

THE SCOTS COLLEGE

Extension 1 Mathematics

Pre-Trial Examination

17th March 2011

Time Allowed: 90 minutes + 5 minutes

Instructions:

- Show all necessary workings
- Approved non-programmable calculators may be used
- Begin a new sheet of paper for each question
- A removable page with standard integrals is located at the back

Outcomes to be assessed:

Preliminary	Q1	/10
Functions	Q2, Q3, Q4	/34
Calculus	Q5, Q6	/22
	Total	/66

<u>QUESTION ONE (10 MARKS)</u> BEGIN A NEW SHEET OF PAPER

<i>a</i>)	Solve $\frac{2x+6}{x-3} < -2$		(2)
------------	-------------------------------	--	-----

b) *P* and *Q* are the end points of a focal chord of the parabola $x^2 = 4ay$ with focus *S*. If the co-ordinates of *P* and *Q* are $(2ap, ap^2)$ and $(2aq, aq^2)$ respectively,

<i>i</i>) Write down the gradients of PS and QS.	(1)

- $ii) \text{ Show that } pq = -1 \tag{1}$
- *iii)* Find the coordinates of the midpoint R of PQ in terms of p (2)
- iv) Show that the equation of the locus of R is $x^2 = 2a(y a)$ (2)
- c) Let $f(x) = \log_e[(x-2)(1+x)]$, what is the domain of f(x) (2)

QUESTION TWO (10 MARKS) BEGIN A NEW SHEET OF PAPER

- a) Given that (x + 2) and (x 3) are factors of $P(x) = x^3 6x^2 + px + q$, (3) find the values of p and q.
- b) Without the use of calculus, sketch the graph of $f(x) = x(2x 1)(x 1)^3$, clearly showing (3) any axis intercepts.
- c) Solve the equation $3x^3 7x^2 70x + 24 = 0$, given that the product of two of the roots is 2. (4)

QUESTION THREE (6 MARKS) BEGIN A NEW SHEET OF PAPER

Given the function $y = \frac{\sin x}{x-3}$

a)	Show that a root of $\frac{\sin x}{2} = 0$ lies between $x = 6$ and $x = 6.5$.	(2))
	r-3		

- b) Use the method of halving the interval to show that this root lies (2) between x = 6.25 and x = 6.375.
- *c*) Use one application of Newton's method to find an approximation of this root correct to 3 (2) decimal places using a first approximation of 6.25

QUESTION FOUR (18 MARKS) BEGIN A NEW SHEET OF PAPER

a) Given the function $f(x) = x^2 - 4x$

<i>i</i>) Graph the function $y = x^2 - 4x$.	(2)
<i>ii</i>) State the largest positive domain for $f(x)$ that will allow you to define the inverse function.	(1)
<i>iii</i>) Find the inverse function and state the domain and range of the inverse function	(3)
<i>iv)</i> Calculate the exact value of $f^{-1}(2)$	(1)
v) Graph the inverse function from (iii) on the same axes used in part (i)	(2)
<i>vi</i>) Calculate the point of intersection of $f(x)$ and $f^{-1}(x)$	(2)
Evaluate $tan^{-1}(-\sqrt{3})$	(1)

- c) Prove that $\sin^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{4}{5}\right) = \frac{\pi}{2}$ (2)
- d) Given $y = acos^{-1}(bx)$ is a function. (where a, b > 0)
 - *i*) State the domain and range (2)

(2)

ii) Sketch this function

<u>QUESTION FIVE</u> (8 MARKS) BEGIN A NEW SHEET OF PAPER

a) Given $f(x) = e^{5x+1}$

b)

 $i) \operatorname{Find} f'(x) \tag{1}$

- $ii) \operatorname{Find} f^{-1}(x) \tag{2}$
- *iii)* Differentiate $f^{-1}(x)$ (1)

iv) Deduce that
$$\frac{dy}{dx} \times \frac{dx}{dy} = 1$$
 (1)

b) Find the equation of the normal to the curve $y = tan^{-1}x$ at the point $x = \sqrt{3}$. (3)

QUESTION SIX (14 MARKS) BEGIN A NEW SHEET OF PAPER

a) Differentiate, $e^{(\cos^{-1}x)}$ (2)

$$b) \quad \int \frac{2}{\sqrt{25 - 4x^2}} dx \tag{3}$$

- c) Find the area enclosed between the curve $y = cos^{-1}x$, the y-axis and the lines y = 0 and $y = \frac{\pi}{4}$ (2)
- d) For the curve $y = \frac{1}{\sqrt{1+x^2}}$, find the volume of the solid formed by rotating the curve about the (4) *x-axis* from $x = \frac{1}{\sqrt{3}}$ to x = 1

(3)

e) Find $\int \frac{-x^2}{\sqrt{1-x^6}} dx$ by using the substitution $u = x^3$

END OF EXAM

STANDARD INTEGRALS

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, \ n\neq -1; \ x\neq 0, \text{ if } n<0$	
$\int \frac{1}{x} dx$	$=\ln x, \mathbf{x} > 0$	
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a \neq 0$	
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, \ a \neq 0$	
$\int \sin ax dx$	$=-\frac{1}{a}\cos ax, a \neq 0$	
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a \neq 0$	
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, a \neq 0$	
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a\neq 0$	
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, \ a > 0, \ -a < x < a$	
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$=\ln\left(x+\sqrt{x^2-a^2}\right), x>a>0$	
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$= \ln\left(x + \sqrt{x^2 + a^2}\right)$	
NOTE: $\ln x = \log_e x$, $x > 0$		