The Scots College

YEAR 12 Extension 1 MAthematics

PRE-TRIAL

APRIL 2006

WEIGHTING: 30\%

Time Allowed: 1½ Hours (plus 5 minutes reading time)

Instructions to students:

- Start each question in a new booklet.
- Board approved calculators may be used.
- MARKS MAY BE DEDUCTED FOR CARELESS WORKING.
- All necessary working must be shown.

Question 1 (10 marks)

a) Evaluate $\cos ^{-1}\left(\cos \frac{4 \pi}{3}\right)$
b) Show that if p and q are the roots of the quadratic equation
$2 x^{2}+6 x+3=m(2 x+1)$, then $p+q+2 p q=0$
c) $\int x e^{x^{2}} d x$
d) If $\log _{8} 2=\log _{x} 5$ find the value of x
e) Solve the equation $\cos 2 A=\cos A$ where $0 \leq A \leq 2 \pi$

Question 2 (12 marks)

a) i) Find a point where the curve $y=x^{3}-4 x^{2}+8 x-8$ crosses the x axis.
ii) Show that this is the only point where the curve crosses the x axis.
b)
i. Sketch the graph of the function $y=\sin ^{-1}\left(\frac{x}{2}\right)$
ii. State the domain and the range of the function
iii. Find the exact equation of the tangent to the curve $y=\sin ^{-1}\left(\frac{x}{2}\right)$ at the point where $x=1$
c) The point $P\left(t+3, t^{2}-5\right)$ lies on a parabola
i. Find the Cartesian equation of the parabola
ii. Find the vertex of the parabola

Question 3 (16 marks)

a)
i. Show that $\cos \sigma-\sqrt{3} \sin \sigma=2 \cos \left(\sigma+\frac{\pi}{3}\right)$
ii. Hence solve the equation $\cos \sigma-\sqrt{3} \sin \sigma=1$ for σ in the interval $0 \leq \sigma \leq 2 \pi$
b) Use the substitution $u=\sqrt{x}$ to evaluate $\int_{1}^{3} \frac{d x}{(1+x) \sqrt{x}}$

Give your answer in exact form.
c)
i. Differentiate $x \cos ^{-1} x-\sqrt{1-x^{2}}$ with respect to x.
ii. Hence, evaluate $\int_{0}^{1} \cos ^{-1} x d x$
d) $A B C D$ is a cyclic quadrilateral in which the opposite sides $A B$ and $D C$ are equal
i. Draw a diagram 1
ii. Prove that the diagonals $A C$ and $B D$ are equal

Question 4 (11 marks)

a) Find the sum of the first ten terms of the following Geometric series leaving your answer as a fraction.

$$
4-2+1-\frac{1}{2}+\ldots \ldots
$$

b) Prove that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in arithmetic progression if $\frac{a}{c}=\frac{a-b}{b-c}$
c) Find $\int \cos ^{2} x d x$
d) The area enclosed between the curve $y=\sqrt{\frac{4}{1+x^{2}}}$ and the line $y=\sqrt{2}$ is rotated about the x axis. Find the volume of the solid of revolution generated. Give your answer in terms of π

Question 5 (13 marks)

a) Use the method of mathematical induction to show that

$$
1^{2}+2^{2}+3^{2}+4^{2}+\ldots \ldots \ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

b)
i. Show that the equation of the tangent at the point $\left(2 a p, a p^{2}\right)$ on the parabola $x^{2}=4 a y$ is $y=p x-a p^{2}$
ii. This tangent cuts the x axis at $Q . S$ is the focus. Prove that $\angle P Q S$ is a right angle.
iii. Show that the centre of the circle passing through P, Q and S is the midpoint of $S P$
iv. Show that the locus of the centre of the circle through P, Q and S is

Question 1
a)

$$
\begin{aligned}
& \cos ^{-1}(-1 / 2) \\
= & \pi-\cos ^{-1}(1 / 2) \\
= & \pi-\frac{\pi}{3} \\
= & \frac{2 \pi}{3}
\end{aligned}
$$

d) let $\log _{2} 2=y$

$$
\begin{aligned}
& 2=8^{y} \\
& 2=\left(2^{3}\right)^{y} \\
& 1=3 y \\
& y=1 / 3
\end{aligned}
$$

b)

$$
\begin{aligned}
& 2 x^{2}+6 x+3=2 m^{x}+m \\
& 2 x^{2}+6 x-2 m x+3-m=0 \\
& 2 x^{2}+x(6-2 m)+3-m=0 \\
& p+q=-\frac{-3}{a} \quad p q=\frac{c}{a} \\
& p+q=\frac{-6+2 m}{2} \quad=\frac{3-m}{2} \\
& =-3+m \\
& \therefore \quad p+q+2 p q=0 \\
& (-3+m)+2\left(\frac{3-m}{2}\right)=0 \\
& -3+m+3-m=0 \\
& 0=0 \text { As reqwid }
\end{aligned}
$$

c)

$$
\begin{aligned}
& \int x e^{x^{2}} d x \\
= & \frac{1}{2} e^{x^{2}+C}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \cos 2 A=\cos A \\
& 2 \cos ^{2} A-1=\cos A \\
& 2 \cos ^{2} A-\cos A-1=0 \\
& \operatorname{let} y=\cos A \\
& z y z \\
& 2 y^{2}-y-1=0 \\
& (2 y+1)(y-1)=0 \\
& y=-1 / 2 \text { or } y=1 \\
& \therefore \cos A=-1 / 2 \text { or } \cos A=1 \\
& A=0^{\circ}, 120^{\circ}, 240^{\circ}, 360^{\circ}
\end{aligned}
$$

WESTON $20, \frac{2 \pi}{3}, \frac{4 \pi}{3}, 2 \pi m$
a) $y=x^{3}-4 x^{2}+8 x-8$

$$
\begin{aligned}
f(2) & =8-16+16-8 \\
& =0
\end{aligned}
$$

$$
\therefore(x-2) \text { is a factor }
$$

$$
\begin{aligned}
& \frac{x^{2}-2 x+4}{} \begin{array}{l}
\frac{x^{3}-4 x^{2}+8 x-8}{x^{3}-2 x^{2}} \\
-2 x^{2}+8 x \\
-2 x^{2}+4 x \\
4 x-8 \\
\frac{4 x-8}{0}
\end{array}
\end{aligned}
$$

$$
x^{3}-4 x^{2}+8 x-8=(x-2)\left(x^{2}-2 x+4\right)
$$

$$
\Delta=4-4(1)(4)
$$

$\Delta=-12$ no Solution

$$
\therefore x=2
$$

b) i)

ii) Domain $-2 \leq x \leq 2 \quad 1$
iii)

$$
\begin{aligned}
y & =\sin ^{-1}(x / 2) \\
y^{\prime} & =\frac{1}{\sqrt{1-\frac{x^{2}}{4}}} \cdot \frac{1}{2} \\
& =\frac{1}{\sqrt{\frac{4-x^{2}}{4}}} \cdot \frac{1}{2} \\
& =\frac{2}{\sqrt{4-x^{2}}} \cdot \frac{1}{2} \\
y^{\prime} & =\frac{1}{\sqrt{4-x^{2}}}
\end{aligned}
$$

when $x=1 \quad m=\frac{1}{\sqrt{4-1}}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{3}} \text { 着 } \\
& =\frac{\sqrt{3}}{3}
\end{aligned}
$$

when $x=1 \quad y=\sin ^{-1}(1 / 2)$

$$
=\frac{\pi}{6} \quad 1 / 2
$$

Question I cont

$$
\begin{aligned}
& \begin{array}{l}
\tan 2 \cos t) \\
\therefore m=\frac{\sqrt{3}}{3} \\
y-y_{2}=m\left(x-x_{1}\right) \\
y-\frac{\pi}{6}=\frac{\sqrt{3}}{3}(x-1) \\
6 y-\pi=2 \sqrt{3}(x-1) \\
6 y-\pi=2+\frac{2 \sqrt{3 x}}{6}-2 \sqrt{3} \\
2 \sqrt{3} x-6 y+\pi-2 \sqrt{3}=0
\end{array} .
\end{aligned}
$$

c) i)

$$
\begin{gathered}
x=t+3 \\
x-3=t \\
y=(x-3)^{2}-5
\end{gathered}
$$

ii)

$$
\begin{aligned}
& (x-3)^{2}=(y+5) \\
& V=(3-5)
\end{aligned}
$$

Question 3
a) i)

$$
\begin{aligned}
2 \cos \left(\theta+\frac{\pi}{3}\right) & =2\left(\cos \theta \cos \frac{\pi}{3}-\sin \theta \sin \frac{\pi}{3}\right) \\
& =2\left(\cos \theta \cdot \frac{1}{2}-\sin \theta \cdot \frac{\sqrt{3}}{2}\right) \\
& =\cos \theta-\sqrt{3} \sin \theta \quad \text { As rqued }
\end{aligned}
$$

i)

$$
\begin{aligned}
& 2 \cos \left(\theta+\frac{\pi}{3}\right)=1 \\
& \cos \left(\theta+\frac{\pi}{3}\right)=1 / 2 \\
& \theta+\frac{\pi}{3}=\frac{\pi}{3} \text { or } \frac{5 \pi}{3} \text { or } \frac{7 \pi}{3} \\
& \theta=0 \text { or } \frac{4 \pi}{3} \text { or } 2 \pi
\end{aligned}
$$

b)

$$
\begin{aligned}
u & =x^{3 / 2} \\
\frac{d u}{d x} & =1 / 2 x^{-2 / 2} \\
d u & =\frac{1}{2 \sqrt{x}} d x \quad-2 x^{1 / 2} d u=d x
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{2 x^{1 / 2} d \mu}{x^{1 / 2}} 1+\mu^{2} \\
= & \int_{1}^{3} \frac{2}{1+\mu^{2}} d u \\
= & 2\left[\tan ^{-1} \mu\right]_{1}^{\sqrt{3}} \\
= & 2\left(\tan ^{-1} \sqrt{3}\right)-\left(\tan ^{-1} 1\right) \\
= & 2\left(\frac{\pi}{3}-\frac{\pi}{4}\right) \\
= & 2 \times \frac{\pi}{12} \\
= & \frac{\pi}{6}
\end{aligned}
$$

(i) $\quad x \cos ^{-1} x-\sqrt{1-x^{2}}$

Let $t=x \operatorname{Cos}^{-1} x$

$$
\begin{aligned}
\frac{d t}{d x} & =x \cdot \frac{-1}{\sqrt{1-x^{2}}}+\cos ^{-1} x \\
& =\frac{-x}{\sqrt{1-x^{2}}}+\cos ^{-1} x \\
\therefore y^{\prime} & =\frac{-x}{\sqrt{1-x^{2}}}+\cos ^{-1} x-\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2} \cdot-2 x \\
y^{\prime} & =\frac{-x}{\sqrt{1-x^{2}}}+\cos ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

$$
y^{\prime}=\cos ^{-1} x
$$

i)

$$
\begin{aligned}
& \int_{0}^{1} \cos ^{-1} d x \\
& =\left[x \cos ^{-1} x-\sqrt{1-x^{2}}\right]_{0}^{1} \\
& =\left[1 \cos ^{-1} 1-\sqrt{1-1^{2}}\right]-\left[0 \cos ^{-1} 0-\sqrt{1-0^{2}}\right] \\
& =[0]-[0-1] \\
& =1 .
\end{aligned}
$$

d)

In \triangle 'S $A B P$ and $D C P$
$\angle A B P=\angle D C P$ (\angle 's is same segmet $)$
$\angle C D P=\angle B A P$ (\angle 's in sane segmet)
$A B=D C \quad$ (data)

$$
\therefore \triangle A B P \equiv \triangle D C P(A S A)
$$

$A P=P D \quad$ (Conrespondely suldos Congraest $\left.\left.\Delta^{\prime}\right)^{\prime}\right)$
$B P=P C \quad$ (Cores/venchy sules a Congeet A5)
dueotion 4
1)

$$
\begin{aligned}
a & =4 \quad r=-1 / 2 \quad n=10 \\
S_{n} & =\frac{a\left(1-r^{n}\right)}{1-r} \\
& =\frac{4\left(1-\left(-1^{10}\right)^{10}\right)}{11^{1 / 2}} \\
& =\frac{4\left(1-\frac{1}{1024}\right)}{3 / 2} \\
& =\frac{8}{3} \times \frac{1023}{1024} \\
& =2 \frac{88}{128}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \text { b) } \quad \frac{a}{C}=\frac{a-B}{B-C} \\
& a B-a C=a c-B C \\
& =a B C \quad \quad \frac{a B}{a B C}-\frac{a c}{a B C}=\frac{a c}{a B C}-\frac{B C}{a B C} \\
& \quad \frac{1}{C}-\frac{1}{B}=\frac{1}{B}=\frac{1}{a}
\end{aligned}
$$

whuch is proof of $A P$
c)

$$
\begin{aligned}
& \cos 2 x=2 \cos ^{2} x-1 \\
& \cos 2 x+1=2 \cos ^{2} x \\
& \frac{1}{2}[\cos 2 x+1]=\cos ^{2} x \\
& \therefore \frac{1}{2} \int \cos 2 x+1 d x \\
& =\frac{1}{2}\left[\frac{\sin 2 x}{2}+x\right]+C .
\end{aligned}
$$

d)

$$
\begin{aligned}
& \sqrt{2}=\sqrt{\frac{4}{1+x^{2}}} \\
& 2 x^{2}+2=4 \\
& 2 x^{2}-2=0 \\
& x^{2}-1=0 \\
& (x-1)(x+1)=0 \\
& x=1,0-1
\end{aligned}
$$

$$
\text { if } y=\sqrt{\frac{4}{1+x^{2}}}
$$

$$
\begin{aligned}
& y^{2}=\frac{4}{1+x^{2}} \\
& 2 \pi \int_{0}^{1} \frac{4}{1+x^{2}} d x \\
& 8 \pi\left[\tan ^{-1} x\right]_{0}^{1} \\
& =8 \pi\left[\frac{\pi}{4}-0\right] \\
& =2 \pi^{2} \operatorname{van}^{3} 5^{3}
\end{aligned}
$$

$$
\begin{aligned}
& y=\sqrt{2} \\
& y^{2}=2 \\
& 2 \pi \int_{0}^{1} 2 d x \\
& 2 \pi[2 x]_{0}^{1} \\
& 2 \pi[2-0] \\
& =4 \pi
\end{aligned}
$$

$$
\therefore \text { Volere }=2 \pi^{2}-4 \pi
$$

$$
=2 \pi[\pi-2] \text { uns } 3
$$

Question 5
a)

When $n=1$

$$
\begin{aligned}
r^{2} & =\frac{1}{6}(1+1)(2+1) \\
& =\frac{1}{6} \times 2 \times 3 \\
1 & =1
\end{aligned}
$$

Assume tue for $n=k$ and show tue for $n=k+1$

$$
\begin{aligned}
& S(k)=1^{2}+2^{2}+3^{2}+\ldots+k^{2} \\
& S(k+1)=1^{2}+2^{2}+3^{2}+\cdots+k^{2}+(k+1)^{2}
\end{aligned}
$$

Assume that $s(k)=1 / 6 k(k+1)(2 k+1)$ and show that

$$
s(k+1)=1 / 6(k+1)(k+2)(2 k+3)
$$

$$
\text { Now } \begin{aligned}
S(k+1) & =S(k)+(k+1)^{2} \\
& =1 / 6 k(k+1)(2 k+1)+(k+1)^{2} \\
& =(k+1)[1 / 6 k(2 k+1)+(k+1)] \\
& =\frac{1}{6}(k+1)(k(2 k+1)+6(k+1)) \\
& =\frac{1}{6}(k+1)\left(2 k^{2}+k+6 k+6\right) \\
& =1 / 6(k+1)\left(2 k^{2}+7 k+6\right) \\
& =1 / 6(k+1)(k+2)(2 k+3)
\end{aligned}
$$

If the result is true for $n=k$, then t is thu e for $n=k+1 \quad 1 / 2$
b) i)

$$
\begin{aligned}
& x^{2}=4 a y \\
& y=\frac{x^{2}}{4 a} \\
& y^{\prime}=\frac{2 x}{4 a} \\
& y^{\prime}=\frac{x}{2 a}
\end{aligned}
$$

whax: 2ap $m=\frac{2 a p}{2 a}$

$$
m=p
$$

$$
y-a p^{2}=p(x-2 a p)
$$

$$
\begin{aligned}
& y-a p^{2}=p x-2 a p^{2} \\
& 4=n x-a n^{2}
\end{aligned} / 1 / 2
$$

$$
y=p^{x}-a p^{2}
$$

$$
\begin{gathered}
y=p x-a p^{2} \\
0=p x-a p^{2} \\
x p=a p^{2} \\
x=a p \\
\therefore a(a p, 0)
\end{gathered}
$$

然
cradent of $P Q=P$

$$
1 / 2
$$

Gradert $\phi S Q=\frac{a-O}{O-\alpha p}$

$$
=\frac{a}{-a p}
$$

$$
=\frac{-1}{\rho} \quad 1 / 2
$$

For Rught Angk $m_{1} \times m_{2}=-1$

$$
\begin{aligned}
p_{x}-\frac{1}{p} & =1 \\
-1 & =-1
\end{aligned}
$$

So $P Q$ 的 Poep it sQ !
ii) Sine pas in a Reydt Ayb $\therefore A^{\prime}$ Srua ted cas le draur coough Pa and S, Since the angle is a seni-cere is a rgghtangle
\therefore PS is a Daneter to the circe and so the melhount of PS must be the certe of the ärce
io) Coorts of muphout of PS.

$$
\begin{array}{ll}
x=\frac{0+2 a p}{2} & y=\frac{a+a p p^{2}}{2} \\
x=a p & =\frac{\left(1+p^{2}\right)}{2}
\end{array}
$$

From $x=a p$ $\frac{x}{a}=p$

$$
\begin{aligned}
\therefore \quad y & =\left[a\left(1+\frac{x}{a}\right)^{2}\right] \div 2 \\
& =a\left(1+\frac{x^{2}}{a^{2}}\right) \div 2 \\
& =\left(a+\frac{x^{2}}{a}\right) \div 2 \\
& =\frac{a^{2}+x^{2}}{a} \div 2 \\
y & =\frac{a^{2}+x^{2}}{2 a}
\end{aligned}
$$

$2 a y=a^{2}+x^{2}$ As requied

