Shore School
Examination Number:
Set:

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the Multiple Choice Answer Sheet for Questions 1-10.

1 Which expression is a correct factorisation of $27 x^{3}+8$?
(A) $(3 x+2)\left(9 x^{2}-12 x+4\right)$
(B) $(3 x+2)\left(9 x^{2}-6 x+4\right)$
(C) $(3 x+2)\left(9 x^{2}+12 x+4\right)$
(D) $(3 x+2)\left(9 x^{2}+6 x+4\right)$

2 A polynomial is sketched on the axes below.

Which of the following could be the equation of the polynomial?
(A) $\quad P(x)=-x^{3}(x+2)(x-3)^{2}$
(B) $\quad P(x)=x(x+2)(x-3)$
(C) $\quad P(x)=x^{3}(x+2)(x-3)^{2}$
(D) $\quad P(x)=x^{3}(x-2)(x+3)^{2}$

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

Total marks - 70

Section I Pages 2-5
10 marks

- Attempt questions $1-10$
- Allow about 15 minutes for this section

Section II Pages 6-10

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Note: Any time you have remaining should be spent revising your answers.

General Instructions

- Reading time -5 minutes
- Working time -2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-14, show relevant mathematical reasoning and/or calculations
- Write your examination number on the front cover of each booklet
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

2014

Year 12 Mid-Year

Examination

Mathematics Extension 1

 IL3 What is $\lim _{x \rightarrow 0} \frac{\sin \frac{x}{4}}{2 x}$?
(A) 0
(B) $\frac{1}{8}$
(C) $\frac{1}{2}$
(D) 8

4 What is the derivative of $\sin ^{-1}(5 x)$?
(A) $\frac{-5}{\sqrt{1-25 x^{2}}}$
(B) $\frac{-1}{\sqrt{1-25 x^{2}}}$
(C) $\frac{1}{\sqrt{1-25 x^{2}}}$
(D) $\frac{5}{\sqrt{1-25 x^{2}}}$

5 Given that $\sin \theta=\frac{2 t}{1+t^{2}}$ and $\cos \theta=\frac{1-t^{2}}{1+t^{2}}$ when $t=\tan \frac{\theta}{2}$, which of the following is a simplified expression for $\sin \theta \sec \theta$?
(A) $\frac{2}{1-t}$
(B) $\frac{1-t}{2}$
(C) $\frac{1-t^{2}}{2 t}$
(D) $\frac{2 t}{1-t^{2}}$

6 Consider the function $f(x)=\frac{3 x^{4}+5 x^{2}}{x^{4}+5}$.
Which one of the following statements is correct?
(A) $f(x)$ is odd and $\lim _{x \rightarrow \infty} f(x)=3$
(B) $\quad f(x)$ is odd and $\lim _{x \rightarrow \infty} f(x)=5$
(C) $f(x)$ is even and $\lim _{x \rightarrow \infty} f(x)=3$
(D) $f(x)$ is even and $\lim _{x \rightarrow \infty} f(x)=5$

7 The cubic polynomial $P(x)$ has roots α, β, and γ such that $\alpha+\beta+\gamma=5$ and $\alpha \beta+\alpha \gamma+\beta \gamma=4$
Which of the following could be the equation of $P(x)$?
(A) $P(x)=x^{3}+5 x^{2}-4 x-20$
(B) $\quad P(x)=x^{4}-5 x^{3}+4 x^{2}-x+11$
(C) $P(x)=2 x^{3}-5 x^{2}+4 x-20$
(D) $\quad P(x)=2 x^{3}-10 x^{2}+8 x+17$

8 Which of the following gives all of the solutions to $\left(1-\frac{1}{x}\right)^{2}+3\left(1-\frac{1}{x}\right)-4=0$?
(A) $x=-4, x=1$
(B) $x=4, x=-1$
(C) $x=\frac{1}{5}$ only
(D) $x=\frac{1}{5}, x=0$

9 What is the derivative of $x \sec ^{2} x$?
(A) $\frac{\cos ^{2} x+x \sin 2 x}{\cos ^{4} x}$
(B) $\frac{\cos ^{2} x-2 x \cos x}{\cos ^{4} x}$
(C) $\frac{-2 x}{\cos ^{3} x}$
(D) $x \tan x+\sec ^{2} x$

10 It is known that $\tan A=4$ and $\tan (A+B)=\frac{1}{2}$.
What is the value of $\tan B$?
(A) $-3 \frac{1}{2}$
(B) $-\frac{7}{6}$
(C) $\quad-1.292$
(D) -0.862

Section II

60 marks
Attempt Questions 11-14
Allow about 1 hour $\mathbf{4 5}$ minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) Solve the inequality $\frac{x+3}{x-2}>-1$.

3
(b) Consider the function $f(x)=e^{5 x+4}$.

Find $f^{-1}(x)$, the inverse function of $f(x)$.
(c) Find $\int_{0}^{1} \frac{d x}{\sqrt{4-x^{2}}}$, giving your answer in terms of π.
(d) Using the substitution $u=1+2 x$, find $\int \frac{6 d x}{\sqrt{(1+2 x)^{3}}}$.
(e) The acute angle between the lines $3 x-y+7=0$ and $m x-y+1=0$ is 45°. Find the possible value(s) of m.
(f) When the polynomial $P(x)=x^{3}+p x^{2}+q x-4$ is divided by $(x-2)$ the remainder is 12 . Also, $(x+1)$ is a factor of $P(x)$.
Find the values of p and q.

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Express $3 \cos x+\sqrt{3} \sin x$ in the form $R \cos (x-\alpha)$, where $0<\alpha<\frac{\pi}{2}$ and $R>0$.
(ii) Hence, or otherwise, find the general solution of the equation $3 \cos x+\sqrt{3} \sin x=\sqrt{6}$.
(b) $A B$ and $A C$ are tangents to a circle. D is a point on the circle such that $2 \times \angle D B C=\angle B A C$ and $\angle B D C=\angle B A C$.

NOT TO SCALE

Copy or trace the diagram into your writing booklet
(i) Show that $D B$ is a diameter.
(ii) Show that $B C=A B$.

Question 12 (continued)

(c) Consider the function $f(x)=4 x-x^{3}$.
(i) Sketch $y=f(x)$, showing the x and y intercepts and the coordinates of the stationary points
(ii) Find the largest domain containing the origin for which $f(x)$ has an inverse function, $f^{-1}(x)$
(iii) State the domain of $f^{-1}(x)$.
(iv) Find the gradient of the inverse function at the origin.

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Draw a neat graph of $y=3 \sin 2 x$, for $-\pi \leq x \leq \pi$, indicating
ii) Use your graph to determine the number of solutions to the equation $3 \sin 2 x=x$.
(iii) If $m>0$, for what values of m will the equation $3 \sin 2 x=m x$ have only one solution?
(b) Prove by mathematical induction that for all integers $n \geq 2$

$$
1 \times 2+2 \times 3+3 \times 4+\ldots \ldots \ldots+(n-1) \times n=\frac{1}{3}(n-1) n(n+1) .
$$

(c) Consider the function $f(x)=x \log _{e} x-1$ with $x>0$.
(i) Find the coordinates of the stationary point on $y=f(x)$ and determine its nature.
(ii) Let $x=2$ be a first approximation to the root of the equation $x \log _{e} x-1=0$.
Use one application of Newton's method to approximate the x-intercept. Leave your answer correct to 2 decimal places.
(iii) Explain why the curve $y=f(x)$ is concave up for all $x>0$.
(iv) Sketch the curve, showing all its main features.

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) The point $P\left(2 a t, a t^{2}\right)$ lies on the parabola $x^{2}=4 a y$.

(i) Show that the tangent to the parabola at P meets the x axis at $A(a t, 0)$.
(ii) Show that the normal to the parabola at P meets the y axis at $B\left(0,2 a+a t^{2}\right)$.
(iii) The point R divides $B A$ externally in the ratio $2: 1$.
(α) Show that the coordinates of R are $\left(2 a t,-2 a-a t^{2}\right)$.
(β) Show that R lies on a parabola with the same directrix
(b) Consider the function $y=\frac{1}{2} \cos ^{-1}(x-1)$.
(i) What is the domain and range of the function?
(ii) Sketch the graph of the function showing the coordinates of the endpoints.
(iii) The region in the first quadrant bounded by the curve $y=\frac{1}{2} \cos ^{-1}(x-1)$ and
the coordinate axes is rotated about the y-axis. Find the volume of the solid of revolution. Express your answer in simplest exact form.

Year 12 Mid-Year Extension 1 Maths Solutions

Section I

1. B
2. A
3. B

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin \frac{x}{4}}{2 x} & =\lim _{x \rightarrow 0} \cdot \frac{\sin \frac{x}{4}}{\frac{x}{4}} \cdot \frac{1}{8} \\
& =1 \times \frac{1}{8} \\
& =\frac{1}{8}
\end{aligned}
$$

4. D. $\frac{d\left(\sin ^{-1}(5 x)\right)}{d x}=\frac{1}{\sqrt{1-(5 x)^{2}}} \cdot 5$

$$
=\frac{5}{\sqrt{1-25 x^{2}}}
$$

5. D

$$
\begin{aligned}
\sin \theta \sec \theta & =\sin \theta \cdot \frac{1}{\cos \theta} \\
& =\frac{\sin \theta}{\cos \theta} \\
& =\frac{\frac{2 t}{1+t^{2}}}{\frac{1-t^{2}}{1+t^{2}}} \\
& =\frac{2 t}{1-t^{2}}
\end{aligned}
$$

6. C. $\lim _{x \rightarrow \infty} \frac{3 x^{4}+5 x^{2}}{x^{4}+5}=\lim _{x \rightarrow \infty} \frac{3+\frac{5}{x^{2}}}{1+\frac{5}{x^{4}}}$

$$
=3
$$

Section I (cont.)
7. D.

$$
\begin{aligned}
\alpha \beta+\alpha \gamma+\beta \gamma & =\frac{c}{a} \\
& =4 \\
\alpha+\beta+\gamma & =\frac{-b}{a} \\
& =5 .
\end{aligned}
$$

8. C

Let $u=1-\frac{1}{x}$

$$
\begin{aligned}
& u^{2}+3 u-4=0 \\
& (u+4)(u-1)=0 \\
& u=1 \text { or } u=-4 . \\
& \therefore 1-\frac{1}{x}=1 \quad \text { or } \quad 1-\frac{1}{x}=-4 \\
& -\frac{1}{x}=0 \quad
\end{aligned} \quad-\frac{1}{x}=-5 .
$$

no solution

$$
x=\frac{1}{5} .
$$

$$
\text { q.A } \begin{aligned}
\therefore \frac{d\left(x \cdot \sec ^{2} x\right)}{d x} & =\frac{1}{5} \text { only. } \\
& =\frac{d}{d x}\left(\frac{x}{\cos ^{2} x}\right) \\
& =\frac{1 \cdot \cos ^{2} x-2 \cdot \cos x x-\sin x \cdot x}{\left(\cos ^{2} x\right)^{2}} \\
& =\frac{\cos ^{2} x+x \cdot 2 \sin x \cos x}{\cos ^{4} x} \\
& =\frac{\cos ^{2} x+x \cdot \sin 2 x}{\cos ^{4} x}
\end{aligned}
$$

Section I (cont.)
10. B.

$$
\begin{aligned}
\tan (A+B) & =\frac{\tan A+\tan B}{1-\tan A \tan B} \\
\frac{1}{2} & =\frac{4+\tan B}{1-4 \tan B} \\
1-4 \tan B & =8+2 \tan B \\
-7 & =6 \tan B \\
\tan B & =\frac{-7}{6} .
\end{aligned}
$$

Section 2
QI
a) $\frac{x+3}{x-2}>-1 \quad, \quad x \neq 2$.

Let $x+3=-(x-2)$

$$
\begin{aligned}
2 x & =2 \frac{1}{2}-1 \\
x & =-\frac{1}{2}
\end{aligned}
$$

Test $x=0$

$$
\begin{array}{r}
\frac{0+3}{0-2}=-\frac{3}{2} \\
\ngtr-1
\end{array}
$$

$$
x>2 \text { or } x<-\frac{1}{2}
$$

Ila) $\frac{x+3}{x-2}>-1 \quad, \quad x \neq 2$.

$$
\begin{aligned}
& (x+3)(x-2)>-(x-2)^{2} \\
& x^{2}+x-6>-x^{2}+4 x-4 \\
& 2 x^{2}-3 x-2>0
\end{aligned}
$$

Let $2 x^{2}-3 x-2=0$

$$
(2 x+1)(x-2)=0
$$

$$
x=2 \text { or } x=-\frac{1}{2}
$$

Test $x=0$. (as above).

$$
\therefore \quad x>2 \text { or } x<-\frac{1}{2}
$$

b) $f(x)=e^{5 x+4}$

Let $y=e^{5 x+4}$

$$
\begin{aligned}
\ln y & =5 x+4 \\
x & =\frac{\ln y-4}{5} \\
\therefore f^{-1}(x) & =\frac{\ln x-4}{5}
\end{aligned}
$$

c) $\int_{0}^{1} \frac{d x}{\sqrt{4-x^{2}}}=\int_{0}^{1} \frac{d x}{\sqrt{2^{2}-x^{2}}}$

$$
\begin{aligned}
& =\left[\sin ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{1} \\
& =\sin ^{-1}\left(\frac{1}{2}\right)-\sin ^{-1}(0) \\
& =\frac{\pi}{6}
\end{aligned}
$$

OR

11 d)

$$
\begin{aligned}
& \int \frac{6 d x}{\sqrt{(1+2 x)^{3}}} \\
= & \int \frac{3 d u}{\sqrt{u^{3}}} \\
= & 3 \int u^{-\frac{3}{2}} d u \\
= & 3 \frac{u^{-\frac{1}{2}}}{-\frac{1}{2}}+c \\
= & \frac{-6}{\sqrt{u}}+c \\
= & \frac{-6}{\sqrt{1+2 x}}+c .
\end{aligned}
$$

e) $\quad \tan \alpha=\left|\frac{m_{1}-m_{2}}{1+m_{2} m_{2}}\right|$

$$
\begin{array}{rlr}
1 & =\left|\frac{3-m}{1+3 m}\right| \\
1+3 m & =3-m & \text { or } \\
4 m=2 & \text { or } \\
m=\frac{1}{2} \quad \text { or }
\end{array}
$$

Let $u=1+2 x$

$$
\begin{aligned}
\frac{d u}{d x} & =2 \\
d u & =2 d x \\
3 d u & =6 d x
\end{aligned}
$$

$$
m_{1}=3
$$

$$
m_{z}=m
$$

All f)

$$
\begin{align*}
& p(2)=12 \\
& 2^{3}+p \cdot 2^{2}+q \cdot 2-4=12 \\
& 8+4 p+2 q-4=12 \\
& 4 p+2 q=8 \\
& p(-1)=0 \\
& (-1)^{3}+p(-1)^{2}+q(-1)-4=0 \tag{3}\\
& \quad p-q=5 . \tag{2}
\end{align*}
$$

(3) \rightarrow (1):

$$
\begin{aligned}
4(5+q)+2 q & =8 \\
20+4 q+2 q & =8 \\
6 q & =-12 \\
\therefore q & =-2 \\
\therefore p & =3, q=-2
\end{aligned}
$$

Q12
a) i) $R \cos (x-a)=R \cos x \cos \alpha+R \sin \alpha \sin x$

So $3 \cos x+\sqrt{3} \sin x=R \cos x \cos \alpha+R \sin x \sin \alpha$
Equating coefficients

$$
R \cos \alpha=3, \quad R_{\sin \alpha}=\sqrt{3}
$$

So $\tan \alpha=\frac{1}{\sqrt{3}}$

$$
\begin{aligned}
R^{2} & =3^{2}+(\sqrt{3})^{2} \\
R & =\sqrt{12},
\end{aligned} \quad R>0 .
$$

$$
\therefore 3 \cos x+\sqrt{3} \sin x=\sqrt{12} \cos \left(x-\frac{\pi}{6}\right)
$$

Q(2a) ii)
$3 \cos x+\sqrt{3} \sin x=\sqrt{6}$
So

$$
\sqrt{12} \cos \left(x-\frac{\pi}{6}\right)=\sqrt{6}
$$

$$
\cos \left(x-\frac{\pi}{6}\right)=\sqrt{\frac{1}{2}}
$$

$$
\cos \left(x-\frac{\pi}{6}\right)=\frac{1}{\sqrt{2}}
$$

$$
x-\frac{\pi}{6}= \pm \frac{\pi}{4}+2 n \pi \text {, where }
$$

$$
n \text { is an integer }
$$

b) $\angle A B C=\angle B D C$ (alternate segment)
$\angle A C B=\angle B D C$ (alternate theogment)
$\angle B A C=\angle B D C$ (given)
$\therefore \triangle A B C$ is equilateral and

$$
\begin{aligned}
\angle A B C & =\angle A C B=\angle B A C=\angle B D C=60^{\circ} . \\
\angle D B C & =\angle B A C \div 2 \quad \text { (given) } \\
& =30^{\circ}
\end{aligned}
$$

Now

$$
\begin{aligned}
\angle A B D & =\angle A B C+\angle D B C \\
& =60^{\circ}+30^{\circ} \\
& =90^{\circ} .
\end{aligned}
$$

$\therefore D B$ is a diameter
(tangent and diameter through point of contact meet at right angles).

$$
\begin{aligned}
& \therefore x=\frac{\pi}{6}+\frac{\pi}{4}+2 n \pi \text { or } x=\frac{\pi}{6}-\frac{\pi}{4}+2 n \pi \\
& =\frac{5 \pi}{12}+2 n \pi \text { or } x=-\frac{\pi}{12}+2 n \pi \text {, } \\
& n \in \mathbb{Z}
\end{aligned}
$$

Q(2b) ii)
From (i), $\triangle B A C$ is equilateral.

$$
\therefore B C=A B .
$$

c) i

$$
\text { (i) } \begin{aligned}
f(x) & =4 x-x^{3} \\
& =x\left(4-x^{2}\right) \\
& =x(2-x)(2+x)
\end{aligned}
$$

y-intercept when $x=0$

$$
\begin{aligned}
y & =0-0 \\
& =0
\end{aligned}
$$

x-intarepet when $y=0$

$$
\begin{aligned}
& 0=x(2-x)(2+x) \\
& x=0, \pm 2 .
\end{aligned}
$$

$$
f^{\prime}(x)=4-3 x^{2}
$$

Stat. pts when $f^{\prime}(x)=0$

$$
\begin{aligned}
& 0=4-3 x^{2} \\
& x^{2}=\frac{4}{3} \\
& x= \pm \frac{2}{\sqrt{3}}
\end{aligned}
$$

When

$$
\begin{aligned}
x=\frac{ \pm 2}{\sqrt{3}}, f(x) & =4\left(\pm \frac{2}{\sqrt{3}}\right)-\left(\pm \frac{2}{\sqrt{3}}\right)^{3} \\
& =\frac{8}{\sqrt{3}}-\frac{8}{3 \sqrt{3}} \text { or } \frac{-8}{\sqrt{3}}+\frac{8}{3 \sqrt{3}} \\
& =\frac{16}{3 \sqrt{3}} \text { or } \frac{-16}{3 \sqrt{3}}
\end{aligned}
$$

Q(2c) ii)
$f(x)$ is monotonic increasing for

$$
\frac{-2}{\sqrt{3}} \leq x \leq \frac{2}{\sqrt{3}} .
$$

\therefore this is the largest domain containing the or gin for which $f^{-1}(x)$ exists.
iii) Domain of $P^{-1}(x): \frac{-16}{3 \sqrt{3}} \leqslant x \leqslant \frac{16}{3 \sqrt{3}}$
iv) $f^{\prime}(x)=4-3 x^{2}$
$f^{\prime}(0)=4$
\therefore gradient of inverse function at origin is $\frac{1}{4}$.

Q(3a) i) Period $=\frac{2 \pi}{2}$

$$
=\pi
$$

Amplitude $=3$.

ii) see above
should of through origin
$\therefore 3$ solutions.

Q(3) a)
iii) $3 \sin 2 x=m x$ will have ont one solution when

$$
\begin{aligned}
\frac{d(m x)}{d x} & \geqslant\left.\frac{d(3 \sin 2 x)}{d x}\right|_{x=0} \\
m & \geqslant\left. 6 \cos 2 x\right|_{x=0} \\
m & \geqslant 6
\end{aligned}
$$

b) Prove true when $n=2$.

$$
\begin{aligned}
\text { LHS } & =1 \times 2 \\
& =2
\end{aligned}
$$

$$
\text { HS }=\text { RHS }
$$

\therefore true for $n=2$.
Assume true for $n=k$
1.e.

$$
1 \times 2+2 \times 3+3 \times 4 * \ldots+(k-1) k=\frac{1}{3}(k-1) k(k+1) \text {. }
$$

Prove true for $n=k+1$.
1.e- required to prove that

$$
\begin{aligned}
& 1 \times 2+2 \times 3+3 \times 4+\ldots+(k-1) k+k(k+1)=\frac{1}{3} k(k+1)(k+2) \text {. } \\
& \text { LH }=\frac{1}{3}(k-1) k(k+1)+k(k+1) \\
& =\frac{1}{3} k(k+1)[(k-1)+3] \\
& =\frac{1}{3} k(k+1)(k+2) \\
& =\text { RHo } \text {. }
\end{aligned}
$$

Q,13) b)
\therefore by the principle of mathematical induction, statement is true for $n \geqslant 2, n \in \mathbb{Z}$.
c) - is

$$
\begin{aligned}
f(x) & =x \ln x-1, \quad x>0 \\
f(x) & =1 \cdot \ln x+\frac{1}{x} \cdot x-0 \\
& =1+\ln x
\end{aligned}
$$

stat. pts when $f^{\prime}(x)=0$

$$
\begin{aligned}
0 & =1+\ln x \\
\ln x & =-1 \\
x & =e^{-1} \\
& =\frac{1}{e} .
\end{aligned}
$$

when $x=\frac{1}{e}, f(x)=\frac{1}{e},-1-1$

$$
=\frac{-1}{e}-1
$$

$$
f^{\prime \prime}(x)=\frac{1}{x}
$$

>0 when $x>0$.
\therefore stationary point is a local min (curse is concause up).
\therefore the stationary point of $\left(\frac{1}{e},-\frac{1}{e}-1\right)$ is a minimum turning point.

Q(3) c) ii)

$$
\begin{aligned}
f(x) & =x \ln x-1 \\
f^{\prime}(x) & =\ln x+1 \\
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& =2-\frac{2 . \ln 2-1}{\ln 2+1} \\
& =1.771848327 \ldots \\
& =1.77
\end{aligned}
$$

\therefore the x-intercept is

$$
\text { approximately, } x \doteq 1.77
$$

iii) $f^{\prime \prime}(x)=\frac{1}{x}$ and $x>0$

$$
\therefore f^{\prime \prime}(x)>0 \text { for } x>0
$$

$\therefore y \not f(x)$ is concave up for $x>0$.
iv)

$$
\lim _{x \rightarrow 0} x \ln x-1=-1
$$

$214 a)$

1) gradient of tangent at $P=t$ tangent at P :

$$
\begin{aligned}
y-a t^{2} & =t(x-2 a t) \\
y & =t x-a t^{2} \\
0 & =t x-a t^{2} \\
a t^{2} & =t x \\
x & =a t
\end{aligned}
$$

When $y=0$:

$$
\therefore A=(a t, 0)
$$

ii) gradient of normal at $P=\frac{-1}{4}$
normal at $P: \quad y-a t^{2}=\frac{-1}{t}(x-2 a t)$

$$
y t-a t^{3}=-x+2 a t
$$

When $x=0$:

$$
\begin{aligned}
& y t-a t^{3}=2 a t \\
& y^{t}=2 a t+a t^{3} \\
& y=2 a+a t^{2} \\
& \therefore B-\left(0,2 a+a t^{2}\right)
\end{aligned}
$$

iii) $\propto \quad A(a t, 0) \quad B\left(0,2 a+a t^{2}\right)$

$$
-1: 2
$$

$$
\begin{aligned}
\therefore x & =2 a t, y=-2 a-a t^{2} \\
\therefore & R=\left(2 a t,-2 a-a t^{2}\right)
\end{aligned}
$$

a) cont.

By similar triangles,

$$
R=\left(2 a t,-2 a-a t^{2}\right)
$$

β)

$$
\begin{aligned}
x=2 a t, \quad y & =-2 a-a t^{2} \\
t=\frac{x}{2 a}, y & =-2 a-a\left(\frac{x}{2 a}\right)^{2} \\
& =-2 a-\frac{a x^{2}}{4 a^{2}} \\
& =-2 a-\frac{x^{2}}{4 a} \\
\frac{x^{2}}{4 a} & =-y-2 a \\
& =-(y+2 a) \\
x^{2} & =-4 a(y+2 a)
\end{aligned}
$$

(4 a) iii) β) cont.
So rete this is a concave down parabola with focal length $=a$,
vertex $=(0,-2 a)$ vertex $=(0,-2 a)$

\therefore directrix is $y=-a$.
\therefore focal length $=a$ and directrix $=$ is $y=-a$, same as original parabola.
14) b) "i"

i) Domain: $0 \leq x \leq 2$

Range: $0 \leq y \leq \frac{\pi}{2}$

Q(14) 6) iii)

$V=\pi \int_{0}^{\frac{\pi}{2}} x^{2} d y$.
$=\pi \int_{0}^{\pi / 2}(\cos 2 y+1)^{2} d y$.
$=\pi \int_{0}^{\pi / 2} \cos ^{2} 2 y+2 \cos 2 y+1 d y$.
$=\pi \int_{0}^{\pi / 2} \frac{\cos 4 y+1}{2}+2 \cos 2 y+1 d y$.
$=\pi\left[\frac{\sin 4 y}{8}+\frac{3 y}{2}+\sin 2 y\right]_{0}^{\pi / 2}$
$=\pi\left[\left(\frac{\sin 2 \pi^{\circ}}{8}+\frac{3 \pi}{4}+37^{\circ} \pi\right)-(0+0+0)\right]$
$=\pi \cdot \frac{3 \pi}{4}$
$=\frac{3 \pi^{2}}{4}$ unis 3

