THE SCOTS COLLEGE

Extension 1 Mathematics

Pre-Trial Examination

17th March 2011

Time Allowed: 90 minutes +5 minutes

Instructions:

- Show all necessary workings
- Approved non-programmable calculators may be used
- Begin a new sheet of paper for each question
- A removable page with standard integrals is located at the back

Outcomes to be assessed:

Preliminary	Q 1	$/ 10$
Functions	$\mathrm{Q} 2, \mathrm{Q} 3, \mathrm{Q} 4$	$/ 34$
Calculus	$\mathrm{Q} 5, \mathrm{Q} 6$	$/ 22$
	ToTAL	$/ 66$

QUESTION ONE (10 MARKS) BEGIN A NEW SHEET OF PAPER

a) Solve $\frac{2 x+6}{x-3}<-2$
b) $\quad P$ and Q are the end points of a focal chord of the parabola $x^{2}=4 a y$ with focus S. If the co-ordinates of P and Q are $\left(2 a p, a p^{2}\right)$ and ($2 a q, a q^{2}$) respectively,
i) Write down the gradients of PS and QS.
ii) Show that $p q=-1$
iii) Find the coordinates of the midpoint R of PQ in terms of p
iv) Show that the equation of the locus of R is $x^{2}=2 a(y-a)$
c) Let $f(x)=\log _{e}[(x-2)(1+x)]$, what is the domain of $f(x)$

Question Two (10 marks) Begin a new sheet of paper

a) Given that $(x+2)$ and $(x-3)$ are factors of $P(x)=x^{3}-6 x^{2}+p x+q$, find the values of p and q.
b) Without the use of calculus, sketch the graph of $f(x)=x(2 x-1)(x-1)^{3}$, clearly showing any axis intercepts.
c) Solve the equation $3 x^{3}-7 x^{2}-70 x+24=0$, given that the product of two of the roots is 2 .

Question Three (6 marks) Begin a new sheet of paper

Given the function $y=\frac{\sin x}{x-3}$
a) Show that a root of $\frac{\sin x}{x-3}=0$ lies between $x=6$ and $x=6.5$.
b) Use the method of halving the interval to show that this root lies between $x=6.25$ and $x=6.375$.
c) Use one application of Newton's method to find an approximation of this root correct to 3

QUESTION FOUR (18 MARKS) BEGIN A NEW SHEET OF PAPER

a) Given the function $f(x)=x^{2}-4 x$
i) Graph the function $y=x^{2}-4 x$.
ii) State the largest positive domain for $f(x)$ that will allow you to define the inverse function.
iii) Find the inverse function and state the domain and range of the inverse function
iv) Calculate the exact value of $f^{-1}(2)$
v) Graph the inverse function from (iii) on the same axes used in part (i)
vi) Calculate the point of intersection of $f(x)$ and $f^{-1}(x)$
b) Evaluate $\tan ^{-1}(-\sqrt{3})$
c) Prove that $\sin ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{4}{5}\right)=\frac{\pi}{2}$
d) Given $y=\operatorname{acos}^{-1}(b x)$ is a function. (where $a, b>0$)
i) State the domain and range
ii) Sketch this function

QUESTION FIVE (8 MARKS) BEGIN A NEW SHEET OF PAPER

a) Given $f(x)=e^{5 x+1}$
i) Find $f^{\prime}(x)$
ii) Find $f^{-1}(x)$
iii) Differentiate $f^{-1}(x)$
iv) Deduce that $\frac{d y}{d x} \times \frac{d x}{d y}=1$
b) Find the equation of the normal to the curve $y=\tan ^{-1} x$ at the point $x=\sqrt{3}$.

QUESTION SIX (14 MARKS) BEGIN A NEW SHEET OF PAPER

a) Differentiate, $e^{\left(\cos ^{-1} x\right)}$
b) $\int \frac{2}{\sqrt{25-4 x^{2}}} d x$
c) Find the area enclosed between the curve $y=\cos ^{-1} x$, the y-axis and the lines $y=0$ and $y=\frac{\pi}{4}$
d) For the curve $y=\frac{1}{\sqrt{1+x^{2}}}$, find the volume of the solid formed by rotating the curve about the x-axis from $x=\frac{1}{\sqrt{3}}$ to $x=1$
e) Find $\int \frac{-x^{2}}{\sqrt{1-x^{6}}} d x$ by using the substitution $u=x^{3}$

STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

