THE SCOTS COLLEGE

MATHEMATICS EXTENSION I

YEAR 12 PRETRIAL

5^{TH} APRIL 2013

GENERAL INSTRUCTIONS

- Reading time 5 minutes
- Working time 1.5 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- Show all necessary working in Section II

WEIGHTING

30%

TOTAL MARKS

55

SECTION I (7 MARKS)

- Answers to be recorded on the multiple choice answer sheet provided
- Clearly label your answer sheet with your student number
- Allow about 10 minutes for this section

SECTION II (48 MARKS)

- Questions 8 11
- Answers to be recorded in the answer booklets provided
- Each question must be completed in a new answer booklet.
- Label each answer booklet with your student number and the question number attempted. Clearly indicate the booklet order if more than one booklet is used for a question. Eg) Book 1 of 2 and 2 of 2.

QUESTION 1

Which of the following is the list of all the factors of $P(x) = 3x^3 + 4x^2 - 5x - 2$

- (A) (x+1)(x-2)(x-3)
- (B) (x+1)(x+2)(x+3)
- (C) 3x(x-1)(x+1)
- (D) (x-1)(x+2)(3x+1)

QUESTION 2

A circle of centre O has a radius of 6 cm. From an external point X, a tangent is drawn with a point of contact D. From X the secants XA and XE are also drawn.

If DX = 8 cm calculate the distance CX.

- (A) 4 cm
- (B) -16 cm
- (C) 8 cm
- (D) 6 cm

The exact value of $\sin 75^{\circ}$ is:

- (A) $\frac{4-\sqrt{6}}{4}$ (B) $\frac{2+\sqrt{2}}{2\sqrt{2}-1}$
- (C) $\frac{\sqrt{6}+\sqrt{2}}{4}$
- (D) $\frac{\sqrt{2}-\sqrt{6}}{4}$

QUESTION 4

Evaluate: $\int \frac{dx}{\sqrt{9-2x^2}}$ (A) $y = \sin^{-1}\sqrt{2}x + c$ (B) $y = \frac{1}{2}\cos\frac{2x}{3} + c$

(C)
$$y = \frac{1}{\sqrt{2}} \sin^{-1} \frac{\sqrt{2}x}{3} + c$$

(D)
$$y = \frac{1}{\sqrt{2}} \log_e \sqrt{2}x + c$$

QUESTION 5

Calculate the acute angle between the lines $l_1: 2y - 3x = 7$ and $l_2: 2x - 5y + 1 = 0$, to the nearest degree.

- (A) 35°
- (B) 70°
- (C) 78°
- (D) 282°

Given $\frac{d}{dx} \left(\frac{2x}{4+x^2} + \tan^{-1} \frac{x}{2} \right) = \frac{16}{(4+x^2)^2}$, evaluate: $\int_0^2 \frac{dx}{(4+x^2)^2}$ (A) $\frac{\pi}{16}$ (B) $\pi + 4$ (C) $\frac{\pi+2}{64}$ (D) $2\pi - 1$

QUESTION 7

For the curve $y = \frac{3x^2+1}{x^2+2x}$, the vertical and horizontal asymptotes are:

- (A) x = 0, x = -2, y = 3
- (B) $x = \frac{1}{3}, y = 0, y = -1$
- (C) $x = 0, x = \sqrt{2}, y = 1$
- (D) x = 6, y = -2, y = -1

END OF MULTIPLE CHOICE SECTION

c)

QUESTION 8 (START A NEW ANSWER BOOKLET) 12 MARKS

a) The diagram below shows the points A, B, and C on a circle with centre O. Tangents are drawn from A and B which meet at D. O is joined to D and the interval OD intersects AB at E.

a) Given the parametric coordinates: x = 2t and $y = t^2$.

	i)	Show that the Cartesian equation of the parabola is: $x^2 = 4y$	1 mark
	ii)	Given the parameter $t = 2$, show that the equation of the normal at that point is $x + 2y - 12 = 0$	2 marks
	iii)	Find the point of intersection of the normal and the x – axis	1 mark
b)	Given the inverse trigonometric function: $y = 3 \cos^{-1}(2x)$.		
	i)	State the domain and range of $y = 3\cos^{-1}(2x)$	2 marks
	ii)	Find the gradient function of $y = 3\cos^{-1}(2x)$	2 marks

iii) Find the equation of the tangent to $y = 3\cos^{-1}(2x)$ at x = 0 2 marks

c) Find the general solution of
$$\sin \theta = \frac{\sqrt{2}}{2}$$
 2 marks

a) The polynomial $P(x) = x^4 - 3x^3 + ax^2 + bx - 6$ leaves a remainder of 8 ^{3 marks} when divided by (x + 1). If x - 3 is a factor of P(x), find a and b.

b) Evaluate:
$$\int_0^{\frac{\pi}{4}} \sin^2 x \, dx$$
 2 marks

c) i) Show by differentiation that
$$y = \frac{xe^x}{2}$$
 is increasing for $x \ge 0$.

ii) A sketch of
$$y = f(x) = \frac{xe^x}{2}$$
; $x \ge 0$ is shown below. Explain why $y = f(x)$ has an inverse function.

- iii) Copy the graph above and add a sketch of the inverse function 1 mark $y = f^{-1}(x)$.
- d) i) Write $\sqrt{3}\cos x \sin x$ in the form $A\cos(x + \phi)$; $0 < \phi < \frac{\pi}{2}$.
 - ii) Hence, or otherwise solve the equation $\sqrt{3}\cos x \sin x = 1$; 1 mark $0 \le x \le 2\pi$.

END OF QUESTION 10

a)	Find \int_{1}^{1}	$\int x\sqrt{x+3} dx$, given the substitution $u = \sqrt{x+3}$.	4 marks	
b)	For the function $y = \frac{\log_e x}{x}$;			
	i)	State the domain of the function	1 mark	
	ii)	Find any stationary points and determine their nature	2 marks	
	iii)	Find the <i>x</i> - intercept	1 mark	
	iv)	Hence, sketch the function including the above information and showing the property of the curve as $x \to \infty$	2 marks	
c)	Find the Cartesian equation of the curve represented by the following parametric equations: $x = \sin 2t, y = \cos t$		2 marks	

THE SCOTS COLLEGE - MATHEMATICS 2013 EXTENSION 1 MATHEMATICS PRE-TRIAL HSC

CANDIDATE NUMBER:

SECTION I – MULTIPLE CHOICE ANSWER SHEET (7 MARKS)

Mark the correct answer by filling in the circle. To make a correction, neatly place a cross over the circle and then fill in the correct circle.

EXAMPLE:	А	В	С	D	
	0	×	•	0	
		А	В	С	D
Question 1		0	0	0	0
Question 2		0	0	0	0
Question 3		0	0	0	0
Question 4		0	0	0	0
Question 5		0	0	0	0
Question 6		0	0	0	0
Question 7		0	0	0	0

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan x, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan^2 x, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

SECTION 1. WULTIPLE CHOICE.	Q2. $Dx^2 = (C \times X \times E)$
Summary:	ratio of secont = square of forgent
QI. D	g^2 (c) χ (1)
Q2. A	$\mathcal{X} = (\mathcal{C} \mathcal{X}) (\mathcal{C} \mathcal{X} + i \mathcal{L})$
Q3. C	$64 = C \times + 1 \otimes C \times$
Q4. C	$C \times ^{2} + 12 C \times - 64 = 0$
Q5. H	$(c_{X}+16)(c_{X}-4)=0$
Q6. C	$\therefore CX = -16$ and $CX = 4$
07. A	$CX \neq -ve$
Solutions:	$\therefore CX = 4 cm$ (A)
Q1. $P(x) = 3x^3 + 4x^2 - 5x - 2$	
$P(1) = 3(1)^{2} + 4(1)^{2} - 5(1) - 2$	Q3. $\sin 75^{-} = \sin (45^{+} 30^{-})$
= 0 .6r D is a factor	= Sin 45 005 30 + 00545 511 30
$3x^2 + 7x + 2$	52 1 2 1
$x = 1) 3x^{3} + 4x^{2} - 5x - 2$	45°
$\frac{3x^3-3x^2}{3x^2-3x^2}$	$\sin 45^\circ = \pm$ $\sin 30^\circ = \pm$
$7x^2 - 5x$ $7x^2 - 7x$	$\cos 45^{\circ} = \frac{1}{2}$ $\cos 30^{\circ} = \sqrt{3}$
$\frac{152}{2x-2}$	12 2
2x-2	$\therefore \sin 7S^2 = \left(\frac{1}{12}\right)\left(\frac{13}{2}\right) + \left(\frac{1}{12}\right)\left(\frac{1}{2}\right)$
$P(x) = (x - 1)(3x^2 + 7x + 2)$	53 1
$= (x-1)(3x^2+6x+x+2)$	252 252
$= (x-1) \left[3x (x+2) + 1 (x+2) \right]$	$= \frac{[3+1]}{2}$
=(x-1)(3x+1)(x+2)	and the second s
$(\overline{\mathbf{b}})$	= 16 + 12
	(C)

рĺ.

Q4. $\int \frac{dx}{\sqrt{19-2r^2}} = \int \frac{dx}{\sqrt{2(92-x^2)}}$ $Q6. \int_{0}^{2} \frac{dx}{(4\pi x^{2})^{2}} = \frac{1}{16} \int_{0}^{2} \frac{16}{(4\pi x^{2})^{2}} dx$ $= \int \frac{dx}{\sqrt{2} \sqrt{(\frac{3}{2})^2 - x^2}}$ $= \frac{1}{16} \left[\frac{2x}{4x^2} + \tan^2 \frac{x}{2} \right]^{\frac{1}{2}}$ $= \frac{1}{16} \left[\left(\frac{a(a)}{4 + (2)^2} + \frac{1}{4} + \frac{1}{2} \right) - 0 \right]$ $=\frac{1}{\sqrt{2}}\int \frac{dx}{\sqrt{13-1^2-x^2}}$ = 16 [4 + 2 - 0] $=\frac{1}{\sqrt{2}} \sin^{-1} \frac{2c}{3/5} + c$ С $=\frac{2+i2}{64}$ = 1 sin 1 12x + C Q7. Ventical: $y = \frac{32c^2 + 1}{2r(2c+2)}$ Q5. 1,: 2y - 30c = 7 i.e. x = 0 and x = -2. $\therefore y = \frac{3}{2}x + \frac{7}{2}$ Horizontal: $\lim_{x \to \infty} \frac{3x^2 + 1}{x(x+2)} \lim_{x \to \infty} \frac{3x^2}{x^2 + \frac{1}{x^2}}$ $L_2: 2x - 5y + 1 = 0$ $y = \frac{2}{2}x + \frac{1}{5}$ = lim 3+ 22 2-300 1+ 12 M. = 3 M2 = 2 : tand = 3/2 - 2/5 = 3+0 1+(=)(=)) = 1/10 8/5 = 3 : Assymptotes: $\theta = 35^{\circ}$ (A x=0, x=-2, y=3END SECTION I.

ρ2.

•

8c.
$$\frac{x(x-3)}{x-2} > 2$$

 $\frac{x^2-3x}{x-2} > 2$
 $\frac{x^2-3x}{x-2} > 2 > 0$, $x \neq 2$
 $\frac{x^2-3x}{x-2} - 2 > 0$, $x \neq 2$
 $\frac{x^2-3x}{x-2} - 2 > 0$, $x \neq 2$
 $\frac{x^2-3x}{x-2} - 2 > 0$, $x \neq 2$
 $\frac{x^2-3x}{x-2} - 2 > 0$, $x \neq 2$
 $\frac{x^2-3x}{x-2} - 2 > 0$, $x \neq 2$
 $\frac{x^2-3x}{x-2} - 2 > 0$, $x \neq 2$
 $\frac{x^2-3x}{x-2} - 2 > 0$, $x \neq 2$
 $\frac{x^2-3x}{x-2} - 2 > 0$
 $\frac{x^2-3x}{x-2} - 2 = 0$
 $\frac{x^2-3x}{x-3} - 12 = 0$ as required.
Give $x^2 - 12 = 0$
 $x = 12$
 $\frac{x^2-3x}{x-3} - 12 = 0$
 $x = 12$

. Ρ4.

9b.
$$y = 3 \cos^{-1}(2x)$$

 $pi. D: \cos^{-1}x - 1 \le x \le 1$
 $pi: \cos^{-1}x - 1 \le 2x \le 1$
 $rid \le x \le \frac{1}{2}$
 $pi: \cos^{-1}x - 0 \le x \le \pi$
 $pi: 3\cos^{-1}(2x) = 0 \le x \le \pi$
 $rid = \frac{1}{2} + 2n\pi$ or $x = (\pi - \sin^{-1}\frac{\pi}{2}) + 2n\pi$
 $rid = \frac{1}{2} + 2n\pi$ or $x = (\pi - \sin^{-1}\frac{\pi}{2}) + 2n\pi$
 $rid = \frac{1}{2} = \frac{\pi}{2}$
 $rid = \frac{1}{\sqrt{1-(2x)^2}}$
 $= \frac{-6}{\sqrt{1-4x^2}}$
 $rid = \frac{1}{2} = \frac{\pi}{2}$
 $rid = \frac{\pi}{2} + 2n\pi$ or $x = \frac{3\pi}{2} + 2n\pi$
 $rid = \frac{\pi}{2} + 2n\pi$ or $x = \frac{3\pi}{2} + 2n\pi$
 $rid = \frac{\pi}{2} + 2n\pi$ or $x = \frac{3\pi}{2} + 2n\pi$
 $rid = \frac{\pi}{2} + 2n\pi$ or $x = \frac{3\pi}{2} + 2n\pi$
 $rid = \frac{\pi}{2} + 2n\pi$ or $x = \frac{3\pi}{2} + 2n\pi$
 $rid = \frac{\pi}{2} + 2n\pi$ or $x = \frac{3\pi}{2} + 2n\pi$
 $rid = \frac{\pi}{2} + 2n\pi$ or $x = \frac{3\pi}{2} + 2n\pi$
 $rid = \frac{\pi}{2} + 2n\pi$ or $x = \frac{3\pi}{2} + 2n\pi$
 $rid = \frac{\pi}{2} + 2n\pi$ or $x = \frac{3\pi}{2} + 2n\pi$
 $rid = \frac{\pi}{2} + 2n\pi$ or $x = \frac{3\pi}{2} + 2n\pi$
 $rid = \frac{\pi}{2} + 2n\pi$ or $x = \frac{3\pi}{2} + 2n\pi$
 $rid = \frac{\pi}{2} + 2n\pi$
 $rid = \frac{\pi}{$

ps.

P7.

•

4

.