

ASSESSMENT TASK # 2 - April 2000

MATHEMATICS

3/4 UNIT COMMON

Time allowed — One and a half hours (Plus 5 minutes reading time)

Examiners: F. Jordan, P. Bigelow

DIRECTIONS TO CANDIDATES

- All questions may be attempted.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- · Approved calculators may be used.
- There are **6** questions and each question is to be returned in a separate booklet, clearly marked Question 1, etc. Each booklet must also show your name and teacher.
- Start each question in a new booklet.
- If required, additional booklets may be obtained from the Examination Supervisor upon request.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

- (a)
- Evaluate $\lim_{x\to 0} \frac{\sin 7x}{6x}$

2

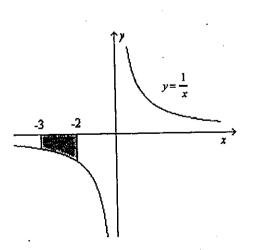
3

- (b) Differentiate:
 - (i) $\cos 2x$
 - (ii) $x \tan x$

(c) Find $\int_0^{\frac{\pi}{2}} \sin \frac{x}{2} dx$

,

(d)



Find the value of the shaded area correct to 2 decimal places

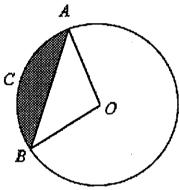
(a) Differentiate $\frac{x}{\ln x}$

2

(b) Find a primitive of $\frac{2}{4+3x}$

2

(c)



A circle has centre O and radius 10 cm. $\angle AOB = \frac{5\pi}{6}$

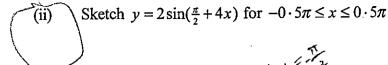
Find the exact value of the shaded region.

(d) If $y = x^n e^{ax}$ show that $\frac{dy}{dx} - ay = \frac{ny}{x}$

2

(a) (i) For the curve $y = 2\sin(\frac{\pi}{2} + 4x)$ state the period and amplitude

4



(b) Find $\frac{d}{dx} \{ \log_e(\cos x) \}$ and hence find the area under the curve $y = \tan x$ from x = 0 to $x = \frac{\pi}{4}$

(c) The curve $y = 3 + 2\sin x$ is rotated about the x axis between x = 0 and $x = \pi$. Find the volume of the solid generated.

Question 4 (Start a new booklet)

2

State the domain and range of $y = \sqrt{1 + \ln x}$

(b) Find
$$\int_0^{\frac{\pi}{4}} (\cos^2 x - \sin^2 x) dx$$

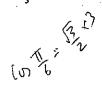
(c) Use one step of Newton's Method to find an improved value of that root of $f(x) = e^{4x} - \sqrt{x + 0.81}$ which lies close to x = 0

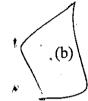
- (d)
- The planet Hollywood is in a far, far away galaxy and has a moon with diameter of 148 000 km. If the distance between the centre of Hollywood and the centre of the moon is 1.28×10^7 km, find the angle subtended by the moon at the centre of the planet in seconds.

· 00 00 00 J

3

(a) Find the equation of the normal to $y = 3\cos{\frac{x}{2}}$ at the point where $x = \frac{\pi}{3}$





The error function is given by $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt$.

Use the trapezoidal rule with 5 function values to estimate erf(2)

- (c) If $f(x) = 2e^{-x^2}$ then
 - (i) Find $f(\sqrt{\ln x})$
 - (ii) Find a, where f''(a) = 0

(d) Find the area enclosed by f(x) = 3(x-2) and g(x) = (x-1)(x-2)(x-3).

3

[HINT: Make a sketch]

Sketch $y = \tan x$ for $\left| x \right| < \frac{\pi}{2}$.

•

By sketching the appropriate line find the number of roots of the equation $\tan x - x = \frac{\pi}{2}$ within this domain.

- (b)
- (i) Show that $\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$

5

(ii) Hence, using induction or otherwise prove that $\sum_{r=1}^{n} r^{3} = \left(\sum_{r=1}^{n} r\right)^{2}$

- (c
- (i) Find any stationary point and points of inflexion on the curve defined below for x > 0.

$$y = x^2 \ln \left(\frac{1}{x^3}\right) \quad \text{with.}$$

(ii) Sketch the curve.

END OF THE PAPER