

SYDNEYBOYS HIGH SCHOOL
 moore park, Surry hills

APRIL 2004

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \# 2

Mathematics

Extension 1

General Instructions

- Reading time -5 minutes.
- Working time - 90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Hand in your answer booklets in 3 sections. Section A (Questions 1-3), Section B (Questions 4-6) and Section C (Questions 7-8).
- Start each NEW section in a separate answer booklet.

Total Marks - 87 Marks

- Attempt questions 1-8
- All questions are NOT of equal value.

Examiner: R. Boros

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks - 87
Attempt Questions 1 - 8
All questions are NOT of equal value

Answer each section in a SEPARATE writing booklet. Extra writing booklets are available.
SECTION A (Use a SEPARATE writing booklet)

Question 1 (11 marks)
Marks
(a) \quad Find $\int e^{\frac{x}{2}} d x$

1

2 function,

$$
y=\log _{e}\left(\sin ^{-1} x\right)
$$

(c) Find a primitive function for
(i) $\frac{3 x}{4+x^{2}}$
(ii) $\frac{3}{4+x^{2}}$
(d) Differentiate $y=\log _{e}\left(\sin ^{-1} x\right)$
(e) Solve $\tan \theta=\sin 2 \theta$ for $0<\theta<\pi$

3

Section A (continued)

Question 2 (13 marks)
Marks
(a) Show that $\tan 75^{\circ}=\frac{\sqrt{3}+1}{\sqrt{3}-1}$
(b) (i) Show that $\frac{d}{d \theta}\left(\tan ^{3} \theta\right)=3 \sec ^{2} \theta\left(\sec ^{2} \theta-1\right)$
(ii) Hence, or otherwise, evaluate

$$
\int_{0}^{\frac{\pi}{4}} \sec ^{4} \theta d \theta
$$

(c) Show that $\frac{d}{d x}\left(\frac{\tan x}{e^{2 x}}\right)=\left(\frac{\tan x-1}{e^{x}}\right)^{2}$

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-15 y=0
$$

Question 3 (12 marks)
(a) Find the exact value of

$$
\int_{\frac{3 \sqrt{3}}{2}}^{3} \frac{2}{\sqrt{9-x^{2}}} d x
$$

(b) Write down the general solution, in terms of π, of

$$
2 \sin \theta=\tan \theta
$$

(c)

Solve the equation

$$
2 \ln (3 x+1)-\ln (x+1)=\ln (7 x+4)
$$

(d) Find $\int \frac{x+1}{x^{2}+2 x-5} d x$

SECTION B (Use a SEPARATE writing booklet)

Question 4 (10 marks)
(a) State the domain of $y=2 \sin ^{-1} x$
(b)

Prove that $\frac{d}{d x}\left(3^{x}\right)=3^{x} \cdot \ln 3$
(c)

Show that $\log _{4} 9+\log _{4} 8-2 \log _{4} 6=\frac{1}{2}$

$$
y=\ln \left(\frac{2 x(x-1)^{3}}{\sqrt{x+1}}\right)
$$

[Hint: Do not combine the answer as a single fraction]

Question 5 (13 marks)
(a) Evaluate $\int_{0}^{\frac{\pi}{4}} \sec ^{2} x \cdot e^{\tan x} d x$ using the substitution $u=\tan x$.

Leave your answer in exact form.
(b)

$$
\text { Given } y=e^{\sin x} \text {, solve } \frac{d^{2} y}{d x^{2}}-y=0 \text { for } 0 \leq x \leq 2 \pi
$$

(c)

$\triangle A B C$ is isosceles with $A C=B C=10$,
$\angle A B C=\angle C A B=\pi / 6$, $A D=x$.
$A E D$ and $B D F$ are sectors of circles with radii $A D$ and $D B$ respectively.
(i) Find an expression for $B D$.
(ii) Show that the sum of the areas of the sectors $A E D$ and $B D F$ is given by $\frac{\pi}{12}\left(2 x^{2}-20 \sqrt{3} x+300\right) \quad \mathrm{cm}^{2}$

SECTION B (continued)

Question 6 (12 marks)

Marks
(a) (i) Find $\int \cos ^{2} \theta d \theta$
(ii) Hence, find $\int \frac{d x}{\left(1+x^{2}\right)^{2}}$ using the substitution $x=\tan \theta$
(b) (i) Sketch the graph of the function $f(x)=e^{x}-4$, showing clearly the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes.
(ii) On the same diagram, sketch the graph of the inverse function, $y=f^{-1}(x)$, showing clearly the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes.
(iii) Show that the x coordinate of any point of intersection of the graphs $y=f(x)$ and $y=f^{-1}(x)$ satisfies the equation $e^{x}-x-4=0$.

SECTION C (Use a SEPARATE writing booklet)

Question 7 (7 marks)
(a) The region bounded by $y=\log _{e} x, x=2, x=5$ and the x axis is rotated about the x axis.

Use the Trapezoidal Rule with four function values to find an approximation to this volume.

Express your answer correct to 2 decimal places.

Find the size of the shaded area, correct to 2 decimal places.

SECTION C (continued)

Question 8 (9 marks)
(a)

Consider the above graph of $y=f(x)$. The value $x=a$ shown on the x axis is taken as the first approximation to the solution $x=b$ of $f(x)=0$.

Is the second approximation obtained by Newton's Method a better approximation to b than the first approximation?

Justify your answer (using the diagram in your answer).
(b) Consider $\tan ^{-1} y=2 \tan ^{-1} x$
(i) Express y as a function of x, independent of any trigonometric ratio.
(ii) Show that the function has no turning points.
(iii) State the domain of the function.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\text { NOTE: } \ln x=\log _{e} x, x>0
$$

SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS
2004
higher school certificate ASSESSMENT TASK \# 2

Mathematics Extension 1

Sample Solutions

Mathematics Extension 1

Assessment 2
Year 122004.

Question 1

(a) $2 e^{\frac{\pi}{2}}+C$
(b) $\quad\{x: 0<x \leq 1\}$
(c)
(i) $\frac{3}{2} \ln \left(4+x^{2}\right)$
(ii) $\frac{3}{2} \tan ^{-1} \frac{x}{2}$
(d) $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}} \sin ^{-1} x}$
(e) $\quad \tan \theta=\sin 2 \theta \quad 0<\theta<\pi$

$$
\tan \theta-\sin 2 \theta=0
$$

$\frac{\sin \theta}{\cos \theta}-2 \sin \theta \cos \theta=0$
$\sin \theta(\sec \theta-2 \cos \theta)=0$

$$
\begin{aligned}
\therefore \sin \theta & =0 \\
\theta & =0, \pi
\end{aligned}
$$

However $0<\theta<\pi$.

$$
\begin{aligned}
\therefore \sec \theta-2 \cos \theta & =0 \\
1-2 \cos ^{2} \theta & =0 \\
\cos ^{2} \theta & =\frac{1}{2} \\
\cos \theta & = \pm \frac{1}{\sqrt{2}} \\
\therefore \theta & =\frac{\pi}{4}, \frac{3 \pi}{4}
\end{aligned}
$$

Question 2

(a) $\tan 75^{\circ}=\tan \left(30^{\circ}+45^{\circ}\right)$

$$
\begin{aligned}
& =\frac{\tan 30^{\circ}+\tan 45^{\circ}}{1-\tan 30^{\circ} \tan 45^{\circ}} \\
& =\frac{\frac{1}{\sqrt{3}}+1}{1-\frac{1}{\sqrt{3}} \cdot 1} \\
& =\frac{1+\sqrt{3}}{\frac{\sqrt{3}}{\sqrt{3}-1}} \\
& =\frac{\sqrt{3}+1}{\sqrt{3}-1}
\end{aligned}
$$

(b)(i) Let $u=\tan \theta$

$$
\begin{aligned}
\frac{d u}{d \theta} & =\sec ^{2} \theta \\
y & =u^{3} \\
\frac{d y}{d u} & =3 u^{2} \\
\frac{d y}{d x} & =\frac{d u}{d \theta} \cdot \frac{d y}{d u} \\
& =\sec ^{2} \theta \cdot 3 u^{2} \\
& =3 \sec ^{2} \theta \cdot \tan ^{2} \theta \\
& =3 \sec ^{2} \theta\left(\sec ^{2} \theta-1\right)
\end{aligned}
$$

$$
\therefore \frac{d}{d \theta} \tan ^{3} \theta=3 \sec ^{2} \theta\left(\sec ^{2} \theta-1\right)
$$

(ii) $\frac{d}{d \theta} \tan ^{3} \theta=3 \sec ^{2} \theta\left(\sec ^{2} \theta-1\right)$

$$
\begin{aligned}
\therefore \int 3 \sec ^{4} \theta-3 \sec ^{2} \theta d \theta & =\tan ^{3} \theta+C \\
\int 3 \sec ^{4} \theta d \theta-\int 3 \sec ^{2} \theta d \theta & =\tan ^{3} \theta+C
\end{aligned}
$$

$$
\int \sec ^{4} \theta d \theta-\int \sec ^{2} \theta d \theta=\frac{1}{3} \tan ^{3} \theta+C
$$

$$
\int \sec ^{4} \theta d \theta=\int \sec ^{2} \theta d \theta+\frac{1}{3} \tan ^{3} \theta+C
$$

$$
=\tan \theta+\frac{1}{3} \tan ^{3} \theta+C
$$

$\therefore \int_{0}^{\frac{\pi}{4}} \sec ^{4} \theta d \theta=\left[\tan \theta+\frac{1}{3} \tan ^{3} \theta\right]_{0}^{\frac{\pi}{4}}$
$=\left(\tan \frac{\pi}{4}+\frac{1}{3} \tan ^{2} \frac{\pi}{4}\right)-\left(\tan 1+\frac{1}{3} \tan ^{2} 1\right)$
$=\frac{1}{3}+1$
$=1 \frac{1}{3}$
(c) Let $u=\tan x$

$$
\begin{aligned}
\frac{d u}{d x} & =\sec ^{2} x \\
v & =e^{2 x} \\
\frac{d v}{d x} & =2 e^{2 x} \\
\frac{d y}{d x} & =\frac{v \cdot \frac{d u}{d x}-u \cdot \frac{d v}{d x}}{v^{2}} \\
& =\frac{\left(e^{2 x}\right)\left(\sec ^{2} x\right)-(\tan x)\left(2 e^{2 x}\right)}{\left(e^{2 x}\right)^{2}} \\
& =\frac{\sec ^{2} x-2 \tan x}{e^{2 x}} \\
& =\frac{\left(\tan ^{2} x+1\right)-2 \tan x}{e^{2 x}} \\
& =\frac{\tan ^{2} x-2 \tan x+1}{\left(e^{x}\right)^{2}} \\
& =\frac{(\tan x-1)^{2}}{\left(e^{x}\right)^{2}} \\
& =\left(\frac{\tan ^{2} x-1}{e^{x}}\right)^{2}
\end{aligned}
$$

(d)

$$
y=e^{-m x}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=-m e^{-m x} \\
& \frac{d^{2} y}{d x^{2}}=m^{2} e^{-m x} \\
& m^{2} e^{-m x}+2\left(-m e^{-m x}\right)-15 e^{-m x}=0 \\
& e^{-m x}\left(m^{2}-2 m-15\right)=0 \\
& \therefore e^{-m x}=0 \\
& \text { no solution } \\
& \therefore m^{2}-2 m-15=0 \\
&(m-5)(m+3)=0 \\
& m=5,-3
\end{aligned}
$$

Question 3

(a) $\int_{\frac{3 \sqrt{3}}{2}}^{3} \frac{2}{\sqrt{9-x^{2}}} d x=2 \int_{\frac{3 \sqrt{3}}{2}}^{3} \frac{1}{\sqrt{9-x^{2}}} d x$
$=2 \int_{\frac{3 \sqrt{3}}{2}}^{3} \frac{1}{\sqrt{3^{2}-x^{2}}} d x$
$=2\left[\sin ^{-1} \frac{x}{3}\right]_{\frac{3 \sqrt{3}}{2}}^{3}$
$=2\left(\sin ^{-1} \frac{3}{3}-\sin ^{-1} \frac{3 \sqrt{3}}{6}\right)$
$=2\left(\sin ^{-1} 1-\sin ^{-1} \frac{\sqrt{3}}{2}\right)$
$=2\left(\frac{\pi}{2}-\frac{\pi}{3}\right)$
$=\frac{\pi}{3}$
(b) $2 \sin \theta=\tan \theta$

$$
2 \sin \theta=\frac{\sin \theta}{\cos \theta}
$$

$2 \sin \theta \cos \theta-\sin \theta=0$
$\sin \theta(2 \cos \theta-1)=0$
$\therefore \sin \theta=0$
$\theta=\pi n+(-1)^{n} \sin ^{-1}(0), \quad n \in Z$
$=\pi n+(-1)^{n}(0)$
$=\pi n$
$\therefore 2 \cos \theta-1=0$

$$
\cos \theta=\frac{1}{2}
$$

$$
\theta=2 \pi n \pm \cos ^{-1}\left(\frac{1}{2}\right), \quad n \in \mathrm{Z}
$$

$$
=2 \pi n \pm \frac{\pi}{3}
$$

(c) $2 \ln (3 x+1)-\ln (x+1)=\ln (7 x+4)$

$$
\begin{aligned}
\frac{(3 x+1)^{2}}{x+1} & =7 x+4 \\
9 x^{2}+6 x+1 & =(x+1)(7 x+4) \\
9 x^{2}+6 x+1 & =7 x^{2}+11 x+4 \\
2 x^{2}-5 x-3 & =0 \\
(2 x+1)(x-3) & =0 \\
\therefore 2 x+1=0 \quad & \text { or } \quad x-3=0 \\
x=-\frac{1}{2} & x=3
\end{aligned}
$$

Since $x>0$ a log of a negative is undefined, therefore $x=3$ is the only solution.
(d) $\frac{1}{2} \ln \left(x^{2}+2 x-5\right)+C$

24
(i) $-i \leqslant x \leqslant 1$
b)

$$
\text { b) } \begin{align*}
y & =3^{x} \tag{1}\\
x & =\log _{3 y} y \\
& =\frac{\log _{e} y}{\log _{3} 3} \\
\frac{d x}{d y} & =\frac{1}{\ln 3 y} \\
\frac{d y}{d x} & =\frac{d 3^{x}}{d x}=3^{x} \ln 3 \tag{2}
\end{align*}
$$

(c)

$$
\begin{align*}
& x=\log _{4}\left(\frac{9 \times 2}{6^{2}}\right) \\
& x=\log _{4} 2 \\
& 4^{x}=2 \\
& x=\frac{1}{2} \tag{2}
\end{align*}
$$

(d)

$$
\begin{align*}
f[g(x)] & =(2 x+3)^{2}+2 \\
& =4 x^{2}+12 x+11 \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \text { (e) } y=\ln 2 x+3 \ln (x-1)-\frac{1}{2} \ln (x+1) \\
& \frac{y^{\prime}=\frac{1}{x}+\frac{3}{x-1}-\frac{1}{2(x-1)}}{25(a) \int_{0}^{1 / 4} \sec ^{2} x e^{\tan x} d x} \tag{3}\\
& =\int_{0}^{10} \sec ^{2} x e^{u} \frac{d u}{\sec ^{2} x}
\end{align*} \quad \begin{array}{ll}
\frac{d u}{d x}=\sec ^{2} x \\
=\left[e^{4}\right]_{0}^{1} & x=\frac{d u}{\sec ^{2} x} \\
=e-1 & x=0 u=0
\end{array}
$$

$$
=e-1
$$

b)

$$
\begin{aligned}
& y=e^{\sin x} \\
& y^{\prime}=e^{\sin x} \operatorname{Cos} x \\
& y^{\prime \prime}=\operatorname{Cos} x e^{\sin x} \operatorname{Cos} x+e^{\sin x}-\sin x \\
& y^{\prime \prime}-y=\cos ^{2} x e^{\sin x} \sin x e^{\sin x}-e^{\sin x} \\
& e^{\sin x}\left(\cos ^{2} x-\sin x-1\right)=0 \\
& 1-\operatorname{Sin}^{2} x-\sin x-1=0\left(e^{\sin x} \neq 0\right) \\
& -\sin x(\sin x+1)=0 \\
& \sin x=0 \text { or } \sin x=-1 \\
& x=0, \pi, 2 \pi \text { or } 3 \pi / 2
\end{aligned}
$$

(3)

Q 5 (c)

$$
\begin{align*}
& \text { (i) In } \triangle A B C \angle A C B=\frac{2 \pi}{3} \\
& A B^{2}=10^{2}+10^{2}-2 \times 100 \operatorname{Cos}^{\frac{2 \pi}{3}}(\cos \text { Rule } \\
& A B=10 \sqrt{3} \\
& D B=10 \sqrt{3}-x \tag{3}\\
& \text { (ii) Areas }(A E D+B D F)=\frac{x^{2} \cdot \pi}{2}+\frac{1}{2}(10 \sqrt{3}-x)^{2} \times \frac{\pi}{6} \\
& =\frac{\pi}{12}\left(2 x^{2}+300-20 \sqrt{3} x\right) \tag{3}\\
& \frac{26(a)(1) \operatorname{Cos} 2 \theta=2 \operatorname{Cos}^{2} \theta-1}{\int \cos ^{2} \theta d o=\frac{1}{2} \int(\cos 2 \theta+1) d \theta} \\
& =\frac{1}{2}\left(\frac{1}{2} \operatorname{Sin} 2 \theta+\theta\right)+C
\end{align*}
$$

$$
\begin{aligned}
& \text { (ii) } \int \frac{d x}{\left(1+x^{2}\right)^{2}} \\
& x=\tan \theta \\
& \frac{d x}{d \theta}=\sec ^{2} \theta \\
& d x=\sec ^{2} \theta d \\
& =\int \frac{\sec ^{2} \theta}{\left(1+\tan ^{2} \theta\right)^{2}} d \theta \\
& =\int \frac{\sec ^{2} \theta}{\left(\sec ^{2} \theta\right)^{2}} d \theta \\
& =\int \frac{x_{1}}{\sec ^{2} \theta} d \theta=\int \cos ^{2} \theta d \theta \\
& =\frac{1}{2}\left(\frac{1}{2} \sin 2 \theta+\theta\right)+c \text { (from (i) }
\end{aligned}
$$

(iii) The curves meet on the lure $y=x$.

$$
\begin{aligned}
& e^{x}-4=x \\
& e^{x}-x-4=0
\end{aligned}
$$

Questont
(a) $\quad y \uparrow \quad y=\operatorname{lo} x$.

$$
\begin{aligned}
& V \div \pi \int_{1}^{5}(\ln x)^{2} d x \text {. } \\
& =\pi \cdot \frac{1}{2}\left[(\ln 2)^{2}+(\ln 5)^{2}\right. \\
& \left.+2\left[(\ln 3)^{2}+\left(\ln _{4}\right)^{2}\right]\right] \\
& =40 \cdot 65^{5} \cdot \mathrm{n}^{3} \text { (2.D.P.) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { Shaded area }=\left|\int_{-\frac{1}{2}}^{0} x(3-x) d x\right|+\int_{0}^{3} x(3-x) d x+\mid \int_{3}^{+} x(3-x) d x \text {. } \\
& =\left|\left[\frac{32^{2}}{2}-\frac{x^{3}}{3}\right]_{-1}^{0}\right|+\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{3}+\left|\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{3}^{4}\right| \\
& =\left|0-\left(\frac{3 / 4}{2}+\frac{1 / 8}{3}\right)\right|+\left(\frac{3 \times 9}{2}-\frac{27}{3}\right)+\left\lvert\,\left(24-\frac{64}{3}\right)-\left(\frac{3 x-1}{2}-\frac{27}{3}\right.\right. \\
& =\frac{5}{12}+\frac{9}{2}+\frac{11}{6} \\
& =\frac{5+54+22}{12} \\
& =\frac{81}{12} \\
& =\left|\frac{\frac{27}{4} \mathrm{~m}^{2}}{4}\right| \text { a }\left|\underline{\left\lvert\, \frac{3}{3}+\mathrm{a}^{2}\right.}\right|=\left|6.75 \mathrm{a}^{2}\right|
\end{aligned}
$$

Quistion 8.
(a)

No. The tangent to $y=f(x)$ when $x=a$ will cras thex-axis freether fuanb than a, caused by the himming point between the rect and the ist affrocianation.
(3)

$$
\text { (b) (1) } \begin{align*}
\tan ^{-1} y & =2 \tan ^{-1} x . \\
\therefore \tan \left(\tan ^{-1} y\right) & =\tan \left(2 \tan ^{-1} x\right) \\
y & =\frac{2 \tan \left(\tan ^{-1} x\right)}{1-\tan ^{2}\left(\tan ^{-1} x\right)} \\
\therefore y & =\frac{2 x}{1-x^{2}} \tag{2}
\end{align*}
$$

misture. a dragrai-
(ii) now $\frac{d y}{d x}=\frac{\left(1-x^{2}\right) \cdot 2-2 x \cdot-2 x}{\left(1-x^{2}\right)^{2}}$

$$
\begin{align*}
& =\frac{2-2 x^{2}+4 x^{2}}{\left(1-x^{2}\right)^{2}} \\
& =\frac{2\left(1+x^{2}\right)}{\left(1-x^{2}\right)^{2}} \tag{3}
\end{align*}<\text { mut get thei }
$$

Clealy for $\frac{d y}{d x}=0,1+x^{2}=0$ which hasso real oelutions.
$\therefore \frac{d y}{d x} \neq 0 \therefore$ no liuning pouts.
(iin) Domain: All real $\neq \pm 1$.

