

SYDNEY BOYS HIGH SCHOOL
MOORE PARK, SURRY HILIS

2005

YEAR 12

ASSESSMENT TASK \#2

Mathematics

Extension 1

General Instructions

- Working time - 90 minutes.
- Reading Time - 5 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work
- Hand in your answer booklets in 3 sections. Section A (Question 1), Section B (Question 2) and Section C (Question 3)

Total Marks - 76

- Attempt questions 1 - 3
- All sections are NOT of equal value.

Examiner: A. Fuller

Total marks - 76

Attempt Questions 1-3
All questions are NOT of equal value

Answer each SECTION in a SEPARATE writing booklet.

Section A

Marks

Question 1 (22 marks)
(a) Differentiate the following:

1) $\tan 2 x$
ii) $\quad \frac{1}{e^{\frac{x}{2}}}$
iii) $\ln (1-2 x)^{2}$
iv) $\quad \sin ^{2}(3 x)$
(b) Find the following:
i) $\quad \int \cos \frac{x}{2} d x$
ii) $\int e^{1-4 x} d x$
iii) $\int \cot x d x$
iv) $\quad \int 3 x . e^{x^{2}} d x$
(c) Find $\lim _{x \rightarrow o} \frac{\sin 2 x}{x}$

1
(d) i) Show that the equation $x \cdot \ln x-1=0$ has a root between 2 $x=1$ and $x=2$.
ii) Using $x=2$ as the first approximation, apply Newton's method once to obtain a better approximation of this root. (correct to two decimal places)
(e) i) Show that $\frac{2 x+1}{x+2}=2-\frac{3}{x+2}$
ii) Hence or otherwise, find the exact value of $\int_{0}^{3} \frac{2 x+1}{x+2} d x$. 3

End of Section A

Section B (Use a SEPARATE writing booklet)

Question 2 (28 marks)
(a) Consider the function $f(x)=\log _{e}(3 x-6)$
i) State the largest possible domain of $f(x)$.
ii) Sketch the curve $y=f(x)$. 2
iii) Find the equation of the normal to the curve at 3 the point where $x=4$
(b)

Given that the equation of the above curve is of the form
2 $y=a \cos (b x)$ find the values of a and b.
(c) Consider the function $f(x)=x e^{-x}$
i) Find the coordinates of any stationary points and determine their nature.
ii) Show that there is a point of inflection at $x=2$
iii) Hence sketch the graph of $y=f(x)$ showing all essential 3 features.
(d) i) Evaluate $\int_{0}^{\frac{\pi}{8}} \sin ^{2} 3 x d x$
ii) Show that $\lim _{h \rightarrow 0} \frac{1-\cos 2 h}{h^{2}}=2$
(e) MN is a tangent at R and PQRS is a cyclic quadrilateral. PS is parallel to $Q R$ and $Q T$ is parallel to $S R$

Prove that:
i) QR bisects $\angle P Q T \quad 2$
ii) $\mathrm{MN} \| \mathrm{PT}$
(f) Prove by Mathematical Induction that $2^{3 n-1}+3$ is 4 divisible by 7 for all positive integers $n \geq 1$.

Section C (Use a SEPARATE writing booklet)

Question 3 (26 marks)
(a) An eight-person committee is to be formed from a group of 10 women and 15 men . In how many ways can the committee be chosen if the committee must contain:
i) 4 men and 4 women 1
ii) more women than men 2
iii) at least 2 women 2
(b) Using the results
$\frac{d\left(e^{x} \sin x\right)}{d x}=e^{x} \cos x+e^{x} \sin x$
and $\frac{d\left(e^{x} \cos x\right)}{d x}=e^{x} \cos x-e^{x} \cdot \sin x$
evaluate $\int_{0}^{\frac{\pi}{2}} e^{x} \cos x d x$
(c) A car can hold six people, three in the front and three in the back. Only two of the six people can drive. In how many different seating arrangements can they complete the journey?
(d) The portion of the curve $y=\sin x+\cos x$ between $x=0$ and $x=\frac{\pi}{2}$ is rotated about the x-axis. Show that the volume of the solid of revolution generated is $\frac{\pi}{2}(\pi+2)$ cubic units.
(e) Using a first approximation $x_{1} \neq 0$, show that the second approximation, x_{2}, is such that $\left|x_{2}\right|>\left|x_{1}\right|$ when using Newton's method to obtain the zero of $\sqrt[3]{x}$
(f) Prove by Mathematical Induction that $\cos x+\cos 3 x+\cos 5 x+\ldots \ldots+\cos (2 n-1) x=\frac{\sin 2 n x}{2 \sin x}$,
for $n \geq 1$ (where n is an integer).
(g) If $y=\frac{1}{2}\left(e^{x}-e^{-x}\right)$, prove that $x=\log _{e}\left(y+\sqrt{y^{2}+1}\right)$
(h)

$A B C D$ is a cyclic quadrilateral. The diagonals $A C$ and $B D$ intersect at right angles at X. M is the midpoint of $B C . M X$ produced meets $A D$ at N. Prove that:
i) $\angle \mathrm{MBX}=\angle \mathrm{MXB}$
ii) MN is perpendicular to AD

2005

YEAR 12

ASSESSMENT TASK \#2

Mathematics Extension 1

Sample Solutions

Section	Marker
A	AMG
B	FN
\mathbf{C}	EC

Question 1
(a) (1) $\frac{d}{d x} \tan 2 x=2 \sec ^{2} 2 x$ (D)
(II)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{e^{x / 2}}\right) & =\frac{d}{d x} e^{-\frac{x}{2}} \\
& =-\frac{1}{2} e^{-x / 2} \\
& =\frac{-1}{2 e^{\frac{x}{2}}}
\end{aligned}
$$

(iII)

$$
\begin{aligned}
& \frac{d}{d x} \ln (1-2 x)^{2} \\
& =\frac{1}{\left(1-2_{x}\right)^{2}} \times \frac{d}{d x}(1-2 x)^{2} \\
& =\frac{2(1-2 x)_{x}-2}{(1-2 x)^{x}} \\
& =\frac{-4}{1-2 x} \\
& \text { (iv) } \frac{d}{d x} \sin ^{2}(3 x) \\
& =2 \cos (3 x) \sin (3 x) \times 3 \\
& =3 \sin (6 x) \\
& \frac{d}{d x} \sin ^{2}(3 x)
\end{aligned}
$$

(iii) $\int e^{1-4 x} d x=-\frac{1}{4} e^{1-4 x}+c$
(iii)

$$
\begin{align*}
\int \cot x d x & =\int \frac{\cos x}{\sin x} d x \tag{2}\\
& =\ln \sin x+C
\end{align*}
$$

[

$$
\begin{aligned}
\int 3 x \cdot e^{x^{2}} d x & =\frac{3}{2} \int 2 x e^{x^{2}} d x \\
& =\frac{3}{2} e^{x^{2}}+c
\end{aligned}
$$

(c) $\begin{aligned} \lim _{x \rightarrow 0} \frac{\sin 2 x}{x} & =2 \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \\ & =2 \lim _{u \rightarrow 0} \frac{\sin u}{u}\end{aligned}$
(Suce if $u=\ln$, them $u \rightarrow \cos x-20$)

$$
\begin{aligned}
& =2 \times 1 \\
& =2
\end{aligned}
$$

(2)

Qu 1 contel
(d) $(1) x \cdot \ln x-1=0$

When $x=1$ Lits $=1$. Mul -1

$$
=1 \times 0-1
$$

$$
=-1
$$

When $x=2 \quad \angle A S=2 \ln 2-1$

$$
=0.386
$$

Aince curve is contionous, and signchanges, \therefore there is a root in $[1,2] 2$
(ii)

$$
\begin{aligned}
f(x) & =x \ln x-1 \\
f^{\prime}(x) & =x \cdot \frac{1}{x}+1 \cdot \ln x \\
& =1+\ln x
\end{aligned}
$$

Now $z_{2}=z_{1}-\frac{f\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}$
Let $z_{1}=2$

$$
\begin{aligned}
\therefore z_{2} & =2-\frac{\hat{f(2)}}{f^{\prime}(2)} \\
& =2-\frac{2 \ln 2-1}{1+\ln 2} \\
& =1.77
\end{aligned}
$$

(e) (1)

$$
\begin{align*}
\frac{2 x+1}{x+2} & =\frac{2 x+4-3}{x+2} \\
& =\frac{2(x+2)-3}{x+2} \\
& =2-\frac{3}{x+2} \tag{11}
\end{align*}
$$

(ii) $\int_{0}^{1} \frac{2 x+1}{x+2} d x=\int_{0}^{1}\left[2-\frac{3}{x+2}\right] d x$

$$
\begin{aligned}
& =[2 x-3 \ln (x+2)] \\
& =(2-3 \ln 3)-
\end{aligned}
$$

$$
(0-3 \ln 2)
$$

$$
=2-3 \ln 3+3 \ln 2
$$

$$
=2+3 \ln \frac{2}{3}
$$

QUESTION 2
(a) (i) $3 x-6>0$
$x>2$
(ii)

(iii) $\frac{d y}{d x}=\frac{3}{3 x-6}$
gradient of tangent $=\frac{1}{x-2}$
gradient of normal $=-x+2$
at $x=4$ grad of normal $=-2$ and $y=\log _{e} 6$
eqn. of normal is $y-\log _{e} 6=-2(x-4)$
$2 x+y-8-\ln 6=0$
(b) \quad period $=\frac{2 \pi}{b}=8$
$b=\frac{\pi}{4}$
$3=a \cos (b \times 1)$
$3=a \cos \frac{\pi}{4}$
$3=a \times \frac{1}{\sqrt{2}}$
$a=3 \sqrt{2}$
(c) (i)
$y=x e^{-x}$
$y^{\prime}=e^{-x}-x e^{-x}$
$y^{\prime}=e^{-x}(1-x)$
$y^{\prime \prime}=e^{-x}-e^{-x}+x e^{-x}$
$y^{\prime \prime}=e^{-x}(-1-1+x)$
$y^{\prime \prime}=e^{-x}(-2+x)$
$y^{\prime}=0$ when $x=1$ and at $x=1 y^{\prime \prime}=\frac{1}{e}(-1), y^{\prime \prime}<0$
\therefore max. turning point at $\mathrm{x}=1$
(ii) $y^{\prime \prime}=0$ when $x=2$,
$y^{\prime \prime}<0$ when $x=1$ and >0 when $x=3\left(\frac{1}{e} \times 1\right)$
\therefore change in concavity-point of inflexion at $\mathrm{x}=2$ (2)
(iii)

(d) (i) $\int_{0}^{\frac{\pi}{8}} \sin ^{2} 3 x d x=\frac{1}{2} \int_{0}^{\frac{\pi}{8}} 1-\cos 6 x d x$

$$
\begin{align*}
& =\frac{1}{2}\left[x-\frac{1}{6} \sin 6 x\right]_{0}^{\frac{\pi}{8}} \\
& =\frac{1}{2}\left[\frac{\pi}{8}-\frac{1}{6} \sin \frac{3 \pi}{4}\right]-\frac{1}{2}[0-0] \\
& =\frac{1}{2}\left[\frac{\pi}{8}-\frac{1}{6 \sqrt{2}}\right] \\
& =\frac{\pi}{16}-\frac{\sqrt{2}}{24} \tag{3}
\end{align*}
$$

(ii) $\operatorname{Lim}_{h \rightarrow 0} \frac{1-\cos 2 h}{h^{2}}$
$=\operatorname{Lim}_{h \rightarrow 0} \frac{2 \sin ^{2} h}{h^{2}}$
$=2 \times \operatorname{Lim}_{h \rightarrow 0} \frac{\sinh }{h} \times \frac{\sinh }{h}$
$=2 \times 1 \times 1$
$=2$
(e) (i) Let $\angle \mathrm{TQR}=\mathrm{a}$
\angle QRS $=$ a(altemate \angle)
$\angle P S R=\pi-$ a(cointerior)
$\angle P Q R=$ a(opp. \angle in cyclic quad)
so $P Q$ bisects $\angle P Q T$
(2)
(ii) Join PT
from (i) $P Q R=\angle P T R=a$ (angles on $\operatorname{arc} P R$)
$\angle R Q T=\angle T R N=a(\angle$ in opp. segment $)$
so $P T \| M N$ as $\angle \mathrm{PTR}=\angle \mathrm{TRN}$ (all. $\angle \mathrm{s}$)
(2)
(f) When $n=1,2^{3 \times 1-1}+3=7$

Statement true for $n=1$
Assume statement true for $n=k$
$2^{3 k-1}+3=7 A$ where A is a positive integer.
If $n=k+1$
$2^{3(k+1)-1}+3=2^{3 k-1} \times 2^{3}+3$
$=8(7 \mathrm{~A}-3)+3$
$=56 \mathrm{~A}-21$ which is divisible by 7
$2^{3(k+1)-1}+3$ is divisible by 7
If the statement is true for $n=k$, it is true for $n=k+1$. So, by Mathematical Induction it is true for any integer $n \geq 1$
[Section C.]

Question (3).

$M(15)$	$W(10)$

(i) $\binom{15}{4} \times\binom{ 10}{4}=1365 \times 210$
(ii)
$5 W 3 M \quad\binom{15}{3}\binom{10}{5}=455 \times$

$$
114660
$$

$6 W 2 M \quad\binom{15}{2}\binom{10}{6}=22050$
$7 \mathrm{w} 1 \mathrm{~m} \quad\binom{15}{1}\binom{10}{7}=1800$
(iii) $\frac{8 \mathrm{~W}\binom{10}{8}}{6 \mathrm{~m} 2 \mathrm{~W} \quad \mathrm{Tota}_{0} 1}=138555$
$4 m 4 w, 3 m 5 w, 2 m 6 w$ $1 M \rightarrow W, 8 W$.

$$
\begin{aligned}
& \binom{15}{6}\binom{10}{2}+\binom{15}{5}\binom{10}{3}+\binom{15}{4}\binom{10}{4} \\
& +\binom{15}{3}\binom{10}{5}+\binom{15}{2}\binom{10}{6}+\binom{15}{1}\binom{10}{7} \\
& +\binom{10}{8} \\
& =225225+\cdots+45 \\
& =1010790 \\
& \hline \text { (c) }
\end{aligned}
$$

		Y//分

2 choices for the driver and the rest of the passengers can arrange themselves in 5! ways

$$
\begin{aligned}
\text { lie } & =2 \times 5! \\
& =240 .
\end{aligned}
$$

(d)

$$
\begin{equation*}
\int\left(e^{x} \cos x+e^{x} \sin x\right)=e^{x} \sin x \tag{b}
\end{equation*}
$$

$$
\int\left(e^{x} \cos x-e^{x} \sin x\right)=e^{x} \sin
$$

$$
\therefore \quad \int_{0}^{\pi / 2} e^{x} \cos ^{x} d x=\left[\frac{e^{x}}{2}\left(\sin x+\delta_{0} x\right)_{0}^{\frac{\pi / 2}{7}}\right.
$$

$$
=\frac{e^{\pi / 2}}{2}-\frac{1}{2}
$$

$$
=\frac{1}{2}\left(e^{\pi / 2}-1\right)
$$

$$
v=\pi \int_{0}^{\pi / 2} y^{2} d x=\pi \int_{0}^{\pi / 2}(1+\sin 2 x)
$$

$$
=\pi\left[x-\frac{\cos 2 x}{2}\right]_{0}^{\pi / 2}
$$

$$
=\left(\frac{\pi}{2}+\frac{1}{2}\right)-\left(-\frac{1}{2}\right)
$$

$$
=\left|\frac{\pi / 2)-\left(e^{2}\right.}{}\right|^{2}
$$

Question (3). (e) $\text { e) } \begin{aligned} f(x) & =x^{1 / 3} \\ f^{\prime}(x) & =\frac{1}{3} x^{-2 / 3} \end{aligned}$ If x_{1} is the ist approx. then a better approx. x_{2} is given by $\begin{aligned} & \begin{aligned} & x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\ &=x_{1}-\frac{x_{1}^{1 / 3}}{\left(1 / 3 x^{-2 / 3}\right)} \\ &=x_{1}-3 x_{1}=-2 x_{1} \\ & \therefore\left\|x_{2}\right\|=1-2 x_{1}\|=2\| x_{1} \mid \\ & \text { i.e }\left\|x_{2}\right\|>\left\|x_{1}\right\| \end{aligned} \end{aligned}$ (f) Let $s(n)$ be the statement that $\begin{aligned} & \cos x+\cos 3 x+\cdots+\cos (2 n-1) x \\ & =\frac{\sin 2 \sin x}{2 \sin x} \\ & \text { For } n=1, \\ & \text { LHS }=\cos x \\ & \text { RHS }=\frac{\sin 2 x}{2 \sin x}=\frac{2 \sin x \cos }{x \sin x} \\ & =\cos x \end{aligned}$	$\therefore s(1)$ is true Ats ume $S(k)$ is true Consider $\mu=k+1$ Now $s(k+1)=$ $\begin{aligned} & N \cos x+\cos 3 x+\cdots+\cos (2 k+1) x \\ & =\frac{\sin 2 k x}{2 \sin x}+\sin (2 k+1) x \\ & =\frac{\sin 2 k x+2 \sin x \cos (2 k+1) x}{2 \sin x} \\ & =\frac{\sin 2 k x+2 \sin x[\cos 2 k x \cos x-\sin x}{2 \sin x} \\ & =\frac{\sin 2 k x(1-2 \sin x)+\cos 2 k x \sin 2 k}{2 \sin x} \\ & =\frac{\sin 2 k x(\sin 2 x)+\cos (2 k x) \sin 2 x}{2 \sin x} \\ & =\frac{\sin (2 k x+2 x)}{2 \sin x} \\ & =\frac{\sin 2(k+1) x}{2 \sin x} \end{aligned}$ $S(k+1)$ is the we if $S(k)$ is true. \therefore By M.I. $S(n)$ is true $\forall n \geq 1$. where $n \in z^{+}$	$\begin{aligned} & (g) \quad 2 y=e^{x}-\frac{1}{e^{x}} \\ & \therefore\left(e^{x} e^{x}=e^{2 x}-1\right. \\ & \Rightarrow e^{x}=\frac{2 y \pm \sqrt{4 y^{2}+4}}{2} \\ & e^{x}=y \pm \sqrt{y^{2}+1} \\ & \because e^{x}>0 \quad \therefore e^{x}=y+\sqrt{y^{2}+1} \\ & \therefore x=\ln \left(y+\sqrt{y^{2}+1}\right) . \end{aligned}$ (h) $\Delta C \times B$ is a rt. $\angle \Delta$ (hin $x]$ therefore B, C, x are concyclic pts. and $\because B C$ subtends a right $<\Rightarrow B C$ is a diameter. $M C=M B$ M is the centre and $M X$ is a lso a radm. lie $\triangle M B X$ is isosceles. $\therefore \angle M B X=\angle M \times B .$ (ii) In $\triangle B C X$ Let $\angle B=\alpha$. $\therefore \angle B C A=90-\alpha\left(<\operatorname{sum}_{0 f \Delta}\right)$ and $\angle B C A=\angle B D A=90-\alpha$ (\angle in same seg). A 1 so $\begin{aligned} & \angle B \times M=\angle D \times N=\alpha \text { (rert.opp) } \\ & \therefore \angle X N D=90^{\circ} \Rightarrow M N \perp A D . \end{aligned}$

