SAINT IGNATIUS’ COLLEGE RIVERVIEW YEAR 12

MATHEMATICS
 Extension One

APRIL 2008

Time allowed - 2 hours
(plus 5 minutes reading time)

Directions to Candidates

1. Attempt ALL questions.
2. There are SEVEN QUESTIONS of equal value.
3. All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
4. Board-approved calculators may be used.
5. Each question attempted is to be returned in a SEPARATE BOOKLET clearly marked Question 1, Question 2, \qquad .etc.
6. Each answer sheet must show your NAME and your TEACHER'S NAME.

Question One: (12 marks) Please use a separate writing booklet
a) Solve the following equation.

$$
|2 x+4|=9
$$

b) If $\sec \theta=\frac{-5}{4}$ and $\tan \theta>0$, find the exact value of $\cot \theta+\cos \theta$.
c) Solve the following equation for x :

$$
4^{2 x-1}=\frac{1}{8}
$$

d) An arc of length 2 cm subtends an angle of $\frac{\pi}{3}$ at the centre of a circle with radius $x \mathrm{~cm}$. Find x.
e) The point $A(-2,1)$ is the midpoint of $(a, 4)$ and $(-3, b)$. Find a and b.

Question Two: (12 marks) Please use a separate writing booklet

a) AB is a chord of length 80 cm and is 9 cm from the centre of the circle. Find the diameter of the circle.
b) Find the following limit.

$$
\lim _{x \rightarrow 0} \frac{2 x}{\sin 5 x}
$$

c) Find the size of the angle between the lines $2 x-3 y+2=0$ and $x+2 y-5=0$. Answer to the nearest degree.
d) Find the coordinates of the point $\mathrm{P}(x, y)$ which divides the interval joining $\mathrm{A}(6,-4)$ and $\mathrm{B}(-1,5)$ externally in the ratio 2:3.
e) Solve for x and graph the solution on a number line.

$$
\frac{2 x+5}{x+1} \geq 3
$$

Question Three: (12 marks) Please use a separate writing booklet

a) Determine the value of
i) $\tan ^{-1}(\sqrt{3})$
ii) $\cos ^{-1}\left(\sin \frac{\pi}{3}\right)$
b) If $y=\log _{e}(x-2)$
i) find the equation of the inverse function
ii) state the domain of this inverse function.
c) Draw a neat accurate sketch of the following function. Label clearly any key points.

$$
y=4 \sin ^{-1} \frac{x}{2}
$$

d) The area bounded by the curve $y=\frac{1}{\sqrt{9+x^{2}}}$, the x axis and the ordinates $x=-3$ and $x=\sqrt{3}$ is rotated about the x axis. Find the volume of the solid of revolution formed.

Question Four: (12 marks) Please use a separate writing booklet

a) i) By using the sum to n terms of an Arithmetic Series show that the sum of the first positive nodd integers is n^{2}. ie: $1+3+5+\ldots \ldots+(2 n-1)=n^{2}$
ii) Prove the result of part i) by Mathematical Induction.
b) Use Mathematical Induction to show that $5^{n} \geq 1+4 n$ for all positive integers n.
c) Prove by Mathematical Induction that $2 n+n^{3}$ is a multiple of 4 3 , for all positive integers n.

Question Five: (12 marks) Please use a separate writing booklet
a) i) Write the expansion of $\sin (\alpha+\beta) \quad 1$
ii) Hence, find the exact value of $\sin 105^{\circ}$
b) Prove the following identity: $\sin 2 B=\frac{2 \tan B}{1+\tan ^{2} B}$
c) Given that $0<\alpha<\frac{\pi}{4}$, prove that $\tan \left(\frac{\pi}{4}+\alpha\right)=\frac{\cos \alpha+\sin \alpha}{\cos \alpha-\sin \alpha}$
d) Find all the angles β with $0 \leq \beta \leq 2 \pi$ for which $\sin \beta+\cos \beta=1$

Question Six: (12 marks) Please use a separate writing booklet

a) Find the cartesian equation of the parabola with parametric equations $x=6 t$ and $y=2 t^{2}$.
b) Prove that the normal to the parabola $x^{2}=8 y$ at the point $P\left(4 t, 2 t^{2}\right)$ has equation $x+t y=2 t^{3}+4 t$
c) The point $T\left(t, t^{2}+1\right)$ lies on the parabola $y=x^{2}+1$.
i) Find the equation of the tangent at T.
ii) The tangent at T and the tangent at the vertex meet at R. Find the coordinates of R.
d) On the parabola $x^{2}=y$ the point P has coordinates $\left(t, t^{2}\right)$. The equation of the tangent at P is $y-2 t x+t^{2}=0$.
i) State the coordinates of the focus S of the parabola.
ii) Prove that the line through S meeting the tangent at right angles in N has equation $4 t y+2 x=t$.
iii) Hence determine the equation of the locus of N as P varies on the curve.

Question Seven: (12 marks) Please use a separate writing booklet
a)

It is known that $\angle A O B$ is straight, $\angle A O C=136^{\circ}$ and O is the centre of the circle. Find the size of $\angle O C B$.
b)

i) Prove that $\triangle A E D$ is similar to $\triangle C E B$
ii) Find the value of x
c) Two circles touch externally in P. QR is a common tangent to the circles touching the first circle in Q and the second circle in R. The common tangent at P meets $Q R$ in S.
i) Draw a clearly labelled diagram of this information. 1
ii) Prove that S is the midpoint of QR 2
iii) Prove that $\angle Q P R$ is a right angle

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

YR 12 EXT 1 MATHEMATICS.
TERM ONE 2008 EXAMINATION.
SOLUTIONS

QUESTION ONE
a)

$$
\begin{array}{cc}
|2 x+4|=9 \\
2 x+4=9 & 2 x+4=-9 \\
2 x=5 & 2 x=-13 \\
x=5 / 2 & x=-\frac{13}{2}
\end{array}
$$

b) $\sec \theta=-\frac{5}{4} \quad \tan \theta>0$

$\operatorname{Cot} \theta+\operatorname{Cos} \theta=\frac{4}{3}-\frac{4}{5}$

$$
=\frac{8}{15}
$$

c)

$$
\begin{aligned}
4^{2 x-1} & =\frac{1}{8} \\
2^{4 x-2} & =2^{3} \\
4 x-2 & =3 \\
4 x & =5 \\
x & =5 / 4
\end{aligned}
$$

d) $\quad x / \pi / 31$

$$
\begin{aligned}
& l=r \cdot \theta \\
& 2=x \cdot \frac{\pi}{3} \\
& \frac{6}{\pi}=x . \\
& x=\frac{6}{\pi} \mathrm{~cm} .
\end{aligned}
$$

e) $(-2,1)$
$(a, 4)$
$(-3 ; b)$
$-2=\frac{a+(-3)}{2}$
$1=\frac{4+b}{2}$
$-4=a-3$
$2=4+b$
$a=-1$

$$
b=-2
$$

Question 2
a)

$$
\begin{aligned}
& x^{2}=9^{2}+40^{2} \\
& x=41 \\
& \therefore \text { DiAmETER }=82 \mathrm{~cm}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{2 x}{\sin 5 x} \\
& =\frac{2}{5} \lim _{x \rightarrow 0} \frac{5 x}{\sin 5 x} \\
& =\frac{2}{5}
\end{aligned}
$$

c)

$$
\begin{gathered}
2 x-3 y+2=0 \quad m=\frac{2}{3} \\
x+2 y-5=0 \quad m=-\frac{1}{2} \\
\tan \theta=\left|\frac{\frac{2}{3}+\frac{1}{2}}{1+\frac{2}{3}\left(-\frac{1}{x}\right)}\right| \\
=\frac{7}{4} \\
\therefore \theta=60^{\circ} 15^{\prime}
\end{gathered}
$$

$$
\begin{aligned}
& \text { d) } \\
& x=\frac{2(-1)-3(6)}{-1} \\
&=20 \\
& y=\frac{2(5)-3(-4)}{-1} \\
&=-22 \\
& P(20,-22)
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } \frac{2 x+5}{x+1} \geqslant 3 \quad x \neq-1 \\
& (2 x+5)(x+1) \geqslant 3(x+1)^{2} \\
& (2 x+5)(x+1)-3(x+1)^{2} \geqslant 0 \\
& (x+1)(2 x+5-3(x+1)) \geqslant 0 \\
& (x+1)(x+5-3 x-3) \geqslant 0 \\
& (x+1)(2-x) \geqslant 0
\end{aligned}
$$

Question 3
a) i) $\tan ^{-1} \sqrt{3}=\frac{\pi}{3}$
ii)

$$
\begin{aligned}
\cos ^{-1}\left(\sin \frac{\pi}{3}\right) & =\operatorname{Cos}^{-1} \frac{\sqrt{3}}{2} \\
& =\frac{\pi}{6}
\end{aligned}
$$

b) $y=\log _{e}(x-2)$
i)

$$
\begin{aligned}
& x=\log _{e}(y-2) \\
& e^{x}=y-2 \\
& y=e^{x}+2
\end{aligned}
$$

ii) D all real x

$$
R: \quad y \geqslant 2
$$

c) $y=4 \sin ^{-1} \frac{x}{2}$

(d) $y=\frac{1}{\sqrt{9+x^{2}}}$.
$V=\pi \int_{-3}^{\sqrt{3}} y^{2} d x$

$$
\begin{aligned}
& =\pi \int_{-3}^{\sqrt{3}} \frac{1}{9+x^{2}} d x \\
& =\pi\left[\frac{1}{3} \tan ^{-1} \frac{x}{3}\right]_{-3}^{\sqrt{3}} \\
& =\frac{\pi}{3}\left[\tan ^{-1} \frac{1}{\sqrt{3}}-\tan ^{-1}(-1)\right] \\
& =\frac{\pi}{3}\left[\frac{\pi}{6}+\frac{\pi}{4}\right] \\
& =\frac{5 \pi^{2}}{36} u^{3} .
\end{aligned}
$$

Question 4
a)

$$
\text { i) } \begin{aligned}
& 1+3+5+\cdots+2 n-1 \\
S_{n}= & \frac{n}{2}(2+(n-1) 2) \\
= & \frac{n}{2}(2 n) \\
= & n^{2} .
\end{aligned}
$$

(i)

Prove $1+3+5+\cdots \cdots 2 n-1=n^{2}$
step 1. Prove truce for $n=1$

$$
\begin{aligned}
& \text { HS }=1 \\
& \text { RHO }=1
\end{aligned}
$$

\therefore true for $n=1$
Step 2. Assume true for $n=k$

$$
\text { ie } 1+3+5+\ldots+2 k-1=k^{2}
$$

Prove true for $n=k+1$

$$
1 e 1+3+5+\cdots+2(k+1)-1=(k+1)^{2}
$$

DHS $=1+3+\cdots+2 k-1+2(k+1)-1$

$$
=k^{2}+2(k+1)-1
$$

$$
=k^{2}+2 k+1
$$

$$
=(k+1)^{2}
$$

$$
=\text { RHO }
$$

\therefore true for $n=k$ and $n=k+1$
Since truce fern $n=1$ it mount be true fou $n=2,3 \ldots$.
\therefore true for all positcue integer n by $M I$.
b) Prove $5^{n} \geq 1+4 n$ Step 1. Prove true fan $n=1$

$$
\begin{aligned}
& \text { CHS }=5 \\
& \text { RUS }=5
\end{aligned}
$$

$$
\text { RUS }=5
$$

\therefore true for $n=1$.
Step 2: Assume true for $n=k$ ie $5^{k} \geqslant 1+4 k$.
Prove true for $n=k+1$

$$
\text { ie } \begin{aligned}
5^{k+1} & \geqslant 1+4(k+1) \\
5^{k+1} & =5\left(5^{k}\right) \\
& \geqslant 5(1+4 k) \\
& \geqslant 5+20 k \\
\therefore 5^{k+1} & \geqslant 5+4 k \\
\therefore 5^{k+1} & \geqslant 1+4(k+1)
\end{aligned}
$$

\therefore true $\beta n=k$ and $n=k+1$
Since true $f n=1$ it must be true $f n=2,3 \ldots$.
\therefore time for all positue integers in beyma
c) Prove $2 n+n^{3}$ is a multiple of 3 .
Step 1. Rove true for $n=1$

$$
2+1=3
$$

\therefore true f $n=1$.
Step 2: Assume true for $n=k$
ie $2 k+k^{3}=3 m$ (M is an intern)
Prove true for $n=k+1$

$$
\begin{aligned}
2(k+1)+(k+1)^{3} & =2 k+2+k^{3}+3 k^{2}+3 k+1 \\
& =k^{3}+2 k+3 k^{2}+3 k+3 \\
& =3 m+3 k^{2}+3 k+3 \\
& =3\left[m+k^{2}+k+1\right]
\end{aligned}
$$

\therefore a multiple at 3.
\therefore truce for $n=k+1$
Since true for $n=1$ it mat be true for $n=2,3, \ldots$.
\therefore true for all positure integers n by $M I$.

Question 5
a)

$$
\text { i) } \operatorname{Sin}(\alpha+\beta)=\operatorname{Sin} \alpha \operatorname{Cos} \beta+\operatorname{Cos} \alpha \operatorname{Sin} \beta
$$

ii)

$$
\begin{aligned}
\operatorname{Sin}\left(105_{0}\right) & =\operatorname{Sin} 45 \operatorname{Cos} 60+\operatorname{Cos} 45 \operatorname{Sin} 60 \\
& =\frac{1}{\sqrt{2}} \frac{1}{2}+\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} \\
& =\frac{1+\sqrt{3}}{2 \sqrt{2}} \\
& =\frac{\sqrt{2}+\sqrt{6}}{4}
\end{aligned}
$$

b)

$$
\begin{aligned}
\operatorname{Sin} 2 \beta & =2 \sin B \operatorname{Cos} \beta \\
& =\frac{2 \sin \beta}{\operatorname{Cos} \beta} \cdot \operatorname{Cos}^{2} \beta \\
& =2 \tan \beta \cdot \frac{1}{\sec ^{2} \beta} \\
& =\frac{2 \tan \beta}{\sec ^{2} \beta} \\
& =\frac{2 \tan \beta}{1+\tan ^{2} \beta}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \tan \left(\frac{\pi}{4}+\alpha\right)=\frac{\tan \frac{\pi}{4}+\tan \alpha}{1-\tan \frac{\pi}{4} \tan \alpha} \\
&=\frac{1+\frac{\sin \alpha}{\cos \alpha}}{1-\frac{\sin \alpha}{\cos \alpha}} \\
&=\frac{\frac{\cos \alpha+\sin \alpha}{\cos \alpha}}{\cos \alpha-\sin \alpha} \\
& \cos \alpha
\end{aligned}
$$

$$
=\frac{\cos \alpha+\sin \alpha}{\cos \alpha-\sin \alpha .}
$$

d) $\operatorname{Sin} \beta+\operatorname{Cos} \beta=1$
$\tan \frac{\theta}{2}=t$

$$
\frac{2 t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}=1
$$

$$
2 t+1-t^{2}=1+t^{2}
$$

$$
2 t^{2}-2 t=0
$$

$$
t(t-1)=0
$$

$$
\begin{array}{ll}
t=0 & t=1 \\
\tan \frac{\theta}{2}=0 & \tan \frac{\theta}{2}=1 \\
\frac{\theta}{2}=0, \pi & \frac{\theta}{2}=\frac{\pi}{4}, \frac{5 \pi}{4} \\
\theta=0,2 \pi & \theta=\frac{\pi}{2}, \frac{5 \pi}{2}
\end{array}
$$

\therefore Solutions.

$$
\theta=0, \frac{\pi}{2}, 2 \pi
$$

Question 6
a)

$$
\begin{gathered}
x=6 t \quad y=2 t^{2} \\
\frac{x}{6}=t \\
y=2\left(\frac{x}{6}\right)^{2} \\
y=\frac{x^{2}}{18}
\end{gathered}
$$

b)

$$
\begin{aligned}
& x=8 y \quad\left(4 t, 2 t^{2}\right) \\
& y=\frac{1}{8} x^{2} \quad m_{T}=\frac{1}{4}(4 t) \\
& y^{\prime}=\frac{1}{4} x \quad m_{N}=\frac{t}{-1} \\
& y-2 t^{2}=-\frac{1}{t}(x-4 t) \\
& t y-2 t^{3}=-x+4 t \\
& x+t y=2 t^{3}+4 t
\end{aligned}
$$

c)

$$
\begin{aligned}
& \text { 1) } y=x^{2}+1 T\left(t, t^{2}+1\right) \\
& y^{\prime}=2 x \\
& M T=2 t \\
& y-\left(t^{2}+1\right)=2 t(x-t) \\
& y-t^{2}-1=2 t x-2 t^{2} \\
& y=2 t x-t^{2}+1
\end{aligned}
$$

ii) $y=1$ tangent at vertex

$$
\begin{aligned}
& 1=2 t x-t^{2}+1 \\
& 2 t x=t^{2} \\
& x=t / 2 \quad R(t / 2,1)
\end{aligned}
$$

d)

i) Focus

$$
\begin{aligned}
x^{2} & =y \\
x^{2} & =4\left(\frac{1}{4}\right) y \\
\therefore a & =\frac{1}{4}
\end{aligned}
$$

Focus $\left(0, \frac{1}{4}\right)$
ii)

$$
\begin{aligned}
& y=x^{2} \\
& y^{\prime}=2 x
\end{aligned}
$$

M_{T} at $P=2 t$
M_{1} through $S=-\frac{1}{2 t}$

$$
y-\frac{1}{4}=-\frac{1}{2 t}(x)
$$

$2 t y-\frac{t}{2}=-x$
$4 t y+2 x=t$
iii)

$$
\begin{aligned}
& y-2 t x+t^{2}=0 \\
& 4+y+2 x=t
\end{aligned}
$$

From (1)

$$
\begin{align*}
& y \tag{3}\\
& y=2 t x-t^{2}
\end{align*}
$$

Sob into (2)

$$
\begin{aligned}
& 4 t\left(2 t x-t^{2}\right)+2 x=t \\
& 8 t^{2} x-4 t^{3}+2 x=t \\
& x=\frac{4 t^{3}+t}{8 t^{2}+2} \\
& =\frac{t}{2}
\end{aligned}
$$

when $x=\frac{t}{2} \quad y=2 t\left(\frac{t}{2}\right)-t^{2}$ Locus $y=0$

Question 7
a)

$$
\angle O C B+\angle O B C=136^{\circ}
$$

$$
(E x+<\text { of } \Delta)
$$

$\angle O C B=\angle O B C$ ($\triangle O B C$ is isO)
$\therefore \angle O C B=68^{\circ}$.
b)

$\angle D A B=\angle D C B$ (angles on $\angle A D C=\angle A B C\binom{$ angles on }{ some orr }
$\therefore \triangle A E D||\mid \triangle C E B$ (equiangular)
$\therefore \frac{x}{16}=\frac{15}{12}$ (Corresponding sides $\left.\begin{array}{l}\text { in similoa Fringes }\end{array}\right)$

$$
x=20
$$

c) 1)

$$
\text { ii) } \begin{aligned}
P S & =S Q\binom{\text { Tangents from }}{\text { an external } p} \\
P S & =S R\left(\begin{array}{l}
11
\end{array}\right) \\
\therefore S Q & =S R
\end{aligned}
$$

$\therefore S$ is midpoint at $Q R$
ii) Let $\angle S R P=x$

$$
\begin{aligned}
& \therefore \angle S P R=x \text { (} \triangle S P R \text { is is CS) } \\
& \text { Let } \angle S Q P=y \\
& \therefore \angle S P Q=y \text { (} \triangle S Q P \text { is isO) } \\
& x+x+y+y=180^{\circ}(\text { angle sum at } \\
& \triangle \\
& \therefore x+y=90^{\circ} \\
& \therefore \angle Q P R=90^{\circ} .
\end{aligned}
$$

