

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC Mathematics Extension 1

Assessment Task 2
\qquad

Term 12013

Mathematics Class: \qquad

Name:
Student Number:
Time Allowed: 55 minutes + 2 minutes reading time
Total Marks: 42

Section I

(5 marks)

- Attempt Questions 1 - 5
- Indicate your answer by colouring the appropriate circle on the answer sheet provided

Section II (37 marks)

- Attempt Questions 6-9
- Write your answers on the examination booklet provided
- Write on one side of the page only
- Do not work in columns
- Attempt all questions
- Show all necessary working
- Marks may be deducted for incomplete or poorly arranged work

Question	$\mathbf{1 - 4}$	5	6abc	6d	7	8a	8b	9a	9b	Total
HE2		$/ 1$		13					$/ 3$	$/ 7$
HE6			18			14				$/ 12$
HE7	14				19		$/ 4$	$/ 6$		$/ 23$

SECTION I

5 marks
Attempt Questions 1 - 5
Use the multiple choice answer sheet for Questions 1 - 5.
1 Given that $\log _{a} x=2.8$ and $\log _{a} y=4.3$, the value of $\log _{a}\left(\frac{y^{2}}{a x}\right)$ is given by the expression
(A) $2 \times 4.3-2.8+1$
(B) $\frac{2 \times 4.3}{2.8 \times 1}$
(C) $4.3^{2}-2.8 \times 1$
(D) $2 \times 4.3-2.8-1$

2 Let $k=3^{x}$. Which expression is equal to $\log _{3} k^{2}$?
(A) $3^{2 x}$
(B) $3^{x^{2}}$
(C) $2 x$
(D) x^{2}

3 The diagram below shows the graph of $y=5 x$ and $y=8 x-x^{2}$. The graphs intersect at $(3,15)$.

Which integral will give the area enclosed between $y=5 x$ and $y=8 x-x^{2}$?
(A) $\int_{0}^{3}\left(3 x-x^{2}\right) d x$
(B) $\int_{0}^{3}\left(x^{2}-3 x\right) d x$
(C) $\int_{0}^{3}\left(13 x-x^{2}\right) d x$
(D) $\int_{0}^{3}\left(x^{2}-13 x\right) d x$

4 The graph of $y=f(x)$ has been drawn to scale for $0 \leq x \leq 2$.

Which of the following has the greatest value?
(A) $\int_{0}^{0.5} f(x) d x$
(B) $\int_{0}^{1} f(x) d x$
(C) $\int_{0}^{1.5} f(x) d x$
(D) $\int_{0}^{2} f(x) d x$

5 The function $Q(n)=\frac{n}{6}(n+1)(4 n+5)$ will sum the series
(A) $1 \times 3+2 \times 4+\ldots+n(n+2)$
(B) $1 \times 3+2 \times 5+\ldots+n(2 n+1)$
(C) $1 \times 2+2 \times 3+\ldots+\frac{n}{2}(n+1)$
(D) $1 \times 2+2 \times 3+\ldots+n(n+1)$

SECTION II

40 marks

Attempt Questions 6-9
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 6 (11 marks) Use a SEPARATE writing booklet.
(a) Evaluate $\int_{1}^{9}(1+\sqrt{x}) d x$.
(b) Find $\int x \sqrt{1-x^{2}} d x$ by using the substitution $u=1-x^{2}$.
(c) Use the substitution $u=3-x$ to evaluate $\int_{1}^{3} x(3-x)^{4} d x$.
(d) Use mathematical induction to prove that

$$
\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\ldots \ldots .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}
$$

for all positive integers n.

Question 7 (9 marks) Use a SEPARATE writing booklet.
(a) Find the least value of n such that $(0 \cdot 95)^{n}<0 \cdot 5$, where n is an integer.
(b) (i) Expand $\sum_{n=1}^{4}\left(1-\frac{3^{n}-2}{3^{n}}\right)$ and evaluate the sum.
(ii) Find $\sum_{n=1}^{\infty}\left(1-\frac{3^{n}-2}{3^{n}}\right)$.
(c) On the keyboard of a guitar, the mark M is the midpoint of A and Z .

The 13 marks lettered A to M are such that their distances from Z are terms in a geometric series.
The length AZ is 52 cm .

(i) Show that $r=\sqrt[12]{2}$.
(ii) Find the distance FG correct to 1 decimal place.

Question 8 (8 marks) Use a SEPARATE writing booklet.
(a) (i) Differentiate $x \sqrt{x+3}$, leaving your answer as a simple fraction.
(ii) Hence find $\int \frac{x+2}{\sqrt{x+3}} d x$.
(b) The line $y=x-2$ meets the sideways parabola $y^{2}=4-x$ at two points $A(0,-2)$ and $B(3,1)$ as shown.

x

The shaded region is rotated about the y-axis.
Calculate the volume of the solid of revolution.

Question 9 (9 marks) Use a SEPARATE writing booklet.
(a) Consider three points on the curve $y=a x^{3}+b x^{2}+c x+d$ with coordinates, $P\left(-h, y_{0}\right), Q\left(0, y_{1}\right)$ and $R\left(h, y_{2}\right)$.

(i) Find expressions for y_{0}, y_{1} and y_{2} in terms of h, a, b, c and d.
(ii) Hence write down an expression for $y_{0}+4 y_{1}+y_{2}$.
(iii) Find a simplified expression for $\int_{-h}^{h}\left(a x^{3}+b x^{2}+c x+d\right) d x$, using calculus. 2
(iv) Hence deduce that Simpsons Rule gives an exact value for the area bound by a cubic and the x-axis.
(b) Use mathematical induction to prove that $5^{n}>3^{n}+4^{n}$ for all positive integers $n \geq 3$.

End of paper

Solution Ext 1 Task 2013
Multiple Choice

$$
\text { 1. } \begin{align*}
\log \frac{y^{2}}{a x} & =2 \log _{a} y-\left(\log _{a} a+\log _{a} x\right) \\
& =2 \times 4 \cdot 3-1-2 \cdot 8 \tag{D}
\end{align*}
$$

2. $k=3^{x}$

$$
\begin{align*}
\therefore \log _{3} k & =x \\
\therefore \log _{3} k^{2} & =2 \log _{3} k \\
& =2 x \tag{c}
\end{align*}
$$

$$
\begin{align*}
\text { 3. Area } & =\int_{0}^{3}\left(y_{2}-y_{1}\right) d x \\
& =\int_{0}^{3}\left(8 x-x^{2}\right)-5 x d x \\
& =\int_{0}^{3} 3 x-x^{2} d x \tag{A}
\end{align*}
$$

4: $\int_{0}^{1.5} f(x) d x$ contains the greatest proportion above the x-axis. The value will be higher
(c) than any of the other integrals
5. $Q(n)=\frac{n}{6}(n+1)(4 n+5)$ where $Q(n)$ is the sum

Let $n=1 \quad Q(1)=3 \quad \Rightarrow$ either (A) or (B) could be right

$$
\begin{aligned}
n=2 \quad Q(2) & =\frac{1}{3} \times 3 \times 13 \\
& =13
\end{aligned}
$$

\therefore (B) is correct since $1 \times 3+2 \times 5=13$

Question 6
a)

$$
\begin{aligned}
\int_{1}^{9}(1+\sqrt{x}) d x & =\int_{1}^{9} 1+x^{1 / 2} d x \\
& =\left[x+\frac{2}{3} x^{3 / 2}\right]^{9} \\
& =(9+18)-\left(1+\frac{2}{3}\right) \\
& =25 \frac{13}{3}
\end{aligned}
$$

b)

$$
\begin{aligned}
& u=1-x^{2} \\
& \frac{d u}{d x}=-2 x \\
&-\frac{1}{2} d u=x d x \\
& \int x \sqrt{1-x^{2}} d x=-\frac{1}{2} \int \sqrt{u} d u \\
&=-\frac{1}{2} \times \frac{2 u^{3 / 2}}{3} \\
&=-\frac{1}{3} u^{3 / 2}+C \\
&=-\frac{1}{3}\left(1-x^{2}\right) \sqrt{1-x^{2}}+C
\end{aligned}
$$

c)

$$
\begin{aligned}
u & =3-x \quad \Rightarrow \quad x=3-u \\
d u & =-d x
\end{aligned}
$$

When $x=3, u=0$
When $x=1, u=2$

$$
\begin{aligned}
\therefore \int_{1}^{3} x(3-x)^{4} d x & =-\int_{2}^{0}(3-u) u^{4} d u \\
& =\int_{0}^{2} 3 u^{4}-u^{5} d u
\end{aligned}
$$

Start here :

$$
\begin{aligned}
& =\left[\frac{3 u^{5}}{5}-\frac{u^{6}}{6}\right]_{0}^{2} \\
& =8^{8 / 15} \text { or } \frac{128}{15}
\end{aligned}
$$

d) $\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\cdots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}$ for $n \in Z^{+}$

Test result for $n=1: \quad \angle H S=\frac{1}{1 \times 4}=\frac{1}{4}$

$$
\text { RH }=\frac{1}{4}
$$

\therefore Result is true for $n=1$

Assume result holds for $n=K$
ie assume that $\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\cdots+\frac{1}{(3 k-2)(3 k+1)}=\frac{k}{3 k+1}$
We wish to show true for $n=k+1$
ie show that $\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\ldots+\frac{1}{(3 k-2)(3 k+1)}+\frac{1}{(3 k+1)(3 k+4)}=\frac{k+1}{3 k+4}$

$$
\begin{aligned}
L H S & =\frac{k}{3 k+1}+\frac{1}{(3 k+1)(3 k+4)} \text { by assumption } \\
& =\frac{k(3 k+4)+1}{(3 k+1)(3 k+4)} \\
& =\frac{3 k^{2}+4 k+1}{(3 k+1)(3 k+4)} \\
& =\frac{(3 k+1)(k+1)}{(3 k+1)(3 k+4)} \\
& =\frac{k+1}{3 k+4}
\end{aligned}
$$

\therefore By Mathematical Induction the result is proved tine

QT
a) $(0.95)^{n}<0.5$
$n=14$ by trial and error on call.
Alternatively, take logs of both sides:

$$
n \log 0.95<\log 0.5
$$

$n>\frac{\log 0.5}{\log 0.95} \quad$ sign reverses because

$$
n>13.5
$$

$\therefore n=14$ is the least value of n.
b) (i)

$$
\begin{aligned}
\sum_{n=1}^{4} 1-\frac{3^{n}-2}{3^{n}} & \left.=\sum_{n=1}^{4} \frac{3^{n}-3^{n}+2}{3^{n}} \quad\right\} \text { simplify } \\
& =\sum_{n=1}^{4} \frac{2}{3^{n}} \quad \\
& =\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\frac{2}{81} \\
& =\frac{79}{81}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
a & =\frac{2}{3} \text { and } r=1 / 3 \\
S & =\frac{a}{1-r} \\
& =1
\end{aligned}
$$

Start here:
c) All distances are measured from Z ie $A Z=52 \mathrm{~cm}$ and $m z=26 \mathrm{~cm}$

Let $a=26 \quad(m z)$ in geometric series
then $\frac{L z}{m z}=r$ where r is the ratio

$$
\begin{aligned}
& \angle Z=26 r \\
& \therefore A Z=26 r^{\prime 2} \quad \text { since there are twelve letters } \\
& \text { after } m \quad\left(L, K, T, I, H, G, F, E_{1}\right. \\
&D, C, B, A)
\end{aligned} \quad \begin{aligned}
52 & =26 r^{12} \\
r^{12} & =2 \\
r & =\sqrt[12]{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
F G & =F Z-G Z \\
& =26 r^{7}-26 r^{6} \\
& =26\left(2^{7 / 12}-2^{6 / 12}\right) \\
& =2.186 \\
& =2.2 \mathrm{~cm}
\end{aligned}
$$

Question 8
a)

$$
\begin{aligned}
& \frac{d}{d x}[x \sqrt{x+3}]=\sqrt{x+3}+x \times \frac{1}{2}(x+3)^{-1 / 2} \times 1 \text { product } \\
& =\frac{\sqrt{x+3}+\frac{x}{2 \sqrt{x+3}}}{=\frac{2(x+3)+x}{2 \sqrt{x+3}}}\left\{\begin{array}{l}
\text { rule } \\
\text { simplify to } \\
\text { make work easier }
\end{array}\right. \\
& =\frac{3 x+6}{2 \sqrt{x+3}}=\frac{3(x+2)}{2 \sqrt{x+3}} \quad\left\{\begin{array}{l}
\\
\text { not in marking } \\
\text { scheme for (i) } \\
\text { Helpful for (ii) }
\end{array}\right.
\end{aligned}
$$

(ii) $\int \frac{x+2}{\sqrt{x+3}} d x=\frac{2}{3} \int \frac{3 x+6}{2 \sqrt{x+3}} d x$

$$
=\frac{2}{3} x \sqrt{x+3}+C
$$

$$
\left.\begin{array}{|l}
\text { Vol of cone } \\
=\frac{\pi}{3} r^{2} h \\
=\frac{\pi}{3} \times 3^{2} \times 3 \\
=9 \pi
\end{array} \quad=\pi\left[\frac{y^{3}}{3}+2 y^{2}+4 y\right]_{-2}^{1}+\pi\left[16 y-\frac{8 y^{3}}{3}+y^{5}\right]_{1}^{2}\right]
$$

Question' 9
(i)

$$
\begin{aligned}
y_{0} & =a(-h)^{3}+b(-h)^{2}+c(-h)+d \\
& =-a h^{3}+b h^{2} c h+d \\
y_{1} & =d \\
y_{2} & =a h^{3}+b h^{2}+c h+d
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y_{0}+4 y_{1}+y_{2} & =2 b h^{2}+4 d+2 d \\
& =2 b h^{2}+6 d
\end{aligned}
$$

since odd powers add to give zero
(iii)

$$
\begin{aligned}
& \int_{-h}^{h}\left(a x^{3}+b x^{2}+c x+d\right) d x \\
& =\left[\frac{a x^{4}}{4}+\frac{b x^{3}}{3}+\frac{c x^{2}}{2}+d x\right]_{-h}^{h} \\
& =\left(\frac{a h^{4}}{4}+\frac{b h^{3}}{3}+\frac{c h^{2}}{2}+d h\right)-\left(\frac{a h^{4}}{4}-\frac{b h^{3}}{3}+\frac{c h^{2}}{2}-d h\right) \\
& =\frac{2 b h^{3}}{3}+2 d h
\end{aligned}
$$

(IV) $\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right) \doteq$ area under a curve by Simpsons rule

$$
\begin{aligned}
\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right) & =\frac{h}{3}\left(2 b h^{2}+6 d\right) \text { from (ii) } \\
& =\frac{2 b h^{3}}{3}+2 h d \\
& =\int_{-h}^{h}\left(a x^{3}+b x^{2}+c x+d\right) d x
\end{aligned}
$$

$\therefore \quad$ Simpsons rule gives an exact value for the area bound by a cubri.and x-axis

Q9 b) Show $5^{n}>3^{n}+4^{n}$ for $n \geqslant 3, n \in Z^{+}$
Test if true for $n=1$

$$
\begin{aligned}
\angle H S & =5^{3}=125 \\
\text { RUS } & =3^{3}+4^{3} \\
& =91
\end{aligned}
$$

\therefore Result is true for $n=3$
Assume result is true for $n=k$ ie assume $5^{k}>3^{k}+4^{k}$
We wish to show that $5^{k+1}>3^{k+1}+4^{k+1}$ is true

$$
\begin{aligned}
\text { LIS } & =5 \times 5^{k} \\
& >5\left(3^{k}+4^{k}\right) \text { by assumption } \\
& =5 \times 3^{k}+5 \times 4^{k} \\
& >3 \times 3^{k}+4 \times 4^{k} \\
& =3^{k+1}+4^{k+1} \\
\therefore 5^{k+1} & >3^{k+1}+4^{k+1}
\end{aligned}
$$

\therefore By mathematical Induction result is tue for all $n \geqslant 3, n \in Z^{+}$

Alternatively consider $5^{k+1}-\left(3^{k+1}+4^{k+1}\right)$

$$
\begin{aligned}
& >5\left(3^{k}+4^{k}\right)-3.3^{k}-4 \times 4^{k} \\
& =2 \times 3^{k}+2 \times 4^{k} \\
& >0 \\
\therefore 5^{k+1} & >3^{k+1}+4^{k+1}
\end{aligned}
$$

You may ask for an extra Writing Booklet if you need more space to answer questions.

