible.
(b) An electric train travels along a circular track of radius 6 metres. At an instant selected at random, the current is cut off and the train stopped. What is the probability that it stops with less than 2 metres of track between the train and the station M ? Give your answer as an exact value.

(c) In a certain arithmetic series, the ratio of the sum of 10 terms to the sum of 5 terms
is $13: 4$. The sum of the first 20 terms is 115 .
(i) Show that $\frac{2 a+9 d}{a+2 d}=\frac{13}{4}$
(ii) Find the first term and the common difference.

QI Solution's 2012 Assessment March
a)

$$
\begin{gather*}
2+(n-1) 7<10000 \\
n-1<1428.286 \ldots \\
\therefore n-1=1428 \\
T_{n}=2+1428 \times 7 \\
=9998 \quad \text { (c) } \tag{c}
\end{gather*}
$$

(ii) Index for 5 must be 5^{k-1}

Indices for 2 go down $x,-x,-3 x$ etc
which is arithmetic: $\quad T_{n}=x+(k-1)(-2 x)$

$$
\begin{align*}
& =3 x-2 k x \\
& =(3-2 k) x \tag{B}
\end{align*}
$$

\therefore Index for $2=\alpha^{(3-2 k) x}$
(ii) Clearly $1^{3}+2^{3}+3^{3}+\ldots+k^{3}=(1+2+3+\ldots+k)^{2}$

$$
\begin{aligned}
& =S_{k} \text { of series } a=1, d=1 \\
& =\left[\frac{k}{2}(k+1)\right]^{2}
\end{aligned}
$$

Remembering to square root answer:

$$
\begin{equation*}
\sqrt{1^{3}+2^{3}+3^{3}+\ldots+k^{3}}=\frac{k}{2}(k+1) \tag{A}
\end{equation*}
$$

(iv) $x=2 t^{2}$ and $y=3-t$

Sub $t=3-y$ into $x=2 t^{2}$

$$
\begin{equation*}
x=2(3-y)^{2} \tag{B}
\end{equation*}
$$

(v) $p+q=\frac{x}{a}$ and $p q=\frac{y}{a} \Rightarrow\left(\frac{x}{a}\right)^{2}=\frac{8 y}{a}$

$$
\begin{equation*}
\therefore x^{2}=8 a y \tag{A}
\end{equation*}
$$

Question 1 (cont)
b)

$$
\text { (i) } \begin{aligned}
P(\text { green }) & =\frac{60}{120+20+60} \\
& =\frac{3}{10}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
P(\text { at least one green }) & =1-P(\text { no green at all }) \\
& =1-\left(\frac{7}{10}\right)^{3} \\
& =\frac{657}{1000}
\end{aligned}
$$

c)

$$
\begin{aligned}
& y=\frac{1}{12} x^{2} \\
& \frac{d y}{d x}=\frac{x}{6} \\
& \text { At }\left(6 t, 3 t^{2}\right), \frac{d y}{d x}=\frac{6 t}{6} \\
& =t
\end{aligned}
$$

Equation of tangent is $y-3 t^{2}=t(x-6 t)$

$$
y=t x-3 t^{2}
$$

(ii) ($13,-10$) will satisfy tangent equation

$$
\begin{gathered}
-10=13 t-3 t^{2} \\
3 t^{2}-13 t-10=0 \\
(3 t+2)(t-5)=0 \\
\therefore t=-2 / 3 \text { or } t=5
\end{gathered}
$$

(iii) When $t=-2 / 3$, equation of tangent is $y=-\frac{2 x}{3}-3\left(\frac{-2}{3}\right)^{2}$

When $t=5$, equation of tangent is

$$
y=-\frac{2 x}{3}-\frac{4}{3}
$$

OR

$$
y=5 x-75
$$

$$
2 x+3 y+4=0
$$

Question 2
(a)

$$
\begin{aligned}
3+3 k^{2} & +3 k^{4}+\cdots \\
S_{\infty} & =\frac{a}{1-r} \\
\frac{49}{8} & =\frac{3}{1-k^{2}} \\
49-49 k^{2} & =24 \\
0 & =49 k^{2}-25 \\
& =(7 k-5)(7 k+5)
\end{aligned}
$$

$k= \pm \frac{5}{7}$ beth solutions are valid
(b) $\quad p<0-5$
(i) $P($ LOSE $)=1-p$
(ii)

$$
\begin{gathered}
P(\omega L)+P(L \omega)=0.32 \\
P(1-p)+(1-p) p=\frac{8}{25} \\
2 p-2 p^{2}=\frac{8}{25} \\
0=25 p^{2}-25 p+4 \\
=(5 p-1)(5 p-4) \\
P=\frac{1}{5} \text { or } p=4 / 5
\end{gathered}
$$

But $p<0.5$

$$
\therefore p=\frac{1}{5}
$$

(iii) $P(W W)=P$ (major prize) $=\left(\frac{1}{5}\right)^{2}=\frac{1}{25}$

Question 2 (cont)
c) $\frac{1}{2 \times 5}+\frac{1}{5 \times 8}+\frac{1}{8 \times 11}+\cdots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{2(3 n+2)}$.

Test $n=1$

$$
\begin{aligned}
\angle H S & =\frac{1}{10} \\
R H S & =\frac{1}{2(5)} \\
\therefore \angle H S & =\text { RHS }
\end{aligned}
$$

Assume there is a value $n=k$ for which statement holds

$$
\text { ie assume } \frac{1}{2 \times 5}+\frac{1}{5 \times 8}+\cdots+\frac{1}{(3 k-1)(3 k+2)}=\frac{k}{2(3 k+2)}
$$

We wish to show true for $n=k+1$
ie show that $\frac{1}{2 \times 5}+\frac{1}{5 \times 8}+\cdots+\frac{1}{(3 k-1)(3 k+2)}+\frac{1}{(3 k+2)(3 k+5)}=\frac{k+1}{2(3 k+5}$

$$
\begin{aligned}
L H S & =\frac{k}{2(3 k+2)}+\frac{1}{(3 k+2)(3 k+5)} \text { by assumption } \\
& =\frac{k(3 k+5)+2}{2(3 k+2)(3 k+5)} \\
& =\frac{3 k^{2}+5 k+2}{2(3 k+2)(3 k+5)} \\
& =\frac{(3 k+2)(k+1)}{2(3 k+2)(3 k+5)} \\
& =\frac{k+1}{2(3 k+5)}
\end{aligned}
$$

\therefore By mathematical Induction the result folds for all $n \geq 1$

Question 3
Note $R(2 a, a)$ must lie on right hand side because $a>0$ ，by definition $Q R \perp P R$

$$
\begin{aligned}
& \therefore m_{Q R} \times m_{p R}=-1 \\
& \frac{a q^{2}-a}{2 a q-2 a} \times \frac{a p^{2}-a}{2 a p-2 a}=-1 \\
& \frac{q(q+1)(q-1)}{2 a(q-1)} \times \frac{a(p-1)(p+1)}{2 a(p-1)}=-1 \\
& \frac{q+1}{2} \times \frac{p+1}{2}=-1 \\
& p q+p+q+1=-4 \\
& \therefore p q+p+q=-5
\end{aligned}
$$

（ii）If Q is $(-4 a, 4 a)$ then $q=-2$ since $2 a q=-4 a$

$$
\begin{aligned}
& \quad-2 p+p-2=-5 \text { from } \\
& \therefore p \text { is }(6 a, 9 a)
\end{aligned}
$$

（iii）A right angle at R cannot be formed if
－P or Q lie on R itself
－P or Q lie on the other end of the laths recturn，ie at $(-2 a, a)$ ．
$\therefore p \neq \pm 1$ or $q \neq \pm 1$
Note if $p=-1$ ，equation $⿻ 丷 木$ becomes $-q-1+q=-5$ which is mipossian

Question 3 (cont)
b) Train can stop either side of the station; Circumference $=12 \pi$

$$
\begin{aligned}
\therefore P(\text { stops within } 2 \mathrm{~m} \text { of } \mathrm{m}) & =\frac{4}{2 \times 6 \times \pi} \\
& =\frac{1}{3 \pi}
\end{aligned}
$$

c)

$$
\begin{aligned}
S_{10} & =\frac{10}{2}(2 a+9 d) \\
& =5(2 a+9 d) \\
S_{5} & =\frac{5}{2}(2 a+4 d) \\
& =5(a+d) \\
\therefore \frac{13}{4} & =\frac{5(2 a+9 d)}{5(a+2 d)} \\
\frac{13}{4} & =\frac{2 a+9 d}{a+2 d}
\end{aligned}
$$

(ii)

$$
\begin{align*}
S_{20} & =\frac{20}{2}(2 a+19 d) \\
115 & =20 a+190 d \\
23 & =4 a+38 d \tag{1}
\end{align*}
$$

From (i) $\quad 4(2 a+9 d)=13(a+2 d)$

$$
\begin{equation*}
0=5 a-10 d \tag{2}
\end{equation*}
$$

(1) $\times 5$

$$
\text { (2) } \times 4
$$

$$
\begin{aligned}
& 115=20 a+190 d \\
& 0=20 a-40 d \\
& 115=230 d \\
& \therefore d=1 / 2 \\
& \therefore a=1
\end{aligned}
$$

\therefore first term is 1 and common difference is $\frac{1}{2}$

