

Examination Number:

Set:

# Shore

Year 12 HSC Assessment Task 4 Half-Yearly Exam May 2013

# **Mathematics Extension 1**

#### **General Instructions**

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided separately
- Answer Questions 1–10 on the Multiple Choice Answer Sheet provided
- In Questions 11–14 show relevant mathematical reasoning and/or calculations
- Start each of Questions 11–14 in a new writing booklet
- Write your examination number on the front cover of each booklet

If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

# Total marks – 70

Section I Pages 3-6

## 10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

## Section II Pages 7–12

- 60 marks
- Attempt Questions 11–14
- Allow about 1 hour 45 minutes for this section

# Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the Multiple Choice Answer Sheet for Questions 1-10.

1 The point *P* divides the interval from A(-2, 1) to B(4, -5) internally in the ratio 4:3.

What is the *x* co-ordinate of *P*?

(A)  $\frac{-17}{7}$ (B)  $\frac{10}{7}$ (C) 10 (D)  $\frac{10}{12}$ 

- 2 Simplify  $2\log_x k \log_x 3 + \log_x p$ .
  - (A)  $\log_x \frac{pk^2}{3}$
  - (B)  $\frac{2\log_x pk}{\log_x 3}$
  - (C)  $\frac{2\log_x k}{\log_x 3} \times \log_x p$
  - (D)  $\frac{\log_x pk^2}{\log_x 3}$

#### DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM



- 5 The curves  $y = x^2$  and  $y = x^3$  intersect at the point (1, 1). Which of the following is closest to the size of the acute angle in radians between these curves at (1, 1)?
  - (A) 0

(B) 0.14

- (C) 8.13
- (D)  $\frac{\pi}{4}$

- 6 In a circle a chord of length 10 units is drawn  $\sqrt{3}$  units from its centre *O*. What is the diameter of this circle?
  - (A)  $2\sqrt{103}$
  - (B) 28
  - (C)  $4\sqrt{7}$
  - (D)  $\sqrt{28}$
- 7 Which of the following equations best represents the graph below?



- 8 Which one of these functions has an inverse relation that is not a function?
  - (A)  $y = x^3$
  - (B)  $y = \ln x$
  - (C)  $y = \sqrt{x}$
  - (D) y = |x|

9 Given 
$$\frac{d}{dx}(x \log_e x) = 1 + \log_e x$$
. Find  $\int \frac{1 + \log_e x}{x \log_e x} dx$ .  
(A)  $\frac{1}{x} + c$   
(B)  $\log_e(1 + \log_e x) + c$   
(C)  $\log_e(x \log_e x) + c$ 

- (D)  $(x \log_e x) + c$
- 10 A tower *T*, *h* metres high can be seen from a point *A* due East of the tower and point *B* due south of the tower. If the distance between *A* and *B* is 60 metres and the angles of elevation of *T* from *A* and *B* are  $14^{\circ}$  and  $17^{\circ}$  respectively, find the height of the tower.



#### Section II

60 marks Attempt Questions 11–14 Allow about 1 hour 45 minutes for this section

Start each of Questions 11-14 in a new writing booklet.

#### Question 11 (15 marks) Use a SEPARATE writing booklet

(a) Find the value of k if x + 3 is a factor of  $P(x) = x^3 - 3kx + 1$ . 1

(b) Solve the inequality 
$$\frac{3x}{2-x} \ge -1$$
. 3

(c) Evaluate 
$$\lim_{x \to 0} \frac{\sin 4x}{3x}$$
. 2

(d) Find 
$$\frac{d}{dx}(x\tan^{-1}3x)$$
. 2

(e) Find 
$$\int \frac{1}{\sqrt{25-9x^2}} dx$$
. 2

(f) Find the exact value of 
$$\sin\left(\cos^{-1}\frac{2}{7}\right)$$
. 2

(g) If  $\alpha$ ,  $\beta$ ,  $\gamma$  are the roots of  $2x^3 - 5x^2 + 3x - 1 = 0$ , find the value of  $\alpha^2 \beta \gamma + \alpha \beta^2 \gamma + \alpha \beta \gamma^2$ .

3

#### Question 12 (15 marks) Use a SEPARATE writing booklet

Consider the function  $y = 2\cos^{-1}\frac{x}{3}$ . (a)

| (i)   | State the domain and range.                                                 | 2 |
|-------|-----------------------------------------------------------------------------|---|
| (ii)  | Sketch the curve.                                                           | 1 |
| (iii) | Find the area between the curve and the x and y axes in the first quadrant. | 3 |

(iii) Find the area between the curve and the x and y axes in the first quadrant.

(b) Use the substitution 
$$u = x^2 + 1$$
 to evaluate  $\int_{0}^{1} x^3 (x^2 + 1)^3 dx$ . 3

(c) Consider the function 
$$f(x) = \frac{x}{x+3}$$
.

Show that f'(x) > 0 for all x in the domain. 1 (i) (ii) State the equation of the horizontal asymptote of y = f(x). 1 Without using further calculus, sketch the graph of y = f(x). 1 (iii) (iv) Explain why y = f(x) has an inverse function  $y = f^{-1}(x)$ . 1 Find the inverse function  $y = f^{-1}(x)$ . 1 (v) (vi) State the domain of  $y = f^{-1}(x)$ . 1

#### Question 13 (15 marks) Use a SEPARATE writing booklet

- (a) Solve  $2\sin^2 x = \sin x$  for  $0 \le x \le 2\pi$ .
- (b) In the diagram, AB is a diameter of the circle, centre at O. The radius OD is extended to meet the tangent BC at C. The length of the diameter is 24 cm and  $\angle AOC = 150^{\circ}$ .



(d) Use mathematical induction to prove that for all integers  $n \ge 1$ ,  $3^{2n-1} + 5$  is divisible by 8.

2

3

(e)



The points B, D, E, F lie on the circle with centre O. AC is a tangent to the circle touching at the point B.

| (i) | Show that $\angle BOE = 156^{\circ}$ . | 2 |
|-----|----------------------------------------|---|
|-----|----------------------------------------|---|

(ii) Find the size of the angle *FBA*.

#### Question 14 (15 marks) Use a SEPARATE writing booklet

(a) Find the exact value of the volume of the solid of revolution formed when the region bounded by the curve  $y = 3\sin x$ , the x-axis and the lines x = 0 and  $x = \frac{\pi}{2}$  is rotated about the x-axis.

(b) Prove that 
$$\frac{\sin 2x}{1 + \cos 2x} = \tan x$$
.



The tangent at  $T(2t,t^2)$ ,  $t \neq 0$  on the parabola  $x^2 = 4y$  meets the *x*- axis at *A*. P(x, y) is the foot of the perpendicular from *A* to *OT*, where *O* is the origin. The equation of the tangent at *T* is  $y = tx - t^2$ .

| (i)  | Find the co-ordinates of the point A.                            | 1 |
|------|------------------------------------------------------------------|---|
| (ii) | Show that the equation of <i>AP</i> is $y = -\frac{2}{t}(x-t)$ . | 2 |

(iii) Show that the equation of 
$$OT$$
 is  $t = \frac{2y}{x}$ .

(iv) Hence, or otherwise, prove that the locus of 
$$P(x, y)$$
 lies on a circle with centre  $(0, 1)$  and give its radius.

Question 14 continued on the next page

Question 14 on the next page

2

#### STANDARD INTEGRALS



Let  $P(2a, a^2)$  be a point on the parabola  $y = \frac{x^2}{4}$ , and let *S* be the point (0,1). The tangent to the parabola at *P* makes an angle of  $\beta$  with the *x* axis. The angle between *SP* and the tangent is  $\Theta$ . Assume a > 0, as indicated.

| (i) | Show that $\tan \beta = a$ . | 1 |
|-----|------------------------------|---|
|-----|------------------------------|---|

(ii) Show that the gradient of SP is 
$$\frac{1}{2}\left(a-\frac{1}{a}\right)$$
. 1

(iii) Show that 
$$\tan \theta = \frac{1}{a}$$
. 2

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \ \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x , \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}}\right)$$

Note  $\ln x = \log_e x$ , x > 0

#### (d)

YEAR 12 EXTENSION 1 MATHS HALF-YEARLY 2013  $\int \frac{dx}{x^2 + 9} = \frac{1}{3} \left[ \frac{1}{4an^{-1}x} \right]^3$ ß A = 1 [tan' 3 - tan' (3)] 3 D B = = [+an" 1 - tan" (-1) ß = 3 [ = + = = 1 (8 D 5. y=x2 4=x3 C y= 2x 4'= 3x2 10 At 2 = 1 At x=1 y'=2 1. A(-2,1) B(4,-5) 4-3 M. = 2 Me3 4:3  $tan \theta = \frac{m_1 - m_2}{12}$ 2= 4×4+3×-2 = 2-3 7 = <u>10</u> (B) = 1 0=0.14 (B)  $\frac{2 \log k^2 - \log 3 + \log p}{= \log (pk^2) (A)}$  $r^2 = (53)^2 + 5^2$ = 28 1=128  $3 \int \frac{e^{\chi}}{1+e^{\chi}} dx = \left[ \ln \left( 1+e^{\chi} \right) \right]_{0}^{1+e^{\chi}}$ = 257 1. d = 457 (C) = lin(1+e") - ln(1+e")  $= \ln 3 - \ln 2$ 17. a = 1 P= 2T = In 3 b = 2 = = 2 = In 1.5 (D) y = 1+ cos 22 [D] (e<sup>in2</sup>=2)

-2-Question 1 a)  $P(x) = x^3 - 3kx + 1$ y=x3  $P(-3) = (-3)^3 - 3(-3) + 1$ y=lnx y=5x y=1x1 0 = -27 + 9k + 11.0 26 = k9K= 28g [1] f (x) f(x) ItInx dx alnx 32 > -1 [3] 2-26 = In (xInx) tc  $\left[ c \right]$ 1. x = 2 2 Solve 32 =-1 2-2 to. 3x = -2 + x2x = -22=-1 0 в 60 tan 14 = h -1 = 2<2 BC = h Ac= h tan17 taily O lim Sintx = lim Sintx 200 3x 200 4x In SABC. Pythoras' theorem  $60^2 = h^2 + h^2$ =1x 4 ton214 tari17 [2]  $= h^2$  $60^2 - (1 + 1)$  $(tan^2 14 + tan^2 1)$  $\frac{d}{dx} = \frac{d}{2x \tan^2 3x} = \frac{2x^3}{2x^3} + \tan^3 3x$ 602 = 26-78 = h 1+9x2 = 3x + tan 3x h= 11.6 [A] 1+922 [2]u = x,  $v = tan^{-1}3x$ u' = 1, u' = 31+9x2

~3-Question 12 e)  $| d_1 =$ <2<1 12  $= \frac{1}{3} \frac{(7(25-2^2))}{(7-1)^2} + C$ Domain: 25-912 7 2 2 53' = 1 sin-1 3x + c [2] Raise: 0 5 1 5 # < y < 2TT. 1) sin (con -1 =) = sin x 21  $let x = \cos^2 2$ 145  $\cos x = 2$ 2 -3  $\frac{1}{2} \sin \chi = \sqrt{4} \frac{1}{7}$ [2] 345  $(\mathbb{N}) A =$ 2 de 200; [3] [37 M= 2005-1 24  $\frac{\cos y}{2} = \frac{x}{3}$ = -d x -b a a SCOD J = X For 2x3-5x2+31-1=0 2 A = ( 300 y dy 2-B+8= 5 × p = - 2 0 - 2py (2+p+) 5 3Sin y = 6[SIN I - SIND] = 6 (1-0)

3]  $(\chi^{3}(\chi^{2}+)^{3}d\chi =$ (22(27) 3xdx  $\Gamma u = \chi^2 + I$ (b)\_\_\_\_ dy = 2xTr 0  $= \int (u-1)u^3 du$  $\frac{du = x dx}{2}$  $\chi = 1$   $\mu = 2$  $=\frac{1}{2}(u^{4}-u^{3})du$ x=0 4=1 x2=u-1 <u>u</u>-u <u>-5</u> 4  $=\frac{1}{2}\left[\frac{2^{5}-2^{4}}{5}-\frac{2^{4}}{4}-\frac{1}{5}-\frac{1}{4}\right]$ 40 = 9 (c)  $f(x) = \frac{x}{x+3}$ Z==3 (ii) norizontal asymptote ¥= in As x 300 y 31 1+3  $(x) = (x+3) \times 1$ - x×1  $(x+3)^{2}$  $= \chi + 3 - \chi$ y = 1 (x+3)2 NY 3 (11) A  $(x+3)^{2}$ 4=1 Since (x+3) >0 for all x flz, > o for all x ₹ -31 X=0 4=0

| IV) For every y value in the             | (by(1) 2008 = I [1] ···                                                                                                                              |                   |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| range of the original function           |                                                                                                                                                      |                   |
| there is only one & value.               | (1) Shaded Ama = A - Acastar                                                                                                                         | F                 |
| England Tri7                             | $-1 \times 12 \times 1.5 - 1 \times 12^{2} \times 11$                                                                                                |                   |
| LODE TO DOE MAPPING J L'J                | 2 2 2 2                                                                                                                                              |                   |
|                                          | = 01/2 - 127                                                                                                                                         | 1                 |
| $(\mathbf{v})$ $\mathbf{y} = \mathbf{x}$ | - 2403-1211                                                                                                                                          | <u>e1</u>         |
| 2+3                                      | $= 12(2/3-\pi)v^{-1}(2)$                                                                                                                             |                   |
| $\chi = y$                               |                                                                                                                                                      |                   |
| 4+3                                      | h E                                                                                                                                                  | (d)               |
| 10 ± 3x = 4                              | 12                                                                                                                                                   | ikal              |
| 37 - 1 - 714                             | una TT-h                                                                                                                                             | angoi             |
| <u> </u>                                 | 6 2                                                                                                                                                  |                   |
| 3x = y(1-x)                              |                                                                                                                                                      |                   |
| <u>3×_=y</u>                             | h=12x1x12                                                                                                                                            |                   |
| <u> </u>                                 | = 4/3                                                                                                                                                | Step              |
| for and and                              | •                                                                                                                                                    | 1                 |
| [-X. [1]                                 | [2]                                                                                                                                                  |                   |
|                                          | (a) finition further                                                                                                                                 |                   |
|                                          | X                                                                                                                                                    |                   |
| VI) Domain: all real 2 except            | lali n                                                                                                                                               | ·                 |
|                                          | $f(x) = \sqrt{u - u} \qquad $ | Nou               |
|                                          | V*                                                                                                                                                   |                   |
| Question B:                              | $= 2 \times 1 - \ln x - 1$                                                                                                                           | 3                 |
| (0) [2]                                  | <u><u> </u></u>                                                                                                                                      |                   |
| 28112 x - SINX =0                        | = t-inx                                                                                                                                              | ( but             |
| CIOX (2510X -12                          | 0 X2                                                                                                                                                 |                   |
|                                          | State at the first                                                                                                                                   |                   |
| SINKED OF ZUTTLET                        | STUT. PTS WHAT I IZ = 0                                                                                                                              |                   |
| SINX=1                                   | 1-11 x = 0 x = 0                                                                                                                                     |                   |
| $\chi = 0, T, 2T$ $\chi = T, ST$         |                                                                                                                                                      |                   |
|                                          |                                                                                                                                                      |                   |
|                                          | 1=[nx=0                                                                                                                                              |                   |
| 1 X = Q TT 2TT . TT STT                  | 1=1,2=0                                                                                                                                              |                   |
| · x= Q TT, 2TT, TT, STT                  | $\frac{1 = \ln x}{1 = \ln x}$                                                                                                                        | Clea              |
| - x= 9, TT, 2 IT, TT, SIT                | $\frac{1 = \ln x}{1 = \ln x}$                                                                                                                        | Shep              |
| - x= q T, 2IT, T, SIT                    | $l = ln x = 0$ $l = ln x$ $l' = x$ $l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l$                                                                        | Slep              |
| · x= 9, TT, 2IT, TT, SIT                 | l = ln x = 0 $l = ln x$ $e' = x$ $luthen x = f(e) = 1$                                                                                               | Slep<br>In<br>for |

|                                                              | -                                                                                                      | 6-                                                                                                     |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| $-A_{\text{sector}}$ $-\frac{1}{2} \times 12^{2} \times \Pi$ | 2 2 2 3<br>f'(x) + 0 -<br>+/-                                                                          | (e) 78° A<br>0 A<br>1156° A<br>12° 0 12                                                                |
| $-\pi$ ) $v^2$ [2]                                           | (d) [3]                                                                                                | II) LEFB = 78° (opposite 4s<br>in cycle quad supplementary                                             |
|                                                              | stepi Prove true for n=1<br>3 <sup>2-1</sup> + 5 = 8<br>which is divisible by 8.                       | <u>LBOE = 156° (angle at</u><br><u>centre 15 truce 2 at aircumference</u><br>standing on the same arc) |
| [3]<br>[u=lnx                                                | Step 2: Assume true for n=k<br>32k-1 + 5 = 8 M where<br>Mis an integer<br>:- 3 <sup>2k-1</sup> = 8M-5. | 111 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                |
| $u' = 1$ $v = \chi$ $v' = 1$                                 | Now prove twe for n= k+1<br>32(k+1)-1+5= 32k+1+5                                                       | (angle between chord and                                                                               |
| )=0                                                          | $\frac{=3^{2k-3}+5}{=9(8M-5)+5}$                                                                       | targent is angle in alternate<br>segment)                                                              |
| =0                                                           | = 72M - 40 $= 8(9ni - 5)$ which is divisible by 8                                                      | 4                                                                                                      |
|                                                              | Step 3. Since true for A=1, It is<br>true for n=1+1 = 2, n=3+ 80 on<br>for all n>1                     | · · · · · · · · · · · · · · · · · · ·                                                                  |

-7-Question 14  $(c\chi i)y = tx - t^{\nu}$ a [3] V=TI (y'dx  $t^2 = tx$  $= \pi \int \frac{9 \sin^2 x}{2} dx$ =  $2\pi \int \left(\frac{1}{2} - \frac{1}{2} \cos 2x\right) dx$ let y=0 t=n  $\begin{bmatrix} 1 \end{bmatrix}$  $= \frac{9\pi}{2} \left[ 2 - \frac{1}{2} \sin 2x \right]^{\frac{11}{2}}$  $\begin{array}{ccc} (i1) & m &= t^{2} - 0 \\ \hline & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ [2]  $=9\pi \left[ (\pi - \frac{1}{2} \sin \pi) - (0 - 0) \right]$ = 9# [#-0] J. MAP = -2 (as OT IPA)  $= 9\pi^2 \mu^3$ ·= -2 (x-t) (1) [2] 5) LHS =25IN & OSX 1 + Cos2x-SINTK YIII , Egn OT = 2SIN X COSX 1 (1-sintx) + cos x  $y - t^2 = \pm (x - 2t)$ 24-262= Ex-253 = <u>2510 K Cos x</u> cos x + cos<sup>2</sup> K 24 = tx = 25/12 2005 2 2005 72 601 7 24 = E x = SINK COSX (iv) Pt of intersection P(x)) [2] sub t= 24 mitali, = tan 2 = RHS  $\frac{y = -2}{12} (x - 2y) = -1x^{2} (x^{2} - 2y)$   $\frac{y = -1x^{2} (x^{2} - 2y)}{12} = -1x^{2} (x^{2} - 2y)$ y2 = -22+24  $x^{2} + y^{2} - 2y = 0$ 22+ 42- 24+1=1 22 + (4-1)2 =1 which is a circle carbe (2,1)r=1 with

-8a + 1[I] (d) 20  $\begin{array}{c} (i) \quad y = \chi^2 \\ dy = 2\pi \\ \overline{dn} \quad \overline{A} \end{array}$ +27  $= a^{2} + 1$ 2 201 1+22  $=\frac{\chi}{2}$ 2 a  $\frac{\text{At } P \ dy}{\frac{1}{2}} = \frac{2\alpha}{2}$ (6) m = fan B in fang = a (rij = (ii) = (ii)  $\frac{11}{59} = \frac{y_2 - y_1}{x_2 - x_1}$ [1] = a2-1 2a-0 = a=-1 2a = 1 ( a - 1 = 1 (a-1)  $\frac{(11)}{1+m_1}\frac{1+m_2}{1+m_2}$ [2]  $=a-\frac{1}{2}(a-\frac{1}{a})$ 1 + a(a-1) = a - 1a + 1 1+ 2 - 1  $=\frac{1}{2}a + \frac{1}{2}a$ 1+9-