## THE SCOTS COLLEGE



## MATHEMATICS EXTENSION I

## YEAR 12 PRETRIAL

19тH MARCH 2012

## GENERAL INSTRUCTIONS

- Reading time - 5 minutes
- Working time - 1.5 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- Show all necessary working in Section II

WEIGHTING
30\%

TOTAL MARKS

70

## SECTION I (10 MARKS)

- Answers to be recorded on the multiple choice answer sheet provided
- Clearly label your answer sheet with your student number and class teacher's name
- Allow about 15 minutes for this section

SECTION II (60 MARKS)

- Questions 11-14
- Answers to be recorded in the answer booklets provided
- Each question must be completed in a new answer booklet.
- Label each answer booklet with your student number, class teacher's name and the question number attempted. Clearly indicate the booklet order if more than one booklet is used for a question. Eg) Book 1 of 2 and 2 of 2.


## QUESTION 1

Find the Cartesian equation of the following parametric equations $x+5 t=3$ and $t y=1$
(A) $\quad y=\frac{1}{5}\left(\begin{array}{ll}x & 3\end{array}\right)$
(B) $y=\frac{5}{(3 \quad x)}$
(C) $y=\frac{1}{5}(3 \quad x)$
(D) $y=\frac{5}{\left(\begin{array}{ll}x & 3\end{array}\right)}$

## QUESTION 2

Point $E$ divides the interval joining $C(4,0)$ and $D(6,1)$ externally in the ratio $2: 5$. Find the coordinates of Point E .
(A) $\frac{18}{3}, \frac{5}{3} \div$
(B) $\frac{8}{3}, \frac{2}{3} \div$
(C) $\frac{32}{3}, \frac{2}{3} \div$
(D) $\frac{22}{3}, \frac{5}{3} \div$

## QUESTION 3

$\sqrt{3} \tan =1$ where $\frac{3}{2} \quad \overline{4}$. Identify the correct solution.
(A)

$$
=\overline{6} \quad n \quad \text { where } \mathrm{n}=1 \text { and } \mathrm{n}=0
$$

(B)

$$
=\frac{-}{6}+n \quad \text { where } \mathrm{n}=1 \text { and } \mathrm{n}=0
$$

(C)

$$
=\overline{6} \quad n \quad \text { where } \mathrm{n}=1
$$

(D)

$$
=\frac{\overline{6}}{6}+n \quad \text { where } \mathrm{n}=0
$$

State the range of $y=2 \tan ^{1} 4 x$
(A) $\quad 1<y<1$
(B) $\quad \overline{4}<y<\overline{4}$
(C) $\quad<y<$
(D) All real y

## QUESTION 5

Determine the angle between the lines $5 x \quad 6 y+1=0$ and $8 x+5 y \quad 3=0$ to the nearest degree
(A) $46^{\circ}$
(B) $82^{\circ}$
(C) $18^{\circ}$
(D) $\quad 66^{\circ}$

## QUESTION 6

If $1,-1, A$ are non-zero roots of the equation $x^{3} \quad A x^{2} \quad x+3=0$, then the value of A is
(A) 3
(B) 0
(C) 1
(D) -1

Differentiate $y=x^{2}+5 x$ by first principles
(A) $\lim _{h \rightarrow 0} \frac{(x+h)^{2}+5(x+h) x^{2}+5 x}{h}$
(B) $\lim _{h \rightarrow \infty} \frac{(x+h)^{2}+5 h \quad x^{2}}{h}$
(C) $\lim _{h \rightarrow 0} \frac{(x+h)^{2}+5 h \quad x^{2}}{h}$
(D) $\quad \lim _{h \rightarrow \infty} \frac{(x+h)^{2}+5(x+h) x^{2}+5 x}{h}$

The period of the function $\cos \frac{x}{2} \div$ is:
(A) 2
(B) 4
(C) 2
(D) 4

Use the table of 'Standard Integrals' to find $\sec 3 x \tan 3 x d x$
(A) $3 \sec 3 x+C$
(B) $\sec 3 x+C$
(C) $3 \sec \frac{1}{3} x+C$
(D) $\frac{1}{3} \sec 3 x+C$

$$
\frac{1}{e^{2} x+1} d x . \text { Choose the best answer }
$$

(A) No solution
(B) Solve using reverse chain rule
(C) The solution is $e^{2} \ln \left(e^{2} x+1\right)$
(D) The solution is $\frac{1}{e^{2}} \ln \left(e^{2} x+1\right)$
a) Evaluate $\sin { }^{1} 0.6$ correct to three significant figures
b) Solve $\frac{1}{2} \quad \frac{5 x+3}{4 x}$
c) True or false: $\left(\begin{array}{ll}x & 2\end{array}\right)$ is a factor of $3 x^{3}+2 x^{2} \quad 11 x+10$

Give reasons for your answer.
d) Find $\frac{d}{d x} x^{2} \tan ^{1} \frac{2 x}{3} \div$
e) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x}$
f) Find
i. $\quad \frac{1}{2} \tan x \sec ^{2} x d x$ using $u=\tan x$ 2 marks
ii.

$$
\int_{\frac{1}{2}}^{0} \frac{3}{\sqrt{14 x^{2}}} d x
$$

iii. $\quad 5 \sin ^{2} \frac{x}{5} \div d x$
a) If $y=\frac{1}{3\left(9+x^{2}\right)}$ where $y>0$ between $x=3 \sqrt{3}$ and $x=3$

Find the area of the region bounded by the curve $y=\frac{1}{3\left(9+x^{2}\right)}$, the $x$-axis and between $x=3 \sqrt{3}$ and $x=3$
b) Find $\frac{d}{d x} \frac{\ln e^{x}+1}{e^{x^{2}}}$
c) $f(x)=\tan ^{1} x$
i. Sketch $f(x)$ on a Cartesian plane

2 marks
ii. Hence, or otherwise, sketch $\frac{1}{f(x)}$ on a new Cartesian plane

1 mark
iii. Based on your sketch, would an inverse function exist for $\frac{1}{f(x)}$ ?

1 mark Give reasons for your answer
d)
i. Sketch $y=3 \sin ^{1} x$ on a Cartesian plane
ii. On your sketch, shade the region that satisfies ${ }_{0}^{1}\left(3 \sin ^{1} x\right) d x$

1 mark
iii. Hence evaluate the exact value of ${ }_{0}^{1}\left(3 \sin ^{1} x\right) d x$
a) $y=\cos ^{1} x+1$

Find the equation of the tangent at $x=\frac{1}{2}$
b) Given $2\left(2^{2 x}\right) 5\left(2^{x}\right) \quad 2$
i. Solve $2\left(2^{2 x}\right) \quad 5\left(2^{x}\right)+2=0$
ii. Show that $\frac{1}{2} \quad 2^{x} \quad 2$
iii. Hence solve for the values of $x$
c)
i. $\quad \frac{1}{\sqrt{2}} \cos 2+\frac{1}{\sqrt{2}} \sin 2=R \cos \left(\begin{array}{ll}2 & b\end{array}\right)$

Find the values of $R$ and $b$ if $R>0$ and $\quad<b<\frac{-}{2}$
ii. Hence, or otherwise, solve $\frac{1}{\sqrt{2}} \cos 2+\frac{1}{\sqrt{2}} \sin 2=\frac{1}{2}$ for
d)
i. Write an expression for $u$ given $x=\frac{12}{5} \tan u$
ii. Show that $\frac{d x}{d u}=\frac{12}{5}\left(1+\tan ^{2} u\right)$
iii. Hence using the substitution $x=\frac{12}{5} \tan u$, show that

$$
\frac{3}{144+25 x^{2}} d x=\frac{1}{20} \tan ^{1} \frac{5 x}{12} \div+C
$$

a) The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$
i. Show that the equation of the normal to the parabola at P is

2 marks

$$
x+p y \quad 2 a p \quad a p^{3}=0
$$

ii. The equation of the normal at Q is $x+q y \quad 2 a q \quad a q^{3}=0$

Hence show that the coordinates of R are

$$
\left(a p q(p+q), a\left(p^{2}+p q+q^{2}+2\right)\right)
$$

Where $R$ is the intersection of the normals at $P$ and $Q$.
iii.

If $p q=1$, find the equation of the locus R in terms of $a$ and $x$
2 marks
b) $\mathrm{O}_{1}$ and $\mathrm{O}_{2}$ are ${ }^{\dagger \prime}$ 'cle centres of the small and large circle respectively.


DIAGRAM NOT TO SCALE
i. Drá from $\mathrm{O}_{2}$ to Y

State we size of $\quad \mathrm{XYO}_{2}$
Give a reason for your answer
ii. Show that $X Y=Y Z$
iii. Hence find the angle if $X W Z=73^{\circ}$

3 marks

## STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

