

Examination Number:

Set:

Shore

Year 12 HSC Assessment Task 3 Half-Yearly Exam April 27 2015

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided separately
- Answer Questions 1–10 on the Multiple Choice Answer Sheet provided
- In Questions 11–14 show relevant mathematical reasoning and/or calculations
- Start each of Questions 11–14 in a new writing booklet
- Write your examination number on the front cover of each booklet

If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

Total marks – 70

Section I Pages 2-6

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II Pages 7–12

- 60 marks
- Attempt Questions 11–14
- Allow about 1 hour 45 minutes for this section

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the Multiple Choice Answer Sheet for Questions 1–10.

- 1 The polynomial $2x^3 + x 4 = 0$ has roots α, β and γ . What is the value of $\alpha + \beta + \gamma$?
 - (A) -2
 - (B) $-\frac{1}{2}$
 - (C) 0
 - (D) 2
- 2 The point *R* divides the interval *P* (3,-6) and *Q* (6,-9) externally in the ratio 2:1.

What are the coordinates of *R*?

- (A) (9,-12)
- (B) (5,-8)
- (C) (4,-7)
- (D) (0,-3)
- 3 If $\int_0^k (3x-6) dx = 0$ and $k \neq 0$, what is the value of k?
 - (A) 4
 - (B) 2
 - (C) –2
 - (D) -4

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

- 4 What is the equation of the function shown in the graph below?
 - xx-3 -2 x $-\pi$

$$(A) \quad y = \frac{1}{2}\sin^{-1}3x$$

(B)
$$y = \frac{1}{2} \sin^{-1} \frac{x}{3}$$

(C)
$$y=2\sin^{-1}\frac{x}{3}$$

- (D) $y = 2\sin^{-1}3x$
- 5 Which of the following is the Cartesian Equation of the variable point $P(2\cos t, 2\sin t)$, where *t* is the parameter?
 - (A) $y = \tan x$
 - (B) $x^2 + y^2 = 1$
 - (C) $x^2 + y^2 = 4$
 - (D) $x^2 = 4ay$

6 ABC is a triangle inscribed in a circle. The tangent to the circle at A meets BC produced at D where BC = 10 cm and AD = 12 cm. What is the length of BD?

- (A) 8
- (B) 18
- (C) 26
- (D) 28
- 7 Let $t = \tan \frac{\theta}{2}$ where $0 < \theta < \pi$. Which of the following gives the correct expression for $\sin \theta \cos \theta$?

(A)
$$\frac{2t-1-t^2}{1+t^2}$$

(B)
$$\frac{t^2 + 2t + 1}{1 + t^2}$$

(C)
$$\frac{1-t^2-2t}{1+t^2}$$

(D)
$$\frac{t^2 + 2t - 1}{1 + t^2}$$

8 What is the value of
$$\cos 2\theta$$
, given $\cos \theta = \frac{3}{5}$ and $\sin \theta \ge 0$?
(A) $\frac{6}{5}$
(B) $\frac{24}{25}$
(C) $\frac{7}{25}$
(D) $-\frac{7}{25}$

9 Which of the following is an expression for
$$\frac{d}{dx} \left(\tan^{-1} \frac{x}{2} \right)$$
?

(A)
$$\frac{2}{2+x^2}$$

(B) $\frac{2}{4+x^2}$
(C) $\frac{4}{2+x^2}$

(D)
$$\frac{4}{4+x^2}$$

10 Which of the following is the solution to the expression $\int \frac{dx}{\sqrt{9-4x^2}}$?

(A) $\sin^{-1}\frac{2x}{3}+c$

(B) $\sin^{-1}\frac{3x}{2}+c$

(C) $\frac{1}{2}\sin^{-1}\frac{2x}{3}+c$

(D) $\frac{1}{2}\sin^{-1}\frac{3x}{2}+c$

Section II

60 marks Attempt Questions 11–14 Allow about 1 hour 45 minutes for this section

Start each of Questions 11–14 in a new writing booklet.

Question 11 (15 marks) Use a SEPARATE writing booklet

(a) Evaluate $\lim_{x \to 0} \frac{\sin 5x}{4x}$. 1

2

2

2

2

3

3

- (b) Find $\frac{d}{dx} \left(\frac{\sin 3x}{x} \right)$.
- (c) Find the size of the acute angle between the lines y 5x 9 = 0 and 3y = 2x + 8.
- (d) Find $\int (1+\tan^2(x+1))dx$.
- (e) Find in simplest form the exact value of $\cos 15^{\circ}$.
- (f) Solve $\frac{2}{x+3} \ge 1$.
- (g) The area of a sector of a circle of radius 9 cm is 75 cm². Find the length of the arc of the sector.

Question 12 (15 marks) Use a SEPARATE writing booklet

- (a) Find the values of *a* and *b* that make the polynomial $P(x)=2x^3+ax^2-13x+b$ exactly divisible by x^2-x-6 .
- (b) (i) Express $\sin x \sqrt{3} \cos x$ in the form $R \sin(x \theta)$ where R > 0 and 2 $0 < \theta < \frac{\pi}{2}$.
 - (ii) Hence or otherwise solve the equation $\sqrt{2} = \sin x \sqrt{3} \cos x$ for $0 \le x \le 2\pi$.
- (c) The diagram below shows two curves $y = \sin 2x$ and $y = 2\cos\left(2x + \frac{\pi}{2}\right)$. 3

Determine the area enclosed between the curves for the domain $0 \le x \le \pi$.

Question 12 continued on page 9

Question 12 (continued)

(d)

In the diagram, the points A, B and O are in the same horizontal plane. A and B are 50 m apart and $\angle AOB = 60^{\circ}$. OT is a vertical tower of height h metres. The angles of elevation of T from A and B respectively are 45° and α . (α is acute).

(i)	Explain why $AO = h$.	1
(ii)	Prove that $h^2 \cot^2 \alpha - h^2 \cot \alpha + h^2 = 50^2$	2

2

(iii) Given the tower is 30 m high, find the angle α correct to the nearest degree.

Question 13 (15 marks) Use a SEPARATE writing booklet

(a) (i) Find
$$\frac{d}{dx} ((\log_e(x+4)))^3$$
. 2

(ii) Hence or otherwise evaluate
$$\int_{-3}^{0} \frac{\left(\log_{e}(x+4)\right)^{2}}{x+4} dx.$$
 2

- (b) A straight line through T(0, -a) cuts the parabola $x^2 = 4ay$ at $P(2ap, ap^2)$ and $Q(2aq, aq^2)$.
 - (i) Show that the equation of *TP* is 2 $2py = x(p^2 + 1) - 2ap$.
 - (ii) Prove that for *TP* to pass through Q, pq=1. 2
 - (iii) Hence or otherwise prove that $\frac{1}{SP} + \frac{1}{SQ} = \frac{1}{a}$, where S is the focus of the parabola. 3

Question 13 continued on page 11

Question 13 (continued)

(c) In the diagram, *AB* is a diameter of the circle *ABC*. The tangents at *A* and *C* meet at *T*. The lines *TC* and *AB* are produced to meet at *P*.

2

Copy the diagram into your examination booklet.

- (i) Prove that $\angle BCP = 90^\circ \angle CAT$. 2
- (ii) Explain why *ATCB* could never be a cyclic quadrilateral.

- Question 14 (15 marks) Use a SEPARATE writing booklet
- (a) Use Mathematical Induction to prove that $1 \times 2 + 2 \times 2^2 + 3 \times 2^3 + \dots + n \times 2^n = (n-1) \times 2^{n+1} + 2$ for $n \ge 1$.
- (b) Consider the function $f(x) = \frac{e^x}{4 + e^x}$.
 - (i) Determine whether f(x) has any stationary points. 3

3

- (ii) Find the point of inflexion given that 2 $f''(x) = \frac{4e^x (4-e^x)}{(4+e^x)^3}.$
- (iii) Show that 0 < f(x) < 1 for all x. 2
- (iv) Sketch the curve y=f(x). 2
- (v) Explain whether f(x) has an inverse function or not. 1
- (vi) Find the inverse function $y=f^{-1}(x)$. 2

END OF PAPER

$$P(x) = 2x^{3} + ax^{3} - 13x + b$$

$$(x - 3) \land (x + 1) are factors$$

$$P(z) = -16 + (a + b) = 0$$

$$0 = 10 + 4a + b$$

$$0 = 15 + 9a + b$$

$$0 = 10 + 4a + b$$

$$0 = 15 + 9a + b$$

$$0 = 10 + 4a + b$$

$$0 = 15 + 9a + b$$

$$0 = 5 + 5a$$

$$\frac{az = -1}{a}$$

$$(b) - 4 + b = 0$$

$$b = -b$$

$$(b) = -b$$

$$(b) = -b$$

$$(c - 3) \land (x - 5)$$

$$\frac{az = -1}{a}$$

$$(c - 4 + b) \land (b) = -b$$

$$(c - 4 + b) \land (c - 4) = -b$$

$$(c - 4 + b) \land (c - 4) = -b$$

$$(c - 4 + b) \land (c - 4) = -b$$

$$(c - 4 + b) \land (c - 4) = -b$$

$$(c - 4 + b) \land (c - 4) = -b$$

$$(c - 4 + b) \land (c - 4) = -b$$

$$(c - 4 + b) \land (c - 4) = -b$$

$$(c - 4 + b) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4) = -b$$

$$(c - 4) \land (c - 4) = -b$$

$$(c - 4$$

12a)

b)

$$\begin{array}{c} 130 \\$$

