Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the Multiple Choice Answer Sheet for Questions 1-10.

Shore

Year 12

HSC Assessment Task 3

Half-Yearly Exam

April 272015

Mathematics Extension 1

General Instructions

- Reading time -5 minutes
- Working time -2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided separately
- Answer Questions 1-10 on the Multiple Choice Answer Sheet provided
- In Questions 11-14 show relevant mathematical reasoning and/or calculations
- Start each of Questions 11-14 in a new writing booklet
- Write your examination number on the front cover of each booklet
If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

Total marks - 70

Section I Pages 2-6
10 marks

- Attempt Questions $1-10$
- Allow about 15 minutes for this section

Section II Pages 7-12
60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

1 The polynomial $2 x^{3}+x-4=0$ has roots α, β and γ. What is the value of $\alpha+\beta+\gamma$?
(A) -2
(B) $-\frac{1}{2}$
(C) 0
(D) 2

2 The point R divides the interval $P(3,-6)$ and $Q(6,-9)$ externally in the ratio 2:1. What are the coordinates of R ?
(A) $(9,-12)$
(B) $(5,-8)$
(C) $(4,-7)$
(D) $(0,-3)$

3 If $\int_{0}^{k}(3 x-6) d x=0$ and $k \neq 0$, what is the value of k ?
(A) 4
(B) 2
(C) $\quad-2$
(D) -4

(A) $y=\frac{1}{2} \sin ^{-1} 3 x$
(B) $y=\frac{1}{2} \sin ^{-1} \frac{x}{3}$
(C) $y=2 \sin ^{-1} \frac{x}{3}$
(D) $y=2 \sin ^{-1} 3 x$

5 Which of the following is the Cartesian Equation of the variable point $P(2 \cos t, 2 \sin t)$, where t is the parameter?
(A) $y=\tan x$
(B) $x^{2}+y^{2}=1$
(C) $x^{2}+y^{2}=4$
(D) $x^{2}=4 a y$
$6 \quad A B C$ is a triangle inscribed in a circle. The tangent to the circle at A meets $B C$ produced at D where $B C=10 \mathrm{~cm}$ and $A D=12 \mathrm{~cm}$. What is the length of $B D$?

NOT TO SCALE
(A) 8
(B) 18
(C) 26
(D) 28

7 Let $t=\tan \frac{\theta}{2}$ where $0<\theta<\pi$. Which of the following gives the correct expression for $\sin \theta-\cos \theta ?$
(A) $\frac{2 t-1-t^{2}}{1+t^{2}}$
(B) $\frac{t^{2}+2 t+1}{1+t^{2}}$
(C) $\frac{1-t^{2}-2 t}{1+t^{2}}$
(D) $\frac{t^{2}+2 t-1}{1+t^{2}}$

8 What is the value of $\cos 2 \theta$, given $\cos \theta=\frac{3}{5}$ and $\sin \theta \geq 0$?
(A) $\frac{6}{5}$
(B) $\frac{24}{25}$
(C) $\frac{7}{25}$
(D) $-\frac{7}{25}$

9 Which of the following is an expression for $\frac{d}{d x}\left(\tan ^{-1} \frac{x}{2}\right)$?
(A) $\frac{2}{2+x^{2}}$
(B) $\frac{2}{4+x^{2}}$
(C) $\frac{4}{2+x^{2}}$
(D) $\frac{4}{4+x^{2}}$

10 Which of the following is the solution to the expression $\int \frac{d x}{\sqrt{9-4 x^{2}}}$?
(A) $\sin ^{-1} \frac{2 x}{3}+c$
(B) $\sin ^{-1} \frac{3 x}{2}+c$
(C) $\frac{1}{2} \sin ^{-1} \frac{2 x}{3}+c$
(D) $\frac{1}{2} \sin ^{-1} \frac{3 x}{2}+c$

Section II

60 marks

Attempt Questions 11-14

Allow about 1 hour 45 minutes for this section

Start each of Questions 11-14 in a new writing booklet

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 5 x}{4 x}$.
(b) Find $\frac{d}{d x}\left(\frac{\sin 3 x}{x}\right)$.
(c) Find the size of the acute angle between the lines $y-5 x-9=0$ and $3 y=2 x+8$.
(d) Find $\int\left(1+\tan ^{2}(x+1)\right) d x$.
(e) Find in simplest form the exact value of $\cos 15^{\circ}$.
(f) Solve $\frac{2}{x+3} \geq 1$.
(g) The area of a sector of a circle of radius 9 cm is $75 \mathrm{~cm}^{2}$. Find the length of the 3

Question 12 (15 marks) Use a SEPARATE writing booklet
(a) Find the values of a and b that make the polynomial $P(x)=2 x^{3}+a x^{2}-13 x+b$ exactly divisible by $x^{2}-x-6$
(b) (i) Express $\sin x-\sqrt{3} \cos x$ in the form $R \sin (x-\theta)$ where $R>0$ and

$$
0<\theta<\frac{\pi}{2}
$$

(ii) Hence or otherwise solve the equation $\sqrt{2}=\sin x-\sqrt{3} \cos x$ for $0 \leq x \leq 2 \pi$.
(c) The diagram below shows two curves $y=\sin 2 x$ and $y=2 \cos \left(2 x+\frac{\pi}{2}\right)$. arc of the sector.

Determine the area enclosed between the curves for the domain $0 \leq x \leq \pi$.

In the diagram, the points A, B and O are in the same horizontal plane. A and B are 50 m apart and $\angle A O B=60^{\circ}$. OT is a vertical tower of height h metres. The angles of elevation of T from A and B respectively are 45° and α. (α is acute).
(i) Explain why $A O=h$.
(ii) Prove that $h^{2} \cot ^{2} \alpha-h^{2} \cot \alpha+h^{2}=50^{2}$
(iii) Given the tower is 30 m high, find the angle α correct to the nearest degree.

Question 13 (15 marks) Use a SEPARATE writing booklet

(a) (i) Find $\frac{d}{d x}\left(\left(\log _{e}(x+4)\right)^{3}\right.$.
(ii) Hence or otherwise evaluate $\int_{-3}^{0} \frac{\left(\log _{e}(x+4)\right)^{2}}{x+4} d x$.
(b) A straight line through $T(0,-a)$ cuts the parabola $x^{2}=4 a y$ at $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$.
(i) Show that the equation of $T P$ is
$2 p y=x\left(p^{2}+1\right)-2 a p$.
(ii) Prove that for $T P$ to pass through $Q, p q=1$.
(iii) Hence or otherwise prove that $\frac{1}{S P}+\frac{1}{S Q}=\frac{1}{a}$, where S is the focus of the parabola.
(c) In the diagram, $A B$ is a diameter of the circle $A B C$. The tangents at A and C meet at T. The lines $T C$ and $A B$ are produced to meet at P.

Copy the diagram into your examination booklet.
(i) Prove that $\angle B C P=90^{\circ}-\angle C A T$. 2
(ii) Explain why ATCB could never be a cyclic quadrilateral.

Question 14 (15 marks) Use a SEPARATE writing booklet
(a) Use Mathematical Induction to prove that
$1 \times 2+2 \times 2^{2}+3 \times 2^{3}+\ldots .+n \times 2^{n}=(n-1) \times 2^{n+1}+2$ for $n \geq 1$.
(b) Consider the function $f(x)=\frac{e^{x}}{4+e^{x}}$.
(i) Determine whether $f(x)$ has any stationary points.
$f^{\prime \prime}(x)=\frac{4 e^{x}\left(4-e^{x}\right)}{\left(4+e^{x}\right)^{3}}$.
(iii) Show that $0<f(x)<1$ for all x.
(iv) Sketch the curve $y=f(x)$.
(v) Explain whether $f(x)$ has an inverse function or not.
(vi) Find the inverse function $y=f^{-1}(x)$.

13x) a) $\frac{d}{d x}(\ln (x+4))^{3}=\frac{3(\ln (x+4))^{2}}{x^{x+4}}$
ii) $\int_{-3}^{0} \frac{(\ln (x+4))^{2}}{x+4} d x$
$=\frac{1}{3}\left[(\ln (x+c))^{3}\right]_{-3}^{0}$
$=\frac{1}{3}\left[(\ln 4)^{3}-0\right]$

$$
=\frac{1}{3}\left[(\ln 4)^{3}\right]
$$

b) i)

$$
\text { Pr } \Rightarrow \begin{aligned}
m & =\frac{a p^{2}+a}{2 a p} \\
& =\frac{f^{2}+1}{2 p} \\
b & =-a
\end{aligned}
$$

$y=$ must

$$
y=\frac{p^{2}+p}{d p} x-a
$$

$$
2 p y=\left(p^{2}+1\right) x-2 a p
$$

ii) $\left.Q\left(\log _{0},{ }^{2}\right)^{2}\right)$ salisifies equ
ivi) $\frac{1}{S P}+\frac{1}{S Q}=\frac{1}{a}$
$S P \Rightarrow b y$ deder of Parebola

$$
=x p^{2}+a
$$

$$
S Q=a q^{2}+\alpha
$$

$$
\therefore \frac{1}{S P}+\frac{1}{S Q}=\frac{1}{a\left(P^{2}+\vec{a}\right)}+\frac{1}{a\left(q^{2}+d\right)}
$$

$$
=\frac{p^{2}+p^{2}+1}{a\left(p^{2}+2\left(x^{2}+x\right)\right.}
$$

$$
=\frac{q^{2}+p^{2}+2}{a\left(p^{2} q^{2}+p^{2}+q^{2}+1\right)}
$$

$$
\begin{aligned}
& \text { Butpq}=1 \\
& \therefore p_{2}^{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{q^{2} p^{2}+2}{a\left(p^{2}+q-2\right)} \\
& =1
\end{aligned}
$$

i) Leen-zner \angle SAT $=90^{\circ}$ (\angle behooen

Slangent aradues)
$\angle B B C=\angle B C P$ (\angle Delvecentoncget e
choral $=\angle$ in abternate segment)

$$
\begin{aligned}
& \therefore \angle B A C=90^{\circ}-\angle C A T \\
& \therefore \angle B C P=90^{\circ}-\angle C A T
\end{aligned}
$$

a) For cy clic quedidelaferal
14.a) $\left[1 \times 2+20 x^{2}+\cdots+n \times 22^{n}=\left(\langle-1) x^{3 n+1}+2\right\} \quad 0=4 e^{x}\right.$
(31) Prove thice of ot $n=1$

$$
1 \times 2=0 \times 2^{2}+2 v
$$

srue for $n=1$
(52) Assume true for $n=k$ $1 \times 2+2 \times 2^{2} \ldots+k_{k} 2^{k}=(1-1) 2^{k k+} \alpha 2$
(53) Prooe true for $n=k+1$ $1 \times 2+2 \times 2^{2}+\ldots+k+2^{k+(k+1))^{2}=1}=k_{2} 2^{k+2}+2$

Frem Slep 2

$$
\underbrace{1 \times 2 \times 2 x_{k} 2^{2}+\ldots+k_{k 2}}=(k-1) 2^{k+1}+2
$$

ii)
\therefore No that Ats.
ii) $\frac{\text { Possible }}{y^{\prime \prime}=0}$ pt of inffeion att

$$
\begin{aligned}
& y^{\prime \prime}=0 \\
& y^{\prime \prime}=\frac{4 e^{x}\left(4 e^{x}\right)}{\left(1+e^{x}\right)^{3}} \\
& 0=4-e^{x} \\
& x=\ln 4 \\
& \therefore\left(\ln 4, \frac{1}{2}\right)
\end{aligned} \therefore y=\frac{4}{4+4} .
$$

Test for ft of iflecion

$$
\therefore 1 \times 2 \times 2 \times 2 \times 2^{2}+\cdots+1\left(22^{2}+(k+1) z^{k+1}\right.
$$

$$
\left.=\quad(k-1)^{k+1}+(k+1)\right)^{k+1}+2
$$

x	\cos	$\ln 4$	$\operatorname{ce} 5$
$y^{\prime \prime}$	$\frac{12}{7^{3}}$	0	$\frac{-20}{9^{3}}$

$$
\begin{aligned}
& =2^{k+1}(k-1+k+1)+2 \\
& =2^{k+1} 2 k+2
\end{aligned}
$$

as xyen of " clonges

$$
=2^{k-1}-2 k+2
$$

$\therefore\left(\ln 4, \frac{1}{2}\right)^{y}$ is apt of in Plecaion

$$
=k \cdot 2^{k+2}+2 \text {. }
$$

iii)
(54) deeing, shue for $n=1$, $n=k+1$, cossuming thue for $n=k$.
let $k=1 \quad \therefore n=2$

$$
k=2 \quad \therefore n=3 \text { efe }
$$

\therefore frue for all integral ${ }_{x}$.
bi) i) $y=\frac{e^{x}}{4+e^{x}}$
What pts at $\frac{d y}{d x}=0$

$$
\begin{aligned}
y^{\prime} & =\frac{e^{x}\left(4+e^{x}\right)-e^{x} \cdot e^{x}}{\left(4+e^{-y 2}\right.} \\
& =\frac{4 e^{x}+e^{2 x}}{\left(4+e^{2}\right)^{2}}-e^{2 x}
\end{aligned}
$$

iv)

$$
\begin{aligned}
& \lim _{\lim _{x \rightarrow-\infty}} \frac{e^{-x} \rightarrow 0}{4+e^{-x}}=0 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 2 \operatorname{app}_{2} q^{2}=\left(p^{2}+12 a q-2 a p\right. \\
& \text { sapqq }=\text { phaqp } p^{2}+\text { paqu } x d p \\
& p q^{2}-q p^{2}=q-p \\
& p q(q-p)=q-p \\
& \angle B A T+\angle B C T=90^{\circ} \\
& \text { bert } \angle B C A=90^{\circ} \text { (} L \text { in senucitrele) } \\
& \angle B A A=90^{\circ} \\
& \therefore \angle B C T=B C \hat{C N}+\angle A O T \\
& \angle B A T+\angle B C T=90^{\circ}+20^{\circ}+\angle A C T \\
& \neq 180 \text {, }
\end{aligned}
$$

v) Ahoays monofonic mireosing or
hoigoutal line llest
vi)

$$
\begin{gathered}
y=\frac{e^{x}}{e^{x}+4} \\
x=\frac{e^{y}}{e^{y}+4} \\
x e^{y}+4 x=e^{y} \\
(x-1) e^{y}=-4 x \\
e^{y}=\frac{4 x}{1-x} \\
y=\ln \left(\frac{4 x}{1-x}\right) .
\end{gathered}
$$

