THE SCOTS COLLEGE

MATHEMATICS EXTENSION I

YEAR 12 PRETRIAL
$5^{\text {TH }}$ APRIL 2013

GENERAL INSTRUCTIONS

- Reading time - 5 minutes
- Working time - 1.5 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- Show all necessary working in Section II

WEIGHTING
30\%

TOTAL MARKS

55

SECTION I (7 MARKS)

- Answers to be recorded on the multiple choice answer sheet provided
- Clearly label your answer sheet with your student number
- Allow about 10 minutes for this section

SECTION II (48 MARKS)

- Questions 8-11
- Answers to be recorded in the answer booklets provided
- Each question must be completed in a new answer booklet.
- Label each answer booklet with your student number and the question number attempted. Clearly indicate the booklet order if more than one booklet is used for a question. Eg) Book 1 of 2 and 2 of 2.

QUESTION 1

Which of the following is the list of all the factors of $P(x)=3 x^{3}+4 x^{2}-5 x-2$
(A) $\quad(x+1)(x-2)(x-3)$
(B) $\quad(x+1)(x+2)(x+3)$
(C) $3 x(x-1)(x+1)$
(D) $\quad(x-1)(x+2)(3 x+1)$

QUESTION 2

A circle of centre O has a radius of 6 cm . From an external point X, a tangent is drawn with a point of contact D. From X the secants $X A$ and $X E$ are also drawn.

If $D X=8 \mathrm{~cm}$ calculate the distance $C X$.
(A) 4 cm
(B) -16 cm
(C) 8 cm
(D) 6 cm

The exact value of $\sin 75^{\circ}$ is:
(A) $\frac{4-\sqrt{6}}{4}$
(B) $\frac{2+\sqrt{2}}{2 \sqrt{2}-1}$
(C) $\frac{\sqrt{6}+\sqrt{2}}{4}$
(D) $\frac{\sqrt{2}-\sqrt{6}}{4}$

Evaluate: $\quad \int \frac{d x}{\sqrt{9-2 x^{2}}}$
(A) $y=\sin ^{-1} \sqrt{2} x+c$
(B) $y=\frac{1}{2} \cos \frac{2 x}{3}+c$
(C) $y=\frac{1}{\sqrt{2}} \sin ^{-1} \frac{\sqrt{2} x}{3}+c$
(D) $y=\frac{1}{\sqrt{2}} \log _{e} \sqrt{2} x+c$

Calculate the acute angle between the lines $l_{1}: 2 y-3 x=7$ and $l_{2}: 2 x-5 y+1=0$, to the nearest degree.
(A) 35°
(B) 70°
(C) 78°
(D) 282°

Given $\frac{d}{d x}\left(\frac{2 x}{4+x^{2}}+\tan ^{-1} \frac{x}{2}\right)=\frac{16}{\left(4+x^{2}\right)^{2}}$, evaluate: $\int_{0}^{2} \frac{d x}{\left(4+x^{2}\right)^{2}}$
(A) $\frac{\pi}{16}$
(B) $\pi+4$
(C) $\frac{\pi+2}{64}$
(D) $2 \pi-1$

QUESTION 7

For the curve $y=\frac{3 x^{2}+1}{x^{2}+2 x}$, the vertical and horizontal asymptotes are:
(A) $\quad x=0, x=-2, y=3$
(B) $\quad x=\frac{1}{3}, y=0, y=-1$
(C) $\quad x=0, x=\sqrt{2}, y=1$
(D) $\quad x=6, y=-2, y=-1$
a) The diagram below shows the points A, B, and C on a circle with centre O. Tangents are drawn from A and B which meet at $D . O$ is joined to D and the interval $O D$ intersects AB at E.

Not to
Scale
i) Prove that $\angle A O B=2 \times \angle D A B$.
ii) Prove that $A O B D$. Is a cyclic quadrilateral.
iii) Prove that E is the midpoint of $A B$.
b) Find the coordinates of the point $P(x, y)$ which divides the interval $A B$ internally in the ratio $4: 9$ with $A(2,3)$ and $B(5,-7)$.
c) Solve the inequality $\frac{x(x-3)}{x-2}>2$.
d) Differentiate: $y=\sin ^{-1} \frac{1}{4}(2 x-3)$
a) Given the parametric coordinates: $x=2 t$ and $y=t^{2}$.
i) Show that the Cartesian equation of the parabola is: $x^{2}=4 y$
ii) Given the parameter $t=2$, show that the equation of the normal at that point is $x+2 y-12=0$
iii) Find the point of intersection of the normal and the x - axis
b) Given the inverse trigonometric function: $y=3 \cos ^{-1}(2 x)$.
i) State the domain and range of $y=3 \cos ^{-1}(2 x)$
ii) Find the gradient function of $y=3 \cos ^{-1}(2 x)$
iii) Find the equation of the tangent to $y=3 \cos ^{-1}(2 x)$ at $x=0$
c) Find the general solution of $\sin \theta=\frac{\sqrt{2}}{2}$
a) The polynomial $P(x)=x^{4}-3 x^{3}+a x^{2}+b x-6$ leaves a remainder of 8 when divided by $(x+1)$. If $x-3$ is a factor of $P(x)$, find a and b.
b) Evaluate: $\int_{0}^{\frac{\pi}{4}} \sin ^{2} x d x$
c) i) Show by differentiation that $y=\frac{x e^{x}}{2}$ is increasing for $x \geq 0$.
ii) A sketch of $y=f(x)=\frac{x e^{x}}{2} ; x \geq 0$ is shown below. Explain why $y=f(x)$ has an inverse function.

iii) Copy the graph above and add a sketch of the inverse function $y=f^{-1}(x)$.
d) i) Write $\sqrt{3} \cos x-\sin x$ in the form $A \cos (x+\phi) ; 0<\phi<\frac{\pi}{2}$.
ii) Hence, or otherwise solve the equation $\sqrt{3} \cos x-\sin x=1$; $0 \leq x \leq 2 \pi$.
a) Find $\int_{1}^{6} x \sqrt{x+3} d x$, given the substitution $u=\sqrt{x+3}$.
b) For the function $y=\frac{\log _{e} x}{x}$;
i) State the domain of the function
ii) Find any stationary points and determine their nature
iii) Find the x-intercept
iv) Hence, sketch the function including the above information and showing the property of the curve as $x \rightarrow \infty$
c) Find the Cartesian equation of the curve represented by the following parametric equations:

$$
x=\sin 2 t, \quad y=\cos t
$$

> THE SCOTS COLLEGE - MATHEMATICS 2013 EXTENSION 1 MATHEMATICS PRE-TRIAL HSC

CANDIDATE NUMBER:

Section I - Multiple Choice Answer Sheet (7 Marks)

Mark the correct answer by filling in the circle. To make a correction, neatly place a cross over the circle and then fill in the correct circle.
Example:

C $\quad \mathrm{D}$
$0<0$
A
B
C
D

Question 1
0
0
0
0
Question 2
0
0
0
0
Question 3
○
○
O
0
Question 4
0
0
0
0
Question 5
0
0
0
0
Question 6
0
0
0
0
Question 7
0
0
0
0

STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

SECTION 1. MULTIPLE CHOICE:-
Summary:
Q1. D
Q2. A
Q3. C
Q4. C
Q5. A
Q6. c
07. A

Solutions:
Q1. $P(x)=3 x^{3}+4 x^{2}-5 x-2$

$$
\begin{aligned}
P(1) & =3(1)^{3}+4(1)^{2}-5(1)-2 \\
& =0
\end{aligned}
$$

$\therefore(x-1)$ is a factor

$$
\begin{aligned}
& x - 1 \longdiv { 3 x ^ { 2 } + 7 x + 2 } \\
& \frac{3 x^{3}+4 x^{2}-5 x-2}{7 x^{2}}-5 x \\
& \frac{7 x^{2}-7 x}{2 x-2} \\
& \frac{2 x-2}{0} \\
& \therefore P(x)= \\
& =(x-1)\left(3 x^{2}+7 x+2\right) \\
& = \\
& =(x-1)\left(3 x^{2}+6 x+x+2\right)[3 x(x+2)+1(x+2)] \\
& \\
& =(x-1)(3 x+1)(x+2)
\end{aligned}
$$

Q2. $D X^{2}=(C X)(X E)$
ratio of secant $=$ square of tangent

$$
\begin{aligned}
& 8^{2}=(c x)(c x+12) \\
& 64=c x^{2}+12 c x \\
& c x^{2}+12 c x-64=0 \\
&(c x+16)(c x-4)=0 \\
& \therefore c x=-16 \text { and } c x=4 \\
& c x \neq-v e \\
& \therefore c x=4 \mathrm{~cm}
\end{aligned}
$$

Q3. $\sin 75^{\circ}=\sin \left(45^{\circ}+30^{\circ}\right)$

$$
=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}
$$

$$
\begin{array}{ll}
\sin 45^{\circ}=\frac{1}{\sqrt{2}} & \sin 30^{\circ}=\frac{1}{2} \\
\cos 45^{\circ}=\frac{1}{\sqrt{2}} & \cos 30^{\circ}=\frac{\sqrt{3}}{2}
\end{array}
$$

$$
\begin{aligned}
\therefore \sin 75^{5} & =\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right)+\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right) \\
& =\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}} \\
& =\frac{\sqrt{3}+1}{2 \sqrt{2}} \\
& =\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

Q4.

$$
\begin{aligned}
\int \frac{d x}{\sqrt{9-2 x^{2}}} & =\int \frac{d x}{\sqrt{2\left(\frac{9}{2}-x^{2}\right)}} \\
& =\int \frac{d x}{\sqrt{2} \sqrt{\left(\frac{3}{\sqrt{2}}\right)^{2}-x^{2}}} \\
& =\frac{1}{\sqrt{2}} \int \frac{d x}{\sqrt{\left(\frac{3}{2}\right)^{2}-x^{2}}} \\
& =\frac{1}{\sqrt{2}} \sin ^{-1} \frac{x}{\frac{3}{\sqrt{2}}}+c \\
& =\frac{1}{\sqrt{2}} \sin ^{-1} \frac{\sqrt{2} x}{3}+c
\end{aligned}
$$

(c)

QS. $\quad l_{1}: 2 y-3 x=7$

$$
\begin{align*}
& \therefore y=\frac{3}{2} x+\frac{7}{2} \\
& l_{2}: 2 x-5 y+1=0 \\
& \therefore y=\frac{2}{5} x+\frac{1}{5} \\
& m_{1}=\frac{3}{2} \quad m_{2}=\frac{2}{5} \\
& \therefore \tan \theta= \frac{3 / 2}{2}-\frac{2}{5} \\
& 1+\left(\frac{3}{2}\right)\left(\frac{2}{5}\right) \\
&= \frac{11 / 10}{8 / 5} \\
& \theta= 35^{\circ}
\end{align*}
$$

$$
\text { Q6. } \begin{align*}
& \int_{0}^{2} \frac{d x}{\left(4+x^{2}\right)^{2}}=\frac{1}{16} \int_{0}^{2} \frac{16}{\left(4+x^{2}\right)^{2}} d x \\
&=\left.\frac{1}{16}\left[\frac{2 x}{4+x^{2}}+\tan ^{-1} \frac{x}{2}\right]\right|_{0} ^{2} \\
&= \frac{1}{16}\left[\left(\frac{2(2)}{4+(2)^{2}}+\tan ^{-1} \frac{(2)}{2}\right)-0\right] \\
&=\frac{1}{16}\left[\frac{4}{8}+\frac{\pi}{4}-0\right] \\
&= \frac{2+12}{64}
\end{align*}
$$

Q7. Vertical:

$$
y=\frac{3 x x^{2}+1}{x(x+2)}
$$

i.e. $x \neq 0$ and $x \neq-2$.

Horizontal:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{3 x^{2}+1}{x(x+2)} & =\lim _{x \rightarrow \infty} \frac{\frac{3 x^{2}}{x^{2}}+\frac{1}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{2 x}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{3+\frac{1}{x^{2}}}{1+\frac{1}{x}} \\
& =\frac{3+0}{1+0} \\
& =3 .
\end{aligned}
$$

\therefore Assymptotes:

$$
x=0, x=-2, y=3
$$

END SECTION I.

SECTION II.
68

ai. Prove $\angle A O B=2 \times \angle D A B$

$$
\angle D A B=\angle A C B
$$

(\angle between tangent and chord $=L$ in alternate segment)

$$
\angle A O B=2 \times \angle A C B
$$

$(\angle$ at centre is twice the \angle at circumference on same arc)

$$
\therefore \angle A O B=2 \times \angle D A B
$$

(since $\angle D A B=\angle A C B$)

* 2 marks for a complete proof
* 1 mark if some relevant facts are stated or proof is incomplate.
aii. Prove that $A O B D$ is a cyclic quadrilateral.

$$
\angle D A O=\angle D B O=90^{\circ}
$$

(tangent perpendicular to radius)

$$
\therefore \angle D A O+\angle D B O=180^{\circ}
$$

(sum of two might angles)
\therefore Opposite angles of $4 O B D$ are supplementary.
$\therefore A O B D$ is a cyclic quadrilateral

* 1 mark as long as statement that opposite angle are supplem entany and why.
aiii. Prove: E is the midpoint of $A B$.
$A O=B O \quad$ (equal radii)
$A D=B D \quad$ (tangents from
an external point are equal in length)
$\therefore A O B D$ is a kite
$\therefore O D$ bisects $A B$ (symmetry of a kite)
$\therefore E$ is midpoint of $A B$.
8b. $A(2,3), B(5,-7) \frac{m}{n}=\frac{4}{9}$

$$
\begin{aligned}
x & =\frac{m x_{2}+n x_{2},}{m+n} & y & =\frac{m y_{2}+n y_{1}}{m+n} \\
& =\frac{20+18}{13} & & =\frac{-28+27}{13} \\
& =\frac{35}{13} & & =-\frac{1}{13}
\end{aligned}
$$

$\therefore P$ is $\left(\frac{38}{13},-\frac{1}{13}\right)$

* 2 marks for correct coordinates
* I mark for one of the coordinates correct or for a satisfactory amount of working correct and shown.

$$
\begin{aligned}
& 8 c \frac{x(x-3)}{x-2}>2 \\
& \frac{x^{2}-3 x}{x-2}>2 \\
& \frac{x^{2}-3 x-2}{x-2}>0, x \neq 2 \\
& \frac{x^{2}-3 x}{x-2}-\frac{2 x-4}{x-2}>0 \\
& \frac{x^{2}-5 x+4}{x-2}>0
\end{aligned}
$$

Multiply by $(x-2)^{2} \quad($ always $>0)$

$$
\therefore(x-4)(x-1)(x-2)>0
$$

$$
\therefore y=(x-1)(x-2)(x-4)
$$

$y=0$ when $x=1,2,4$

$\therefore \frac{x(x-3)}{x-2}>2$ for $1<x<2$ and $x>4$

Bd. $\frac{d}{d x} \sin ^{-1} \frac{1}{4}(2 x-3)=\frac{d}{d x} \sin ^{-1}\left(\frac{1}{2} x-\frac{3}{4}\right)$

$$
\begin{aligned}
& =\frac{\frac{1}{2}}{\sqrt{1-\left(\frac{1}{2} x-\frac{3}{4}\right)^{2}}} \\
& =\frac{\frac{1}{2}}{\sqrt{1-\left(\frac{1}{2} x-3 / 4\right)^{2}} \times \frac{\sqrt{4}}{\sqrt{4}}} \\
& =\frac{1}{\sqrt{4-4\left(\frac{x^{2}}{4}-3 x+\frac{9}{16}\right)}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{4-x^{2}+3 x-\frac{9}{4}}} \\
& =\frac{1}{\sqrt{7 / 4+3 x-x^{2}}}
\end{aligned}
$$

we don't like fraction in the denominator.

$$
\begin{aligned}
& =\frac{\sqrt{4}}{\sqrt{4}} \times \frac{1}{\sqrt{\frac{1}{4}+3 x-x^{2}}} \\
& =\frac{2}{\sqrt{7+12 x-4 x^{2}}}
\end{aligned}
$$

qa. $x=2 t \quad y=t^{2}$

$$
\text { ai. } \begin{aligned}
& x=2 t \\
& x^{2}=2 t^{2} \\
\therefore & x^{2}=4 y
\end{aligned}
$$

aii, $t=2, \quad y=\frac{x^{2}}{4} \quad P(4,4)$

$$
\therefore y^{\prime}=m=\frac{2 x}{4}=\frac{x}{2}=\frac{2 t}{2}=t
$$

$\therefore m=2 \rightarrow$ tangent
\therefore Normal $m=-\frac{1}{2}$

$$
\begin{aligned}
& y-y=m\left(x-x_{1}\right) \\
& y-4=-\frac{1}{2}(x-4) \\
&-2 y+8=x^{2}-4 \\
&-x-2 y+12=0
\end{aligned}
$$

$x+2 y-12=0$ as required.

$$
\begin{array}{ll}
t=2 & x+2 y=2(1)(2)+(1)(2)^{3} \\
a=1 . & x+2 y=12 \\
& x+2 y-12=0 \text { as required. }
\end{array}
$$

ali. $y=0$

$$
\begin{aligned}
\therefore x+0-12 & =0 \\
x & =12
\end{aligned}
$$

\therefore Point of intersection: $(12,0)$
qb. $y=3 \cos ^{-1}(2 x)$
bi. D: $\cos ^{-1} x \quad-1 \leq x \leq 1$
$D: \cos ^{-1} 2 x \quad-1 \leqslant 2 x \leqslant 1$

$$
\begin{array}{ll}
& -\frac{1}{2} \leq x \leq \frac{1}{2} \\
R: \cos ^{-1} x & 0 \leqslant x \leq \pi \\
R: 3 \cos ^{-1}(2 x) & 0 \leq x \leq 3 \pi
\end{array}
$$

bii. $y=3 u$ where $u=\cos ^{-1}(2 x)$

$$
\begin{aligned}
\therefore \frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =3 \times \frac{-2}{\sqrt{1-(2 x)^{2}}} \\
& =\frac{-6}{\sqrt{1-4 x^{2}}}
\end{aligned}
$$

biii. when $x=0, y=3 \cos ^{-1}(2 x 0)$

$$
\begin{aligned}
& y=3 \times \frac{\pi}{2} \\
& y=\frac{3 \pi}{2} \\
& m=y^{\prime}=\frac{-6}{\sqrt{1-0}} \\
&=-6 \\
& \therefore y-y_{1}=m\left(x-x_{1}\right) \\
& y-\frac{3 \pi}{2}=-6 x \\
& 6 x+y-\frac{3 \pi}{2}=0 \\
& 6 x+y-\frac{3 \pi}{2}=0
\end{aligned}
$$

qc. $x=\sin ^{-1} a+2 n \pi$ or.

$$
x=\left(\pi-\sin ^{-1} a\right)+2 n \pi
$$

where n is an integer.
If $x=\sin \frac{\sqrt{2}}{2}$ then $x=\sin ^{-1} \frac{\sqrt{2}}{2}+2 n \pi \quad$ or $x=\left(\pi-\sin ^{-1} \frac{\sqrt{2}}{2}\right)+2 n \pi$

$$
\begin{aligned}
& \therefore \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \\
& \therefore \sin ^{-1} \frac{\sqrt{2}}{2}=\frac{\pi}{4}
\end{aligned}
$$

Hence.

$$
\begin{aligned}
& x=\frac{\pi}{4}+2 n \pi \text { or } x=\frac{3 \pi}{4}+2 n \pi \\
& 10 a . P(-1)=8 \\
& \therefore(-1)^{4}-3(-1)^{3}+a(-1)^{2}+b(-1)-6=8 \\
& 1+3+a-b-6=8 \\
& a-b-2=8 \\
& a-b=10
\end{aligned}
$$

$$
\begin{aligned}
& P(3)=0 \\
& 3^{4}-3(3)^{3}+a(3)^{2}+b(3)-6=0 \\
& 81-81+9 a+3 b-6=0 \\
& 9 a+3 b=6 \\
& 3 a+b=2
\end{aligned}
$$

(1).. $a-b=10$
(2) $\ldots 3 a+b=2$
(1) + (2)

$$
\begin{aligned}
4 a & =12 \\
a & =3
\end{aligned}
$$

sub $a=3$ into (1)

$$
\begin{aligned}
3-b & =10 \\
-b & =7 \\
b & =-7
\end{aligned}
$$

lob. $\int_{0}^{\pi / 4} \sin ^{2} x d x$
Now $\cos 2 x=1-2 \sin ^{2} x$

$$
\begin{aligned}
\therefore 2 \sin ^{2} x & =1-\cos 2 x \\
\sin ^{2} x & -\frac{1}{2}(1-\cos 2 x)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \int_{0}^{\frac{\pi}{4}} & \sin ^{2} x d x= \\
& =\int_{0}^{\frac{\pi}{4}} \frac{1}{2}(1-\cos 2 x) d x \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{4}}(1-\cos 2 x) d x \\
& =\frac{1}{2}\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{4}} \\
& =\frac{1}{2}\left[\frac{\pi}{4}-\frac{1}{2} \sin \frac{\pi}{2}-0\right] \\
& =\frac{\pi}{8}-\frac{1}{4} \sin \frac{\pi}{2}=\frac{\pi}{8}-\frac{1}{4}
\end{aligned}
$$

10ci. $y=\frac{x e^{x}}{2}$

$$
\begin{aligned}
& y^{\prime}=\frac{x}{2} \times \frac{d}{d x}\left(e^{x}\right)+e^{x} \times \frac{d}{d x}\left(\frac{x}{2}\right) \\
& y^{\prime}=\frac{x}{2} \times e^{x}+e^{x} \times \frac{1}{2}
\end{aligned}
$$

$$
y^{\prime}=\frac{x e^{x}+e^{x}}{2}
$$

For $x>0, e^{x}>1$
$\therefore x e^{x}>0$ (positive \times positive)
$\therefore \dot{x} e^{x}+e^{x}>0$ (positive + positive)
$\therefore \frac{x e^{x}+e^{x}}{2}>0 \quad$ (positive \div positive)
10cii. For a given function $f(x)$, it must be one-to-one or pass a horizontal live test for the inverse of the function $f^{-1}(x)$ to likewise be one-toone and pass a vertical line test in the given domain.

10 chi.

* As long as the graph appears to be a reflection of the original curve in $y=x$, mark awarded.

10di. Let $\sqrt{3} \cos x-\sin x=A \cos (x+\phi)$
$\therefore \sqrt{3} \cos x-\sin x \equiv A \cos x \cos \phi-A \sin x \sin \phi \operatorname{n} \phi$
$\therefore \sqrt{3} \cos x=A \cos x \cos \phi-\sin x=A \sin x \sin \phi$
$\sqrt{3}=A \cos \phi \quad 1=A \sin \phi$
$\cos \phi=\frac{\sqrt{3}}{A} \quad \sin \phi=\frac{1}{A}$

$\therefore \sqrt{3} \cos x-\sin x=2 \cos \left(x+\frac{\pi}{6}\right)$
dii $\sqrt{3} \cos x-\sin x=1$.
$\therefore 2 \cos \left(x+\frac{\pi}{6}\right)=1$. from part i.

$$
\cos \left(x+\frac{\pi}{6}\right)=\frac{1}{2}
$$

$\therefore x+\frac{\pi}{6}=\frac{\pi}{3}$ or $\left(2 \pi-\frac{\pi}{3}\right)$
$\therefore x=\frac{\pi}{6}$ or $x=\frac{3 \pi}{2}$
lla. $\int_{1}^{6} x \sqrt{x+3} d x$ given

$$
\begin{aligned}
u=\sqrt{x+3} & \frac{d u}{d x} \\
\therefore u^{2}=x+3 & \frac{1}{2 \sqrt{x+3}} \\
& =\frac{1}{2 u} \\
\therefore x=u^{2}-3 & =2 u d x
\end{aligned}
$$

when $x=1$

$$
\begin{aligned}
& u=\sqrt{1+3}=2 \\
& x=6 \\
& u=\sqrt{6+3}=3
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \int_{1}^{6} x \sqrt{x+3} d x= \\
&=\int_{2}^{3}\left(u^{2}-3\right)(u)(2 u) d u \\
&=2 \int_{2}^{3}\left(u^{2}-3\right)\left(u^{2}\right) d u \\
&=2 \int_{2}^{3} u^{4}-3 u^{2} d u \\
&=2\left[\frac{u^{5}}{5}-u^{3}\right]_{2}^{3} \\
&=2\left[\frac{243}{5}-27-\left(\frac{32}{5}-8\right)\right] \\
&=46 \frac{2}{5}
\end{aligned}
$$

lib. $x=\sin 2 t, y=\cos t$

$$
\begin{aligned}
\therefore x & =2 \sin t \cos t \\
\therefore x^{2} & =4 \sin ^{2} t \cos ^{2} t \\
x^{2} & =4 \cos ^{2} t\left(1-\cos ^{2} t\right) \\
x^{2} & =4 y^{2}\left(1-y^{2}\right)
\end{aligned}
$$

Hci. $x \in R$ where $x>0$.
cii.

$$
\begin{aligned}
y & =\frac{\log _{e} x}{x} \\
y^{\prime} & =\frac{x \times \frac{1}{x}-\log _{e} x \times 1}{x^{2}} \\
y^{\prime} & =\frac{1-\log _{e} x}{x^{2}}
\end{aligned}
$$

Stationany points at $y^{\prime}=0$

$$
\frac{1-\log _{e} x}{x^{2}}=0
$$

$$
\begin{aligned}
\therefore 1-\log _{e} x & =0 \\
\log _{e} x & =1 \\
\therefore x & =e
\end{aligned}
$$

when $x=e, y=\frac{\log _{e} e}{e}$

$$
y=\frac{1}{e}
$$

\therefore Stationary point: $\left(e, \frac{1}{e}\right)$

x	2	e	3
y^{\prime}	tue	0	$-v e$

\therefore maximum at $\left(e, \frac{1}{e}\right)$
ciii. x-intercept at $y=0$

$$
\begin{gathered}
\frac{\log _{e} x}{x}=0 \\
\log _{e} x=0 \\
x=e^{0} \\
x=1
\end{gathered}
$$

civ.

