

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC Mathematics Extension 1

Assessment Task 2

Term 1 2013

Name:		Mathematics Class:									
Student Numbe	r: _										
Time Allowed:	55	55 minutes + 2 minutes reading time									
Total Marks:	42	42									
Section I Section II	•	 (5 marks) Attempt Questions 1 – 5 Indicate your answer by colouring the appropriate circle on the answer sheet provided (37 marks) Attempt Questions 6-9 									
	• • • •	 Do not work in columns Attempt all questions Show all necessary working 									
Question	1 -4	5	6abc	6d	7	8 a	8b	9a	9b	Total	
HE2		/1		/3					/3	/7	
HE6			/8			/4				/12	
HE7	/4				/9		/4	/6		/23	
							I			/42	

SECTION I 5 marks Attempt Questions 1 – 5 Use the multiple choice answer sheet for Questions 1 – 5.

1 Given that $\log_a x = 2.8$ and $\log_a y = 4.3$, the value of $\log_a \left(\frac{y^2}{ax}\right)$ is given by the expression (A) $2 \times 4.3 - 2.8 + 1$ (B) $\frac{2 \times 4.3}{2.8 \times 1}$ (C) $4.3^2 - 2.8 \times 1$ (D) $2 \times 4.3 - 2.8 - 1$ 2 Let $k = 3^x$. Which expression is equal to $\log_3 k^2$?

- (A) 3^{2x} (B) 3^{x^2} (C) 2x (D) x^2
- 3 The diagram below shows the graph of y = 5x and $y = 8x x^2$. The graphs intersect at (3, 15).

Which integral will give the area enclosed between y = 5x and $y = 8x - x^2$?

(A)
$$\int_{0}^{3} (3x - x^{2}) dx$$
 (B) $\int_{0}^{3} (x^{2} - 3x) dx$
(C) $\int_{0}^{3} (13x - x^{2}) dx$ (D) $\int_{0}^{3} (x^{2} - 13x) dx$

4 The graph of y = f(x) has been drawn to scale for $0 \le x \le 2$.

Which of the following has the greatest value?

The function
$$Q(n) = \frac{n}{6}(n+1)(4n+5)$$
 will sum the series

(A)
$$1 \times 3 + 2 \times 4 + \dots + n(n+2)$$

5

(B) $1 \times 3 + 2 \times 5 + ... + n(2n+1)$

(C)
$$1 \times 2 + 2 \times 3 + \dots + \frac{n}{2}(n+1)$$

(D)
$$1 \times 2 + 2 \times 3 + \dots + n(n+1)$$

Question 6 (11 marks) Use a SEPARATE writing booklet.

(a) Evaluate
$$\int_{1}^{9} (1+\sqrt{x}) dx$$
. 2

(b) Find
$$\int x \sqrt{1-x^2} \, dx$$
 by using the substitution $u = 1-x^2$. 3

(c) Use the substitution
$$u = 3 - x$$
 to evaluate $\int_{1}^{3} x (3 - x)^4 dx$. 3

(d) Use mathematical induction to prove that

$$\frac{1}{1\times4} + \frac{1}{4\times7} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$$

3

for all positive integers *n*.

Question 7 (9 marks) Use a SEPARATE writing booklet.

(a) Find the least value of *n* such that
$$(0.95)^n < 0.5$$
, where *n* is an integer. 2

(b) (i) Expand
$$\sum_{n=1}^{4} \left(1 - \frac{3^n - 2}{3^n} \right)$$
 and evaluate the sum. 2

(ii) Find
$$\sum_{n=1}^{\infty} \left(1 - \frac{3^n - 2}{3^n}\right)$$
. **1**

(c) On the keyboard of a guitar, the mark M is the midpoint of A and Z.
 The 13 marks lettered A to M are such that their distances from Z are terms in a geometric series.
 The length A Z is 52 cm

The length AZ is 52 cm.

(i) Show that
$$r = \sqrt[12]{2}$$
. 2

2

(ii) Find the distance FG correct to 1 decimal place.

Question 8 (8 marks) Use a SEPARATE writing booklet.

(a) (i) Differentiate $x\sqrt{x+3}$, leaving your answer as a simple fraction.

(ii) Hence find
$$\int \frac{x+2}{\sqrt{x+3}} dx$$
. 2

(b) The line y = x - 2 meets the sideways parabola $y^2 = 4 - x$ at two points A(0, -2) and B(3, 1) as shown.

The shaded region is rotated about the *y*-axis. Calculate the volume of the solid of revolution.

4

2

Question 9 (9 marks) Use a SEPARATE writing booklet.

(a) Consider three points on the curve $y = ax^3 + bx^2 + cx + d$ with coordinates, $P(-h, y_0), Q(0, y_1)$ and $R(h, y_2)$.

- (i) Find expressions for y_0 , y_1 and y_2 in terms of *h*, *a*, *b*, *c* and *d*. **2**
- (ii) Hence write down an expression for $y_0 + 4y_1 + y_2$. 1

(iii) Find a simplified expression for
$$\int_{-h}^{h} (ax^3 + bx^2 + cx + d) dx$$
, using calculus. 2

- (iv) Hence deduce that Simpsons Rule gives an exact value for the area boundby a cubic and the *x*-axis.
- (b) Use mathematical induction to prove that $5^n > 3^n + 4^n$ for all positive integers $n \ge 3$. **3**

End of paper

Question: Name: Start here : Solutions Ext 1 Task 2 2013 Multiple Choice 1. $\log \frac{y^2}{2} = 2\log y - (\log a + \log x)$ $= 2 \times 4 \cdot 3 - 1 - 2 \cdot 8$ (D) $2. k = 3^{\chi}$ - log k = x $-. \log_{3} k^{2} = 2\log_{3} k$ c)= 2x 3. Area = $\int_{-1}^{3} (y_2 - y_1) dx$ $= \int_{-\infty}^{3} (\beta_{\chi} - \chi^2) - 5\chi \, dx$ $= \int_{a}^{3} 3x - \pi^{2} dx \qquad (A)$ 4: (f(x) dx contains the greatest proportion above the x-axis. The value will be higher (c)than any of the other integrals 5. $Q(n) = \frac{n}{h} (n+i)(4n+5)$ where Q(n) is the sum Let n=1 Q(1) = 3 => either (A) or (B) could be right. $\frac{n=2}{\sqrt{2}} Q(2) = \frac{1}{3} \times \frac{3}{\sqrt{3}} \times \frac{13}{\sqrt{3}}$ -- (B) is correct since 1x3 + 2x5 = 13

Ouestion: Name: Class: 12 Start here : Question 6 a) $\int_{1}^{9} (1 + \sqrt{x}) dx = \int_{1}^{9} 1 + \chi^{2} d\chi$ $= \left[\chi + \frac{2}{3} \chi^{3/2} \right]^{9}$ =(9+18)-(1+2)= 253 6) $\mathcal{M} = 1 - \chi^2$ $\frac{du}{dx} = -2x$ $\frac{dx}{-\frac{1}{2}du} = x dx$ $\int x \sqrt{1 - \chi^2} dx = -\frac{1}{2} \int \sqrt{u} du$ $= -\frac{1}{2} \times \frac{2u^{3/2}}{2}$ $= -\frac{1}{3}u^{3/2} + C$ $= -\frac{1}{2}(1-\chi^2)\sqrt{1-\chi^2} + C$ $\frac{du = 3 - x}{du = -dx} = \frac{3 - u}{x}$ When x=3, u=0When x = 1, u = 2 $\frac{When x = 1}{2}$, u = 2 $\frac{1}{2} \int_{1}^{3} x (3-x)^{4} dx = -\int_{2}^{0} (3-u) u^{4} du$ $\int_{2}^{2} reversing order$ $\int_{3}^{2} reversing order$ $\int_{3}^{2} reversing order$ $= \int_{-\infty}^{\infty} 3u^{4} - u^{5} du$

Question:

Start here : $= \left[\frac{3u^{5} - u^{6}}{5} \right]^{2}$ = 8 ^{8/}15 or 128 $d - \frac{1}{1x4} + \frac{1}{4x7} + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1} \quad for \ n \in \mathbb{Z}^{+}$ Test result for n=1 : LHS = 1 = 4 $RHS = \frac{1}{4}$.. Result is true for n=1 Assume result holds for n=k $\frac{1}{12} \frac{1}{12} \frac$ We wish to show true for n=k+1 $\frac{1}{12} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1$ $\frac{LHS}{3k+1} = \frac{k}{(3k+1)(3k+4)} + \frac{1}{(3k+1)(3k+4)} = \frac{k}{3k+1} + \frac{1}{(3k+1)(3k+4)}$ $= \frac{k(3k+4) + 1}{(3k+1)(3k+4)}$ $= 3k^2 + 4k + 1 \\ (3k+1)(3k+4)$ = (3k+1)(k+1)(3k+1)(3k+4)By Mathematical Induction the result is proved true

Name: _____ Question: Class: 12 Start here : $(Q7 a) (0.95)^{h} < 0.5$ n = 14 by trial and error on calc. Alternatively, take logs of both sides: n log 0.95 < log 0.5 n > log 0.5 sign reverses because log 0.95 log 0-95 is negative n > 13.5... n= 14 is the least value of n. $\frac{4}{6} (i) \stackrel{\#}{\geq} 1 - \frac{3^{h}-2}{3^{n}} = \frac{2}{3^{n}} \frac{3^{n}-3^{n}+2}{3^{n}}$ Simplify for ease of working $= \underbrace{2}_{n=1}^{\prime} \underbrace{2}_{n=1}^{\prime}$ $= \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \frac{2}{81}$ $= \frac{79}{81}$ (ii) a= 2 and r= 1/3 $S = \frac{a}{1-r}$

Student Number: _____ (* Ouestion: Start here : c) All distances are measured from Z ie AZ = 52 cm and mZ = 26 cmLet a = 26 (MZ) in geometric series <u>then LZ = r</u> where r is the ratio MZ LZ = 26r-- AZ = 26r¹² since there are twelve letters after M (L,K,J,I, H,G,F,E, D,C,B,A) $52 = 26r^{12}$ $r^{12} = 2$ $r = \frac{12}{\sqrt{2}}$ $\begin{array}{rcl} (ii) \quad FG &=& FZ - GZ \\ &=& 26r^7 - 26r^6 \end{array}$ $= 26 \left(2^{\frac{7}{12}} - 2^{\frac{6}{12}} \right)$ = 2.186 = 2.2 cm

Question: Name: Class: 12 Start here : Question 8 a) $d\left[x\sqrt{x+3}\right] = \sqrt{x+3} + x \times \frac{1}{2}(x+3) \times \frac{1}{x}$ rule $\sqrt{\chi+3} + \chi$ $2\sqrt{\chi+3}$ simplify to 2(x+3) + xmake work easier 2 12+3 3x+62 Jz+3 not in marking = 3(x+2)scheme for (i) $2\sqrt{x+3}$ Helpful for (11) $\frac{\chi+2}{\sqrt{\chi+3}} dx = \frac{2\int 3\chi+b}{3\int 2\sqrt{\chi+3}} dx$ $= \frac{2}{3} \times \sqrt{\chi + 3} + C$ B/ Volume is considered in two parts: > V, rotating the line about y axis betwy=-2, 1 0 3 V2 rotating the curve about y axis betw y=1,2 $V = \pi \int_{-}^{1} \left(\frac{y^2 + 4y + 4}{y} + \frac{y}{y} \right) dy + \pi \int_{-}^{1} \frac{16 - 8y^2 + y^4}{y^4} dy$ $= \pi \left[\frac{y^{3}}{2} + \frac{2y^{2}}{4} + \frac{4y^{7}}{7} + \pi \left[\frac{16y - 8y^{3} + y^{5}}{5} \right]^{2} \right]$ Vol of cone $= \underbrace{II}_{3} r^{2}h$ $= \underbrace{II}_{3} x 3^{2}x 3$ $9\pi + 3^{8/15}\pi$ $12^{8/15}\pi u^{3}$ or $\frac{188\pi}{15}u^{3}$ units³ =

Question 9 $M = a(-h)^{3} + b(-h)^{2} + c(-h) + d$ $= -ah^3 + bh^2$ ch + d y = d $\frac{y}{x} = ah^3 + bh^2 + ch + d$ $(ii) y + 4y + y_2 = 2bh^2 + 4d + 2d$ since odd powers $= 26h^2 + 6d$ add to give zero $(\overline{111}) \int (ax^3 + bx^2 + cx + d) dx$ $\frac{\left[ax^{4} + bx^{3} + cx^{2} + dx\right]^{h}}{\left[4 + 3\right]^{2}}$ $= \frac{(ah^{4} + bh^{3} + ch^{2} + dh) - (ah^{4} - bh^{3} + ch^{2} - dh)}{(4 + 3 + ch^{2} - dh)}$ $= 2bh^3 + 2dh$ $\frac{h}{3}\left(\begin{array}{c}y + 4y + 4y\\\end{array}\right) \stackrel{=}{=} area under a curve by \\Simpsons rule$ 'IV) $\frac{h}{3}(y_0 + 4y_1 + y_2) = \frac{h}{2}(2bh^2 + 6d) \quad \text{from (ii)}$ $= \underline{2bh}^3 + 2hd$ = $\int (ax^3 + bx^2 + cx + d) dx$ Simpsons rule gives an exact value for the area bound by a cubic and x-oxis _ -

You may ask for an extra Insert if you need more space to answer questions.

-3-Q96) Show $5^{n} > 3^{n} + 4^{n}$ for n > 3, $n \in \mathbb{Z}^{+}$ Test if true for n=1 LHS = $5^3 = 125$ $RHS = 3^{3} + 4^{3}$ = 91 :. Result is true for n=3 Assume result is true for n=k ie assume 5k, 3k+4k We wish to show that 5 k+1 > 3 k+1 + 4 k+1 is true $LHS = 5 \times 5^{k}$ $> 5(3^{k}+4^{k})$ by assumption $= 5x3^{k} + 5x4^{k}$ $> 3 \times 3^k + 4 \times 4^k$ $= 3^{k+1} + 4^{k+1}$... By mathematical Induction result is true for all n > 3, n E Z+ Alternatively consider 5 k+1 - (3 k+1 + 4 k+1) $> 5(3^{k}+4^{k}) - 3.3^{k}-4x4^{k}$ $= 2 \times 3^{k} + 2 \times 4^{k}$ $\frac{>0}{5^{k+1}>3^{k+1}+4^{k+1}}$