Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the Multiple Choice Answer Sheet for Questions 1-10.

Shore

Year 12

HSC Assessment Task 4

Half-Yearly Exam

May 2013

Mathematics Extension 1

General Instructions

- Reading time -5 minutes
- Working time -2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided separately
- Answer Questions $1-10$ on the Multiple Choice Answer Sheet provided
- In Questions 11-14 show relevant mathematical reasoning and/or calculations
- Start each of Questions 11-14 in a new writing booklet
- Write your examination number on the front cover of each booklet
If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

Total marks - 70

Section I Pages 3-6
10 marks

- Attempt Questions $1-10$
- Allow about 15 minutes for this section

Section II Pages 7-12
60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

1 The point P divides the interval from $A(-2,1)$ to $B(4,-5)$ internally in the ratio $4: 3$.
What is the x co-ordinate of P ?
(A) $\frac{-17}{7}$
(B) $\frac{10}{7}$
(C) 10
(D) $\frac{10}{12}$

2 Simplify $2 \log _{x} k-\log _{x} 3+\log _{x} p$.
(A) $\log _{x} \frac{p k^{2}}{3}$
(B) $\frac{2 \log _{x} p k}{\log _{x} 3}$
(C) $\frac{2 \log _{x} k}{\log _{x} 3} \times \log _{x} p$
(D) $\frac{\log _{x} p k^{2}}{\log _{x} 3}$

[^0]$3 \quad$ What is the exact value of $\int_{0}^{\ln 2} \frac{e^{x}}{1+e^{x}} d x$?
(A) $\ln 2$
(B) 0
(C) $e^{\ln 2}-1$
(D) $\ln 1.5$
$4 \quad$ What is the exact value of $\int_{-3}^{3} \frac{d x}{x^{2}+9}$?
(A) 0
(B) $\frac{\pi}{6}$
(C) $\frac{2}{3}$
(D) $2 \ln 18$

5 The curves $y=x^{2}$ and $y=x^{3}$ intersect at the point $(1,1)$. Which of the following is closest to the size of the acute angle in radians between these curves at $(1,1)$?
(A) 0
(B) 0.14
(C) 8.13
(D) $\frac{\pi}{4}$

6 In a circle a chord of length 10 units is drawn $\sqrt{3}$ units from its centre O. What is the diameter of this circle?
(A) $2 \sqrt{103}$
(B) 28
(C) $4 \sqrt{7}$
(D) $\sqrt{28}$

7 Which of the following equations best represents the graph below?

(A) $y=\sin 2 x+1$
(B) $y=1+2 \cos x$
(C) $y=2 \cos 2 x$
(D) $y=1+\cos 2 x$

8 Which one of these functions has an inverse relation that is not a function?
(A) $y=x^{3}$
(B) $y=\ln x$
(C) $y=\sqrt{x}$
(D) $\quad y=|x|$

9 Given $\frac{d}{d x}\left(x \log _{e} x\right)=1+\log _{e} x$. Find $\int \frac{1+\log _{e} x}{x \log _{e} x} d x$.
(A) $\frac{1}{x}+c$
(B) $\quad \log _{e}\left(1+\log _{e} x\right)+c$
(C) $\log _{e}\left(x \log _{e} x\right)+c$
(D) $\left(x \log _{e} x\right)+c$

10 A tower T, h metres high can be seen from a point A due East of the tower and point B due south of the tower. If the distance between A and B is 60 metres and the angles of elevation of T from A and B are 14° and 17° respectively, find the height of the tower.
(A) 11.6
(B) 134.4
(C) 12.2
(D) 5.5

Section II

60 marks
Attempt Questions 11-14
Allow about 1 hour 45 minutes for this section
Start each of Questions 11-14 in a new writing booklet.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) Find the value of k if $x+3$ is a factor of $P(x)=x^{3}-3 k x+1$.
(b) Solve the inequality $\frac{3 x}{2-x} \geq-1$.
(c) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 4 x}{3 x}$.
(d) Find $\frac{d}{d x}\left(x \tan ^{-1} 3 x\right)$.
(e) Find $\int \frac{1}{\sqrt{25-9 x^{2}}} d x$.
(f) Find the exact value of $\sin \left(\cos ^{-1} \frac{2}{7}\right)$.
(g) If α, β, γ are the roots of $2 x^{3}-5 x^{2}+3 x-1=0$, find the value of $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$.
(a) Consider the function $y=2 \cos ^{-1} \frac{x}{3}$.
(i) State the domain and range.
(ii) Sketch the curve.
(iii) Find the area between the curve and the x and y axes in the first quadrant.
(b) Use the substitution $u=x^{2}+1$ to evaluate $\int_{0}^{1} x^{3}\left(x^{2}+1\right)^{3} d x$.
(c) Consider the function $f(x)=\frac{x}{x+3}$.
(i) Show that $f^{\prime}(x)>0$ for all x in the domain
(ii) State the equation of the horizontal asymptote of $y=f(x)$.
(iii) Without using further calculus, sketch the graph of $y=f(x)$
(iv) Explain why $y=f(x)$ has an inverse function $y=f^{-1}(x)$.
(v) Find the inverse function $y=f^{-1}(x)$.
(vi) State the domain of $y=f^{-1}(x)$.

Question 13 (15 marks) Use a SEPARATE writing booklet

(a) Solve $2 \sin ^{2} x=\sin x$ for $0 \leq x \leq 2 \pi$.
(b) In the diagram, $A B$ is a diameter of the circle, centre at O. The radius $O D$ is extended to meet the tangent $B C$ at C. The length of the diameter is 24 cm and $\angle A O C=150^{\circ}$.

NOT TO SCALE
(i) Find the size of $\angle C O B$ in radians.
(ii) Find the exact value of the shaded area which is contained by the intervals $B C$ and $C D$ and the arc $B D$
(c) Consider the function $f(x)=\frac{\ln x}{x}$.

Find the co-ordinates of the stationary point on the curve $y=f(x)$ and determine its nature
(d) Use mathematical induction to prove that for all integers $n \geq 1$, $3^{2 n-1}+5$ is divisible by 8 .

NOT TO SCALE

The points B, D, E, F lie on the circle with centre $O . A C$ is a tangent to the circle touching at the point B.
(i) Show that $\angle B O E=156^{\circ}$.
(ii) Find the size of the angle $F B A$. 2

Question 14 (15 marks) Use a SEPARATE writing booklet

(a) Find the exact value of the volume of the solid of revolution formed when the region bounded by the curve $y=3 \sin x$, the x-axis and the lines $x=0$ and $x=\frac{\pi}{2}$ is rotated about the x-axis.
(b) Prove that $\frac{\sin 2 x}{1+\cos 2 x}=\tan x$.
(c)

The tangent at $T\left(2 t, t^{2}\right), t \neq 0$ on the parabola $x^{2}=4 y$ meets the x - axis at A.
$P(x, y)$ is the foot of the perpendicular from A to $O T$, where O is the origin. The equation of the tangent at T is $y=t x-t^{2}$.
(i) Find the co-ordinates of the point A.
(ii) Show that the equation of $A P$ is $y=-\frac{2}{t}(x-t)$.
(iii) Show that the equation of $O T$ is $t=\frac{2 y}{x}$.
(iv) Hence, or otherwise, prove that the locus of $P(x, y)$ lies on a circle with centre $(0,1)$ and give its radius.

NOT TO SCALE

Let $P\left(2 a, a^{2}\right)$ be a point on the parabola $y=\frac{x^{2}}{4}$, and let S be the point $(0,1)$. The tangent to the parabola at P makes an angle of β with the x axis. The angle between $S P$ and the tangent is θ. Assume $a>0$, as indicated.
(i) Show that $\tan \beta=a$.
(ii) Show that the gradient of $S P$ is $\frac{1}{2}\left(a-\frac{1}{a}\right)$.
(iii) Show that $\tan \theta=\frac{1}{a}$.

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Note $\ln x=\log _{e} x, \quad x>0$

YEAR 12 EXTENSION 1 MATHS HALF-YEARLY 2013

8
9
10

1. $A(-2,1) \quad B(4,-5)$
2. | $y=x^{2}$ | $y=x^{3}$ |
| ---: | :--- |
| $y^{\prime}=2 x$ | $y^{\prime}=3 x^{2}$ |
| At $x=1$ | A+ $x=1$ |
| $y^{\prime}=2$ | $y^{\prime}=3$ |
| $m_{1}=2$ | $m_{2}=3$ |

$$
x=\frac{4 \times 4+3 \times-2}{7}
$$

$$
\begin{equation*}
=\frac{10}{1} \tag{B}
\end{equation*}
$$

$$
\begin{aligned}
\tan \theta & =\frac{m_{1}-m_{2}}{17-m_{1}} \\
& =\left\lvert\, \frac{2-3 \mid}{1+6}\right. \\
& =\frac{1}{7} \\
\theta & =0.14 \text { (B) }
\end{aligned}
$$

2. $\log k^{2}-\log 3+\log p$

$$
=\log \left(\frac{p k^{2}}{3}\right)(A)
$$

3. $\int_{0}^{\ln 2} \frac{e^{x}}{1+e^{x}} d x=\left[\ln \left(1+e^{x}\right)\right]_{0}^{\ln 2}$

$$
\begin{aligned}
r^{2} & =(\sqrt{3})^{2}+5^{2} \\
& =28
\end{aligned} \quad A C=\frac{h}{\tan 14} \quad B C=\frac{h}{\tan 17} .
$$

$$
c=\sqrt{28}
$$

$$
=2 \sqrt{7}
$$

$$
=\ln \left(1+e^{\ln 2}\right)-\ln \left(1+e^{0}\right)
$$

$$
\begin{equation*}
\therefore d=4 \sqrt{7} \tag{c}
\end{equation*}
$$

$$
=\ln 3-\ln 2
$$

17. $-a=1 \quad P=\frac{5 \pi}{1}$

$$
=\ln \frac{3}{2}
$$

$$
=\ln 1.5(D)
$$

$y=1+\cos 2 x[D]$
8.

$y=x^{3} \quad y=\ln x \quad y=\sqrt{x} \quad y=|x|$
$\therefore D$
9. $\int \frac{1+\ln x}{x \ln x} d x\left[\int \frac{f^{\prime}(x)}{f(x)}\right]$
$=\ln (x \ln x)+c \quad[c]$
10.

b) $\frac{3 x}{2-x} \geqslant-1$

1. $x \neq 2$

2 Solve $\frac{3 x}{2-x}=-1$

$$
\begin{aligned}
3 x & =-2+x \\
2 x & =-2 \\
x & =-1
\end{aligned}
$$

3.

$$
\begin{aligned}
& \tan 14^{\circ}=\frac{h}{A C} \quad B C=\frac{h}{\tan 17} \\
& \tan
\end{aligned}
$$

In $\triangle A B C$. Iytharas' thaorem

$$
\begin{align*}
& 60^{2}=\frac{h^{2}}{\tan ^{2} 14}+\frac{h^{2}}{\tan 117}=h^{2} \tag{2}\\
& 60^{2} \div\left(\frac{1}{\tan ^{2} 14}+\frac{1}{\left.\tan ^{2} 17\right)}=h^{2}\right. \\
& \sqrt{60^{2} \div 26-78}=h \\
& h=11 \cdot 6 \quad \text { [A] }
\end{align*}
$$

$$
\text { c) } \begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 4 x}{3 x} & =\lim _{x \rightarrow 0} \frac{\sin 4 x}{4 x} \cdot \frac{4}{3} \\
& =1 x \frac{4}{3} \\
& =\frac{4}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \begin{aligned}
& d x \\
& d x \\
&\left.\tan ^{-1} 3 x\right)=\frac{x \times \frac{3}{1+9 x^{2}}+\tan ^{-1} 3 x}{3 x} \\
&=\frac{3 x}{1+9 x^{2}}+\tan ^{-1} 3 x \\
& {[2] }
\end{aligned} \\
& u=x \quad v=\tan ^{-13 x} \\
& u^{\prime}=1-1
\end{aligned}
$$

.

$-1<x<2$

$$
\left(e^{\ln 2}=2\right)
$$

Question 12

$$
\text { e) } \begin{aligned}
\int \frac{1}{\sqrt{25-9 x^{2}}} d_{1} & =\int \frac{1}{\sqrt{9\left(\frac{25}{9}-x^{2}\right)}} d x \\
& =\frac{1}{3} \sin ^{-1} \frac{x}{5 / 3}+c \\
& =\frac{1}{3} \sin ^{-1} \frac{3 x}{5}+c
\end{aligned}
$$

f) $\sin \left(\cos ^{-1} \frac{2}{7}\right)=\sin x$

$$
\therefore \sin x=\frac{\sqrt{4}}{7}
$$

$$
=\frac{3 \sqrt{5}}{7}
$$

[2]
[3]

$$
\text { j) } \begin{aligned}
& \alpha^{2} f y+\alpha_{\beta}^{2} y+\alpha \beta y^{2} \\
= & \alpha \beta \gamma(\alpha+\beta+\gamma) \\
= & -\frac{\alpha}{a} \times \frac{-b}{a}
\end{aligned}
$$

for $2 x^{3}-5 x^{2}+3 x-1=0$

$$
\begin{aligned}
\alpha_{\alpha}+\gamma=\frac{5}{2} \quad \alpha_{\rho} \rho & =\frac{1}{2} \\
x \alpha_{p}+(\alpha+p+\gamma) & =5 / 2 \times \frac{5}{2} \\
& =5 / 4
\end{aligned}
$$

[2] Rang: : $0 \leq \frac{4}{2} \leq \pi$
(III) $A=\int 20^{-1} \frac{x}{3} d x \quad[3]$

$$
\begin{aligned}
& y=2 \cos ^{-1} \frac{x}{3} \\
& \frac{y}{2}=\cos ^{-1} \frac{x}{3} \\
& \cos \frac{y}{2}=\frac{x}{3}
\end{aligned}
$$

$$
3 \cos \frac{y}{2}=x
$$

$=6 u^{2}$
a) $-1 \leqslant \frac{x}{3} \leqslant 1 \quad[2]$

Domain:

$$
\begin{aligned}
A & =\int 3 \cos \frac{y}{2} d y \\
& =\left[\frac{3 \sin y}{\frac{1}{2}}\right]_{0}^{\pi} \\
& =6\left[\sin \frac{\pi}{2}-\sin 0\right] \\
& =6(1-0)
\end{aligned}
$$

\qquad

$$
\int_{0}^{1} x^{3}\left(x^{2}+\right)^{3} d x
$$

(b)

$$
=\frac{1}{2}\left[\left(\frac{2^{5}}{5}-\frac{2^{4}}{4}\right)-\left(\frac{1}{5}-\frac{1}{4}\right)\right]
$$

$$
=\frac{49}{40}
$$

$$
=1 \frac{9}{90}
$$

(c) $f(x)=\frac{x}{x+3} \quad x \neq-3$
(i)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x+3, \times 1-x \times 1}{(x+3)^{2}} \\
& =\frac{x+3-x}{(x+3)^{2}} \\
& =\frac{3}{(x+3)^{2}}
\end{aligned}
$$

Since $(x+3)^{2}>0$ for all x

$$
f^{\prime}(x) \geq 0 \text { fo all } x \quad[1]
$$

iii) For every y value in the range of the original function there is only one x value.
[one to one mapping] [1]
(v)

$$
\begin{aligned}
y & =\frac{x}{x+3} \\
x & =\frac{y}{y+3} \\
x y+3 x & =y \\
3 x & =y-x y \\
3 x & =y(1-x) \\
3 x & =y \\
1-x & f^{-1}(x,
\end{aligned}
$$

(b) $(1) \angle C O B=\frac{\pi}{6}$

$$
\text { (i) Shaded Ave } \begin{align*}
& \text { S } A \tag{1}\\
&=\frac{1}{2} \times 12 \times 4 \text { sector } \\
&
\end{align*}
$$

x	2	e	3
$f^{\prime}(x)$	+	0	-

$+>=$
\therefore Max twining pf at $\left(e, \frac{1}{e}\right)$
(d)
stepl Prove true for $n=1$

$$
3^{2-1}+5=8 \quad \angle B O F=156^{\circ} \text { (angle at }
$$ which is diulsible by 8 .

11) $\angle E F B=78^{\circ}$ (opposite $\angle S$
in cyclic quasi ruffle mentally
\qquad
(c) $\frac{f(x)=\frac{\ln x}{x}}{f^{\prime}(x)=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}} \quad\left[\begin{array}{l}u=\ln x \\ u^{\prime}=\frac{1}{x} \\ v=x \\ v^{\prime}=1\end{array}\right.$

Question 13.

$$
\left[\begin{array}{ll}
(a) \\
\sin x(2 \sin x-1)=0 & {[2]=\frac{1}{x} x^{2}} \\
x^{2}
\end{array}\right.
$$

$$
x=0, \pi, 2 \pi
$$

$$
\sin x=\frac{1}{2} \quad \frac{1-\ln x}{x^{2}}=0 \quad x \neq 0
$$

$$
1-\ln x=0
$$

$$
\therefore x=9 \pi, 2 \pi, \frac{\pi}{6}, \frac{5 \pi}{6}
$$

$$
1=\ln x
$$

\therefore Stat pt at $\left(e, \frac{1}{0}\right)$

Step 2: Assume true for $n=k$
$3^{2 k-1}+5=8 \mathrm{M}$ where
M is an inlegu

$$
\begin{aligned}
\text { Mis an } 3^{2 k-1}=8 M-5 & \angle a E B
\end{aligned}=(180-156) \div 2
$$

Now prove true for $n=k+$

$$
\begin{aligned}
3^{2(k+1-1}+5 & =3^{2 k+1}+5 \\
& =3^{2 k-1} \cdot 3^{2}+5 \\
3^{2 k-1}-8 M-5 & \text { lang betwein chord and }
\end{aligned}
$$

but $3^{2 k-1}=8 M-5$)

$$
\begin{aligned}
& =9(8 M-5)+5 \\
& =72 m-45+5 \\
& =72 m-40 \\
& =8(9 n-5
\end{aligned}
$$

which is divisible by g 8
Sep 3 . Since trim for $n=1,1$ is the fo $n=1+1=2, n=3+50 \mathrm{~m}$
for all n
-7-
Question 14
a)

$$
\begin{align*}
v & =\pi \int_{1}^{y^{2} d x} \\
& =\pi \int^{9} \sin ^{2} x d x \\
& =9 \pi \int_{0}^{2}\left(\frac{1}{2}-\frac{1}{2} \cos 2 x\right) d x \tag{1}\\
& =\frac{9 \pi}{2}\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{9 \pi}{2}\left[\left(\frac{\pi}{2}-\frac{1}{2} \sin \pi\right)-(0-0)\right] \tag{2}\\
& =\frac{9 \pi}{2}\left[\frac{\pi}{2}-0\right] \\
& =\frac{9 \pi^{2}}{4} u^{3} .
\end{align*}
$$

(c) (i) $y=t x-t^{2}$
let $y=0$

$$
\text { (ii) } \begin{aligned}
m_{0} & =\frac{t^{2}-0}{2 t-0} \\
& =t
\end{aligned}
$$

$$
\therefore m_{A P}=-\frac{2}{c} \quad(a, ~ O T \perp P A)
$$

$$
\begin{equation*}
y=0=-\frac{2}{t}(x-t) \tag{i}
\end{equation*}
$$

b)
[2]

$$
\begin{aligned}
L_{\text {HS }} & =\frac{2 \sin x \cos x}{1+\cos ^{2} x-\sin ^{2} x} \\
& =\frac{2 \sin x \cos x}{\left(1-\sin ^{2} x\right)+\cos ^{2} x} \\
& =\frac{2 \sin x \cos x}{\cos ^{2} x+\cos ^{2} x} \\
& =\frac{2 \sin x \cos ^{2} x}{2 \cos ^{2} x} \cos x \\
& =\frac{\sin x}{\cos x} \\
& =\tan x \\
& =\text { RHS }
\end{aligned}
$$

(iv) Pt of intersection $P(x, y) \quad[2]$ Sub $t=\frac{2 y}{x}$ inta ii)
which is a ciccle catre $(0,1) r=\overline{\text { luint }}$
(d)

$$
=\frac{t^{2 t}}{2}
$$

$$
\begin{aligned}
& y=\frac{-2}{2 y}\left(x-\frac{2 y}{x}\right) \\
&=-\frac{2 x}{x y}\left(\frac{x^{2}-2 y}{x}\right) \\
& y^{2}=-x^{2}+2 y \\
& x^{2}+y^{2}-2 y=0 \\
& x^{2}+y^{2}-2 y+1=1 \\
& x^{2}+(y-1)^{2}=1
\end{aligned}
$$

$m=\tan \beta$
ir $\tan \beta=a$
(iii) Equ oT

$$
\begin{aligned}
& y-t^{2}=t(x-2 t)^{2} \\
& 2 y-3 t^{2}=t_{x}^{2}-2 t^{3} \\
& 2 y=t x \\
& 2 y=t \\
& \frac{2 a}{x}=\frac{a^{-1}}{2 a} \\
&=\frac{1}{2}\left(\frac{a^{2}}{a}-\frac{1}{a}\right) \\
&=\frac{1}{2}\left(a-\frac{1}{a}\right) \\
&
\end{aligned}
$$

$$
\begin{aligned}
& 0 \quad t^{2}=t x \\
& \therefore \quad t=x \\
& \therefore A(t, 0) \\
& \text { (i) } \\
& y=\frac{x^{2}}{4} \\
& \frac{d y}{d x}=\frac{2 x}{4} \\
& =\frac{x}{2}
\end{aligned}
$$

$$
=\frac{a^{2}+1}{2 a} \times \frac{2}{1+a^{2}}
$$

Ate $\frac{d y}{d y}=\frac{2 a}{2}$

$$
=\frac{1}{a}
$$

$$
\text { (H) } \begin{align*}
m_{s p} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \tag{1}\\
& =\frac{a^{2}-1}{2 a-0} \\
& =\frac{a^{2}-1}{2 a} \\
& =\frac{1}{2}\left(a^{2}-\frac{1}{a}\right) \\
& =\frac{1}{2}\left(a-\frac{1}{a}\right)
\end{align*}
$$

$$
\text { (iii) } \begin{align*}
\tan \theta & =\frac{m_{1}-m_{2}}{1+m_{1} m_{2}} \\
& =\frac{a-\frac{1}{2}\left(a-\frac{1}{a}\right)}{1+\frac{a}{2}\left(a-\frac{1}{a}\right)} \\
& =\frac{a-\frac{1}{2} a+\frac{1}{2 a}}{17 a^{2}-\frac{1}{2}} \\
& =\frac{\frac{1}{2} a+\frac{1}{2 a}}{\frac{1}{2}+\frac{a^{2}}{2}}
\end{align*}
$$

\qquad
\qquad
\qquad

[^0]: DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

