Mathematics

Extension 1

General Instructions

- Reading time - 5 minutes.
- Working time - 90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Hand in your answer booklets in 3 sections. Section A (Questions 1 and 2), Section B (Questions 3 and 4) and Section C (Questions 5 and 6).
- Start each NEW section in a separate answer booklet.

Total Marks - 90 Marks

- Attempt Sections A - C
- All questions are NOT of equal value.

Examiner:
C. Kourtesis

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

SECTION A

Question 1 (15 marks)
Marks
(a)

Find $\sin 1.4$
1
(b) \quad Express 450° in radians (in terms of π).
(c) Differentiate
(i) $\sin 4 x \quad 1$
(ii) $(3 x+1)^{20}$
(iii) $\cos (1-2 x)$
(d) Find the gradient of the tangent to the curve $y=4 x^{3 / 2}$ at the 2 point $(1,5)$.
(e) If $y=x \tan x$, use the product rule to find $\frac{d y}{d x}$.
(f) If $f(t)=\frac{1}{t}$, find the value of $f^{\prime \prime}(4)$.
(g) Find
(i) $\quad \int_{1}^{9}(1+\sqrt{x}) d x$
(ii) $\int_{0}^{2 \pi} \cos 2 x d x$

SECTION A (continued)

Question 2 (16 marks)
Marks
(a) (i) Sketch the graph of the function $y=(x+1)^{2}$.
(ii) State the values of x for which the function is decreasing.

1
(b) (i) Sketch the graph of $y=\sin x$ for $0 \leq x \leq 2 \pi$.
(ii) Find the area bounded by the curve $y=\sin x$ and the x axis for $0 \leq x \leq 2 \pi$.
(c) Find a primitive of $\frac{x+\sqrt{x}}{x}$.
(d) In how many ways can:
(i) 6 different books be arranged on a shelf?
(ii) 3 different paintings be hung in a row, from a collection of 8 ?
(e)

Find $\lim _{x \rightarrow 0} \frac{\sin 7 x}{5 x}$

Find the value of b.
(g)

If $g(x)=\sin ^{3} x$, find $g^{\prime}\left(\frac{\pi}{4}\right)$

SECTION B (Start a NEW booklet)

Question 3 (14 marks)
Marks
(a)

For a certain curve $\frac{d y}{d x}=2 x-5$ and $(2,-18)$ lies on the curve.

Find the equation of the curve.
(b)

The shaded region lying between the curve $y=4-x^{2}$ and the x-axis is rotated about the x-axis.

Find the volume of the resulting solid.
(c)

Consider the curve $y=x^{4}+4 x^{3}-16 x+1$
(i) Show that it has a minimum turning point at $x=1$.
(ii) Find the values of x for which the curve is concave up.
(d)

Prove by mathematical induction that, for all positive integers $n, 3^{2 n}-1$ is divisible by 8 .

SECTION B (continued)

Question 4 (15 marks)
(a)

A committee of 3 men and 2 women is to be selected from a group of 10 men and 8 women.

In how many ways can this be done?
(b)

The shaded area bounded by the curve $y=(x-4)^{3}$, the coordinate axes and the lines $y=0$ and $y=16$, is rotated about the y-axis.
(i) Show that the volume V of the solid formed is given by

$$
V=\pi \int_{0}^{16}\left(y^{2 / 3}+8 y^{1 / 3}+16\right) d y
$$

(ii) Find the volume V in terms of π
(c) Consider the function $f(x)=\frac{x}{x+1}$
(i) Find $f^{\prime}(x)$.
(ii) Show that there are NO stationary points.
(iii) Show that the function is always increasing.
(iv) Write down the equations of any asymptotes.
(v) Sketch the graph of $y=f(x)$.

SECTION C (Start a NEW booklet)

Question 5 (15 marks)
(a) (i) Show that $\cos 2 x=1-2 \sin ^{2} x$
(ii) Hence find $\int \sin ^{2} 4 x d x$

2

3

2
O is the centre

A pipe which is 12 m long is bent into a circular arc which subtends an angle of 2θ at the centre of the circle.
The chord of the circle joining the ends of the arc is 10 m long.
(i) Show that $6 \sin \theta-5 \theta=0$
(ii) Show that $\theta_{0}=1^{c}$ is a good first approximation to the value of θ.
(iii) Use one application of Newton's Method to find another approximation to θ.

SECTION C (continued)

Question 6 (15 marks)
Marks
(a) Prove by mathematical induction that $4^{n} \geq n^{2}$ for all positive integers n
(b)
(i) Show that the area A square units of the rectangle $A B C D$ is given by

$$
A=2 x \sqrt{100-x^{2}}
$$

(ii) Find the values of x for which $\frac{d A}{d x}=0$
(iii) The rectangle $A B C D$ has a maximum area.

Find the maximum area.
[You are NOT required to prove that the area is a maximum]
(c)

Given the curve $y=x^{1 / 3}+\frac{1}{4} x^{4 / 3}$ find, giving reasons, any points of inflexion.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right) x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log x, x>0
\end{aligned}
$$

Question 1
(a) $\sin 1.4=0.9854$
(b)

$$
\begin{aligned}
450^{\circ} & =\frac{450 \times \pi^{c}}{280} \\
& =\frac{5 \pi^{c}}{2}
\end{aligned}
$$

(c) (1) $\frac{d}{d x} \sin 4 x=4 \cos 4 x$
(ii)

$$
\text { i) } \begin{aligned}
\frac{d}{d x}(3 x+1)^{20} & =20(3 x+1)^{19} \times 3 \\
& =60(3 x+1)^{19}
\end{aligned}
$$

(ii) $\frac{d}{d x} \cos (1-2 x)=-\sin (1-2 x)(-2)$

$$
=2 \sin (1-2 x)
$$

(d) $y=4 x^{3 / 2}$

$$
\begin{align*}
y^{\prime} & =\frac{3}{2} \times 4 x^{1 / 2} \tag{1,5}\\
& =6 x^{1 / 2} \\
y^{\prime}(1) & =6
\end{align*}
$$

(e) $y=x \tan x$

$$
\frac{d y}{d x}=\tan x+x \sec ^{2} x \quad 2
$$

$$
\therefore \text { Gradiart }=6 \quad 2
$$

(f) $f(t)=\frac{1}{t}$

$$
=t^{-1}
$$

$$
\begin{aligned}
f(t) & =-t^{-2} \\
f^{\prime \prime}(t) & =2 t^{-3} \\
& =\frac{2}{t^{3}}
\end{aligned}
$$

$f^{\prime \prime}(4)=\frac{t^{3}}{32}$
(9) (1) $\int_{1}^{9}(1+\sqrt{x}) d x$

$$
=\left[x+\frac{2 x^{3 / 2}}{3}\right]_{1}^{9}
$$

$$
=(9+18)-\left(1+\frac{2}{3}\right)
$$

$$
=25 \frac{1}{3}
$$

$$
=\frac{76}{3}
$$

(II)

$$
\begin{aligned}
& \int_{0}^{2 \pi} \cos 2 x d x \\
& =\frac{1}{2}[\sec 2 x]_{0}^{2 \pi} \\
& =\frac{1}{2}[0-0] \\
& =0
\end{aligned}
$$

thesthon 1
) 1

1) Dereary $=\{x: x \leqslant-1\}$,

$$
\begin{aligned}
\text { Area } & =2 \int_{0}^{\pi} \sin x d x \\
& =2[-\cos x]_{0}^{\pi} \\
& =2[(-1)-(t)] \\
& =4 \text { sq. units } 2
\end{aligned}
$$

$$
\begin{aligned}
\iint \frac{x+\sqrt{x}}{x} d x & =\int\left(1+x^{-\frac{1}{2}}\right) d x \\
& =x+\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+c \\
& =x+2 \sqrt{x}+c
\end{aligned}
$$

2
(d)
(1) $6!=720$
(ii)
(e)

$$
\begin{align*}
\lim _{x \rightarrow 0} \frac{\sin 7 x}{5 x} & =\frac{7}{5} \lim _{x \rightarrow 0} \frac{\sin }{7 x} \\
& =\frac{7}{5} \times 1 \\
& =\frac{7}{5} \quad 2 \tag{2}
\end{align*}
$$

(6)

$$
\begin{aligned}
& y=5 x^{4}-b x^{2} \\
& y^{\prime}=20 x^{3}-2 b x
\end{aligned}
$$

$$
\begin{aligned}
& \text { T.P. at } x=1 \quad \therefore y^{\prime}(1)=0 \\
& \therefore 0=20(1)^{3}-2 b(1) \\
& 0=20-2 b \\
& 2 b=20
\end{aligned}
$$

$$
b=10
$$

(g)

$$
\begin{aligned}
g(x) & =\sin ^{3} x \\
g^{\prime}(x) & =3 \sin ^{2} x \cos x \\
g^{\prime}\left(\frac{\pi}{4}\right) & =3 \sin ^{2} \frac{\pi}{4} \cos \frac{\pi}{4} \\
& =3\left(\frac{1}{\sqrt{2}}\right)^{2} \cdot\left(\frac{1}{2}\right) \\
& =\frac{3}{2 \sqrt{3}}
\end{aligned}
$$

Solutions Maths ext / 4N12 2003
(3) (a)

$$
\begin{aligned}
& y^{\prime}=2 x-5 \\
& y=\int(2 x-5) d x \\
& y=x^{2}-5 x+C
\end{aligned}
$$

(2,-18)

$$
\text { 18) } \begin{align*}
-18 & =4-10+C \\
-18 & =-6+C \\
-18+6 & =c \\
c & =-12 \\
\therefore y & =x^{2}-5 x-12 \tag{3}
\end{align*}
$$

(c)
(i)

$$
\begin{aligned}
& y^{\prime}=4 x^{3}+12 x^{2}-16 \\
& y^{\prime \prime}=12 x^{2}+24 x
\end{aligned}
$$

When $y^{\prime}=0 \quad 4 x^{3}+12 x^{2}-16=0$

$$
\begin{aligned}
& \text { if } x=1,4+12-16=0 \\
& x=1,4^{\prime \prime}=36>0
\end{aligned}
$$

at $x=1, y^{\prime \prime}=36>0$ at $\dot{x}=1$, min t.pt $\sqrt{3}$
(ii) when $y^{\prime \prime}>0$

$$
12 x^{2}+24 x>0
$$

$y=4-x^{2}$
$12 x(x+2)>0$
So $x^{2}=4-y$.

When $x<-2, x>0$ ©
(b)

$V=\pi \int_{c}^{c} y^{2} d y$

$$
=\pi \int_{-2}^{c}\left(4-x^{2}\right)^{2} d x=\pi \int_{-2}^{2}\left(16-8 x^{2}+x^{4}\right) d x
$$

$$
=\pi\left[16 x-\frac{8 x^{3}}{3}+\frac{x^{5}}{5}\right]_{-2}^{2}
$$

$$
=\pi\left[32-\frac{64}{3}+\frac{32}{5}-\left(-32+\frac{64}{3}-\frac{32}{5}\right)\right.
$$

(3) $=\pi\left[\begin{array}{l}34 \frac{3}{15} \\ 512 \pi / 15^{3}\end{array}\right]$

3 (d) $\operatorname{step}^{\prime} \operatorname{let} n=18 /\left(3^{2}-1\right)$ is true when $n=1$, step 1 is true.
step 2 If Here exists a value $n=k$, where
k is a posit cue integer then assume that 8/(3 $\left.3^{2 k}-1\right)$ and we must prove that for $n=k+1, \quad 8 /\left(3^{2(k+1)}-1\right)$ is true.

Now

$$
\begin{aligned}
3^{2 k+2}-1 & =3^{2 k} 3^{2}-1 \\
& =3^{2 k} \times 9-1 \\
& =9\left(3^{2 k}-1\right)+8
\end{aligned}
$$

now $8 / 9\left(3^{2 k}-1\right)$ and $8 / 8$

$$
8 /\left(3^{2(k+1)}-1\right)
$$

So $n=k+1$ is true.
step 3 We haw anumed it the for $n=1$,
and $\frac{n=k}{}$ and proved it true for $n=k+1$
Hence statement is tree for $n=2$? $n=3$ eff

B (4) (a) ${ }^{10} C_{3} \times{ }^{8} C_{2} \quad 120 \times 28^{1}=3360$
(b) (i) $V=\pi \int_{0}^{16} x^{2} d y$.

$$
=\pi \int_{0}^{16}\left(y^{\frac{1}{3}}+4\right)^{2} d y . \quad \begin{aligned}
& y^{\frac{1}{3}}=x-4 \\
& x=y^{\frac{1}{3}}+4
\end{aligned}
$$

$$
\begin{equation*}
=\pi \int_{0}^{16}\left(y^{\frac{2}{3}}+8 y^{10}+16\right) d y . \tag{2}
\end{equation*}
$$

(ii) $V=\pi\left[\frac{3}{5} y^{\frac{5}{3}}+6 y^{\frac{4}{3}}+16 y\right]_{0}^{16}$

$$
\begin{align*}
V & =\pi\left[\frac{3}{5} \times 16^{\frac{5}{3}}+6 \times 16^{\frac{4}{3}}+16 \times 16\right] \\
& =\pi\left[\frac{3}{5} \cdot(\sqrt[3]{16})^{5}+6 \times(3 \sqrt{16})^{4}+256\right] \\
& =\pi[60.956+241.905+256] \\
& =558.861 \pi u^{3} \tag{3}
\end{align*}
$$

(c) $f(x)=\frac{x}{x+1}$
(i) $f^{\prime}(x)=\frac{(x+1) \times 1-x \times 1}{(x+1)^{2}}=\frac{1}{(x+1)^{2}}$.
(ii) $\frac{1}{(x+1)^{2}}=\frac{0}{1} \quad x$ has no solution
(iii) except for $x=-1, y^{\prime}=\frac{1}{(x+1)^{2}}>0$ aluays
(iv) $f(x)=\frac{x}{x+1}$
$x=-1$ is an assumptote

$$
f(x)=\frac{x}{x\left(1+\frac{1}{x}\right)}=\frac{1}{1+\frac{1}{x}}
$$

as $x \rightarrow \pm \infty, \frac{1}{x} \rightarrow 0 \quad f(x)=1$ is another assumptate

