

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2003 HIGHER SCHOOL CERTIFICATE **ASSESSMENT TASK # 2**

Mathematics Extension 1

General Instructions

- Reading time -5 minutes. •
- Working time 90 minutes. •
- Write using black or blue pen. •
- Board approved calculators may • be used.
- All necessary working should be • shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy • or badly arranged work.
- Hand in your answer booklets in 3 • sections. Section A (Questions 1 and 2), Section B (Questions 3 and 4) and Section C (Questions 5 and 6).
- Start each **NEW** section in a separate • answer booklet.

Total Marks - 90 Marks

- Attempt Sections A C •
- All questions are NOT of equal • value.

C. Kourtesis Examiner:

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

SECTION A

Question 1 (15 marks)			Marks
(a)		Find sin1.4	1
(b)		Express 450° in radians (in terms of π).	1
(c)		Differentiate	
	(i)	$\sin 4x$	1
	(ii)	$(3x+1)^{20}$	1
	(iii)	$\cos(1-2x)$	1
(d)		Find the gradient of the tangent to the curve $y = 4x^{3/2}$ at the point (1,5).	2
(e)		If $y = x \tan x$, use the product rule to find $\frac{dy}{dx}$.	2
(f)		If $f(t) = \frac{1}{t}$, find the value of $f''(4)$.	2
(g)		Find	
		$\int_{1}^{9} \left(1 + \sqrt{x}\right) dx$	2
	(ii)	$\int_{0}^{2\pi} \cos 2x dx$	2

Section A continued on the following page

SECTION A (continued)

Question 2 (16 marks)			
(a)	(i)	Sketch the graph of the function $y = (x+1)^2$.	1
	(ii)	State the values of x for which the function is decreasing.	1
(b)	(i)	Sketch the graph of $y = \sin x$ for $0 \le x \le 2\pi$.	1
	(ii)	Find the area bounded by the curve $y = \sin x$ and the x axis for $0 \le x \le 2\pi$.	2
(c)		Find a primitive of $\frac{x + \sqrt{x}}{x}$.	2
(d)		In how many ways can:	
	(i)	6 different books be arranged on a shelf?	1
	(ii)	3 different paintings be hung in a row, from a collection of 8?	2
(e)		Find $\lim_{x \to 0} \frac{\sin 7x}{5x}$	2

(f) The curve
$$y = 5x^4 - bx^2$$
 has a turning point at $x = 1$.
Find the value of b.

(g) If
$$g(x) = \sin^3 x$$
, find $g'\left(\frac{\pi}{4}\right)$ 2

SECTION B (Start a NEW booklet)

Question 3 (14 marks)

(a) For a certain curve
$$\frac{dy}{dx} = 2x - 5$$
 and (2,-18) lies on the 3 curve.

Find the equation of the curve.

(b)

The shaded region lying between the curve $y = 4 - x^2$ and the x - axis is rotated about the x - axis.

Find the volume of the resulting solid.

(d) Prove by mathematical induction that, for all positive 3
integers
$$n$$
, $3^{2n} - 1$ is divisible by 8.

Section B continued on the following page

Marks

SECTION B (continued)

Question 4 (15 marks)

(a) A committee of 3 men and 2 women is to be selected from a 2 group of 10 men and 8 women.

In how many ways can this be done?

(b)

(c)

The shaded area bounded by the curve $y = (x-4)^3$, the coordinate axes and the lines y = 0 and y = 16, is rotated about the y – axis.

(i) Show that the volume V of the solid formed is given by
$$V = \pi \int_{0}^{16} \left(y^{2/3} + 8y^{1/3} + 16 \right) dy$$

$$V = \lambda \int_{0}^{1} V + \delta y + 1$$

(ii) Find the volume V in terms of π

	Consider the function $f(x) = \frac{x}{x+1}$	
(i)	Find $f'(x)$.	2
(ii)	Show that there are NO stationary points.	1
(iii)	Show that the function is always increasing.	1
(iv)	Write down the equations of any asymptotes.	2
(v)	Sketch the graph of $y = f(x)$.	2

SECTION C (Start a NEW booklet)

Question 5 (15 marks)Marks(a)(i)Show that
$$\cos 2x = 1 - 2\sin^2 x$$
2(ii)Hence find $\int \sin^2 4x \, dx$ 3

(b) Find the derivative of
$$\sin(\sqrt{\tan 2x})$$
 2

A pipe which is 12 m long is bent into a circular arc which subtends an angle of 2θ at the centre of the circle. The chord of the circle joining the ends of the arc is 10 m long.

(a) Prove by mathematical induction that
$$4^n \ge n^2$$
 for all positive 4 integers *n*

(b)

A rectangle *ABCD* is inscribed in a semi-circle of radius 10 units, centre *O*. Let OB = x.

(i) Show that the area *A* square units of the rectangle *ABCD* is 2 given by

$$A = 2x\sqrt{100 - x^2}$$

(ii) Find the values of x for which
$$\frac{dA}{dx} = 0$$

(iii) The rectangle *ABCD* has a maximum area.

Find the maximum area.

[You are **NOT** required to prove that the area is a maximum]

(c) Given the curve
$$y = x^{1/3} + \frac{1}{4}x^{4/3}$$
 find, giving reasons, any 4 points of inflexion.

THIS IS THE END OF THE PAPER

3

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left(x + \sqrt{x^2 - a^2}\right) x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

$$\begin{aligned} \frac{11}{(1)} \frac{1}{(1)} \frac$$

$$\frac{(wyhord}{h)} y = (x+h)^{2}$$

$$\frac{1}{h} y = (x+h)^{2}$$

Solutions Maths ext 1 4R12 2003 Task #2. 11by (3) (a) $y' = \lambda x - 5$ (c) $y = \chi + 4\chi^3 - \hbar x + 1$ $y = \int (2\chi - 5) dx$ (i) $y' = 4\chi^3 + 12\chi^2 - 16$ $y'' = 1\chi \chi^2 + 24\chi$ $y = x^2 - 5x + C$ $y = 4 - \chi^{2}$ $y = 4 - \chi^{2}$ C = -12.: $y = x^{2} 5x - 12/1.$ (3) *(b)* When x<-2, x>0 (2) dy dg $V = \pi$ $= \pi \left(\frac{2}{(16 - gx^{2} + x^{4})} dx \right)$ (4-3) dg = TT | $= \pi \left[\frac{16\chi - 8\chi^3 + \chi^5}{3} \right]_{-1}^2$ $= \prod \int 32 - \frac{64}{3} + \frac{32}{5} - \left(-32 + \frac{64}{3} - \frac{32}{5}\right)$ $(3) = \prod \int 34 \frac{3}{15} \int (3) \frac{3}{5}$ $= 512 \prod (15)^{3}$

3 (d) stepi let n=1, 8/(3-1) is true. When n=1, stepi is true. k is a positive integer then assume that 8/(3-1) and we must prove that for n=k+1, 8/(3 -1) is true. $N_{OW} = 3 + 2 = 2k + 2$ $N_{OW} = 3 - 1 = 3 - 3 - 1$ $= \frac{3^{2k}}{3 \times 9} = 1$ $= 9(3^{2k}-1) + 8$ $pow 8/9(3^{2k}-1) and 8/8$ $8/(3^{2(k+1)}-1)$ So n=k+1 is true step3 We have anumed it true for n=1, and n=k and proved it true for n=k+1. Hence statement is true for n=2, n=3 etc. 3

 $B (4) (a) 10_{C_3} \times {}^8C_2 = 120 \times 28^{\circ} = 3360$ (b) (i) $V = \pi \int_{0}^{16} x^{2} dy$, $y = (\chi - 4)^{3}$ = $\pi \int_{0}^{16} (y^{\frac{4}{3}} + 4)^{2} dy$, $y^{\frac{5}{3}} = \chi - 4$ $x = y^{\frac{5}{3}} + 4$ (2) 16 $= \pi \left(\left(y^{\frac{2}{3}} + 8y^{\frac{1}{3}} + 16 \right) dy \right).$ (ii) $V = \pi \left[\frac{3}{5} y^{\frac{5}{3}} + by \frac{4}{16} y \right]$ $V = \pi \int_{-\frac{3}{5}}^{\frac{3}{5}} \times 16^{\frac{5}{5}} + 6 \times 16^{\frac{4}{3}} + \frac{10}{16} \times 16^{\frac{4}{5}}$ $= \pi \left[\frac{3}{5} \cdot (\sqrt{3}16)^5 + 6 \times (\sqrt{3}16)^4 + 256 \right]$ $= \pi \int 60.956 + 241.905 + 256 \int$ = 558.861 TT u. (c) $f(x) = \frac{x}{x+1}$ (1) $f'(x) = \frac{(x+1)\times 1 - x\times 1}{(x+1)^2} = \frac{1}{(x+1)^2}$ (Z) (iii) $\frac{1}{(x+i)^2} = \frac{0}{1}$ x has no solution (iii) except for $\alpha = -1$, $y' = (\alpha + 1)^2 > 0$ always (7)

 $(jv) f(x) = \frac{x}{x+1}$ x = -1 is an assumptote. Ì $\vec{f}(x) = \frac{\gamma}{\chi(i+\frac{i}{\chi})} = \frac{i}{1+\frac{i}{\chi}}$ as $x \to \pm \infty$, $\frac{1}{x} \to 0$ $\frac{1}{x} = 1$ is another assumptionle (1) y= x+0 y 5 2 ά - 2 -11 ł