

SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

Mathematics

Extension 1

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.
- Hand in your answer booklets in 3 sections. Section A (Question 1), Section B (Question 2) and Section C (Question 3)

Total Marks - 74

- Attempt questions 1-3
- All sections are not of equal value

Examiner: R.Boros

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{a x} \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

Section A - Start a new booklet

Question 1. (22 marks)

a)

Differentiate the following expressing your answer in its simplest form:
(i) $y=\ln (x+1)$
(ii) $y=\sin ^{-1} 2 x$
b) Evaluate (leaving your answer in exact form).
(i) $\int_{0}^{2} \frac{t}{t^{2}+1} d t$
(ii) $\int_{0}^{1} \frac{d x}{\sqrt{2-x^{2}}}$
c) Find the equation (written in general form) of the normal to the curve $y=\tan ^{-1} 2 x$, at the point where $x=\frac{1}{2}$.
d) Find the equation (written in general form) of the tangent to $y=e^{\tan ^{-1} x}$ at the point where the curve cuts the y axis.
e) (i) Differentiate $x \tan ^{-1} 3 x$ with respect to x.
(ii) Hence, or otherwise, evaluate $\int_{0}^{\frac{1}{3}}\left(\tan ^{-1} 3 x+\frac{3 x}{1+9 x^{2}}\right) d x$
f) The function $y=e^{-k x}$ satisfies $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=0$
(i) Show that $k^{2}-4 k+3=0$
(ii) Hence, find the possible values of k.

Section B - Start a new booklet

Question 2. (25 marks)

a) Find $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$.
b) Evaluate $\cos \left(\sin ^{-1}\left(-\frac{1}{2}\right)\right)$, leaving your answer in exact form.
c) Without using a calculator, show that:

$$
\tan ^{-1}\left(\frac{1}{2}\right)-\tan ^{-1}\left(\frac{1}{4}\right)=\tan ^{-1}\left(\frac{2}{9}\right)
$$

d) Solve the equation:

$$
\ln \left(x^{3}+19\right)=3 \ln (x+1)
$$

e) Taking $x=3$ as the first approximation to the root of $x^{2}-\ln x-10=0$, use Newtons' Method once to find another approximation correct to two decimal places.
f) What is the domain of the function $f(x)=\frac{x}{\ln (x-1)}$.
g) Consider the function $y=2 \sin ^{-1}\left(\frac{x}{3}\right)$.
(i) State the domain.
(ii) State the range.
(iii)Hence, or otherwise, sketch the function.

Question 2 continues overleaf.

h) A function is given by the rule $f(x)=\frac{x+1}{x+2}$.

Find the rule for the inverse function $f^{-1}(x)$.
i) The diagram below shows the graph of the function $y=x e^{-x}$.

A is a stationary point on the curve.
(i) Show that A is the point $\left(1, \frac{1}{e}\right)$.
(ii) State the range of the function $y=x e^{-x}$
(iii)How many real roots are there to the equation $x e^{-x}=k$ if
(a.) $0<k<\frac{1}{e}$
(b.) $k \leq 0$
(c.) $k>\frac{1}{e}$

End of Section B

$\underline{\text { Section C - Start a new booklet }}$

Question 3. (27 marks)

a) A cosine curve has an amplitude of 5 and a period of 3π. It has a minimum turning point at $(0,5)$. Find its equation.
b)

Two circles each with radius 2 cm intersect at P and Q . The common chord PQ subtends an angle θ radians at each centre.
(i) Show that the area Acm^{2} of the overlapping part of the circles in given by $A=4 \theta-4 \sin \theta$
(ii) If the three regions shown in the diagram all have the same area, show that $\theta-\sin \theta-\frac{\pi}{2}=0$
c) The area between the curve $y=\sin ^{2} x$ and the x-axis between $x=0$ and $x=\frac{\pi}{2}$, is rotated through one complete revolution about the x-axis.
(i) Find the exact value of the area involved.
(ii) Use Simpson's Rule with 3 function values to find an approximation to the volume of the solid of revolution leaving your answer in terms of π.

Question 3 continues overleaf.

d) Given $f(x)=\frac{8}{4+x^{2}}$.
(i) Show that $f(x)$ is an even function.
(ii) Sketch a graph of $y=f(x)$.
(iii)The line $y=1$ meets the curve at 2 points P and Q . Determine the x coordinates of P and Q .
(iv)Calculate the exact area of the region enclosed by the interval PQ and the arc PQ of the curve.
(v) The region in (iv) makes a revolution about the y-axis, show that the volume of the solid formed is $4 \pi(2 \ln 2-1)$ units 3.
e) (i) By using the Principle of Mathematical Induction, prove that:

$$
6\left(1^{2}+2^{2}+3^{2}+\ldots+n^{2}\right)=n(n+1)(2 n+1)
$$

(ii) Hence, find the value of the limit:

$$
\lim _{n \rightarrow \infty}\left(\frac{1^{2}+2^{2}+3^{2}+\ldots+n^{2}}{n^{3}}\right)
$$

End of Examination

Question 1.
a)i) $\frac{d y}{d x}=\frac{1}{x+1}$
ii)

$$
\begin{aligned}
y & =\sin ^{-1} \frac{x}{\frac{1}{2}} \\
\frac{d y}{d x} & =\frac{1}{\sqrt{\left(\frac{1}{2}\right)^{2}-x^{2}}} \\
& =\frac{1}{\sqrt{\frac{1}{4}-\frac{4 x^{2}}{4}}} \\
& =\frac{2}{\sqrt{1-4 x^{2}}}
\end{aligned}
$$

b) i) $\int_{0}^{2} \frac{t}{t^{2}+1} d t=\frac{1}{2} \int_{0}^{2} \frac{2 t}{t^{2}+1} d t$

$$
\begin{aligned}
& =\frac{1}{2}\left[\ln \left(t^{2}+1\right)\right]_{0}^{2} \\
& =\frac{1}{2}(\ln 5-\ln 1) \\
& =\frac{1}{2} \ln 5
\end{aligned}
$$

ii) $\int_{0}^{1} \frac{d x}{\sqrt{2-x^{2}}}=\int_{0}^{1} \frac{1}{\sqrt{\sqrt{2}^{2}-x^{3}}} d x$

$$
\begin{aligned}
& =\left[\sin ^{-1} \frac{x}{\sqrt{2}}\right]_{0}^{1} \\
& =\sin ^{-1} \frac{1}{\sqrt{2}}-\sin ^{-1} 0=\frac{\pi}{4} .
\end{aligned}
$$

好
c) Normal to $y=\tan ^{-1} 2 x$ at $x=2$

$$
\begin{aligned}
y & =\frac{1}{2}\left(2 \tan ^{-1} \frac{x}{2}\right) \\
\frac{d y}{d x} & =\frac{1}{2}\left(\frac{1}{\left(\frac{1}{2}\right)^{2}+x^{2}}\right) \\
& =\frac{1}{2} \times \frac{1}{\frac{1}{4}+\frac{4 x^{2}}{4}} \\
& =\frac{2}{1+4 x^{2}}
\end{aligned}
$$

Grad at $x=\frac{1}{2}$.

$$
\begin{aligned}
m & =\frac{2}{1+4\left(\frac{1}{2}\right)^{2}} \\
& =1
\end{aligned}
$$

$$
m_{1}=-1
$$

Point on curve at $x=$ 人

$$
\begin{aligned}
y & =\tan ^{-1}(1) . \\
& =\frac{\pi}{4} \\
\left(\frac{1}{2}\right. & \left., \frac{\pi}{4}\right) .
\end{aligned}
$$

Eqn of normal.

$$
\begin{aligned}
& y-\frac{\pi}{4}=-\left(x-\frac{1}{2}\right) \\
& y-\frac{\pi}{4}=-x+\frac{1}{2} \\
& x+y-\frac{\pi}{4}-\frac{1}{2}=0 \\
& 4 x+4 y-\pi-2=0
\end{aligned}
$$

Tangent to
d) $y=e^{\tan x}$ at $x=0$.

$$
\frac{d y}{d x}=e^{\tan ^{-1} x}\left(\frac{1}{1+x^{2}}\right)
$$

Grad at $x=0$.

$$
\begin{aligned}
m & =e^{\tan ^{-1} 0}\left(\frac{1}{1+0^{2}}\right) \\
& =e^{0} \\
& =1
\end{aligned}
$$

Point on curve at $x=0$

$$
\begin{aligned}
& y=e^{\tan ^{-1} 0} \\
&=1 \\
&(0,1)
\end{aligned}
$$

eau of tangent.

$$
\begin{aligned}
& y-1= \\
& x-y+1=0
\end{aligned}
$$

e)

$$
\text { 1) } \begin{aligned}
f(x) & =x \tan ^{-1} 3 x \\
& =\frac{1}{3} x \times 3 \tan ^{-1} \frac{x}{\frac{1}{3}} \\
f^{\prime}(x) & =\frac{1}{3} \times 3 \tan ^{-1} \frac{x}{\frac{1}{3}}+\frac{1}{3} x \frac{1}{\left(\frac{1}{3}\right)^{2}+x^{2}} \\
& =\tan ^{-1} 3 x+\frac{1}{3} \times \frac{9 x}{1+9 x^{2}} \\
& =\tan ^{-1} 3 x+\frac{3 x}{1+9 x^{2}}
\end{aligned}
$$

ii) $\int_{0}^{1} \tan ^{-1} 3 x+\frac{3 x}{1+9 x^{2}} d x=\left[x \tan ^{-1} 3 x\right]_{0}^{\frac{1}{3}}$

$$
=\frac{1}{3} \tan ^{-1} 1-0
$$

$$
=\frac{\pi}{12}
$$

f) i)

$$
\begin{aligned}
& \text { f)i) } y=e^{-k x} \\
& \frac{d y}{d x}=-k e^{-k x} \\
& \frac{d^{2} y}{d x^{2}}=k^{2} e^{-k x} \\
& \text { So } k^{2} e^{-k x}-4 k e^{-k x}+3 e^{-k x}=0 .
\end{aligned}
$$

Since $e^{-k x} \neq 0$. $\forall x$ we can divide through by
$e^{-k x}$

$$
\because \quad k^{2}-4 k+3=0
$$

$f(k) \quad k^{2}-4 k+3=0$
$(k-3)(k-1)=0$
$k=3, * 1$,

QUESTION 2
(a) $\lim _{x \rightarrow 0} \frac{\operatorname{Sin} 2 x}{x}=2 \operatorname{Lim}_{x \rightarrow 0} \frac{\operatorname{Sin} 2 x}{2 x}$ $=2$
(b) $\cos \left[\sin ^{-1}\left(-\frac{1}{2}\right)\right]=\cos \left(-\frac{\pi}{6}\right)$

$$
=\sqrt{3} / 2
$$

(c) Let $x=\tan ^{-1}\left(\frac{1}{2}\right)+y=\tan ^{-1}\left(\frac{1}{4}\right)$
$\tan x=\frac{1}{2} \quad \tan y=\frac{1}{4}$

$$
\begin{gathered}
\operatorname{Tan}(x-y)=\frac{\frac{1}{2}-\frac{1}{4}}{1+\frac{1}{2} \cdot \frac{1}{4}} \\
x-y=\tan ^{9}\left(\frac{2}{9}\right) \\
\tan ^{-1}\left(\frac{1}{2}\right)-\tan ^{-1}\left(\frac{1}{4}\right)=\tan ^{-1}\left(\frac{2}{9}\right)
\end{gathered}
$$

(d)
e

$$
\begin{aligned}
& \ln \left(x^{3}+19\right)=3 \ln (x+1) \\
& x^{3}+19=(x+1)^{3} \\
& x^{3}+19=x^{3}+3 x^{2}+3 x+1 \\
& 3 x^{2}+3 x-18=0 \\
& x+x-6=0 \\
& x+3 x-2)=0 \\
& x=2(x>-1) \\
& f(x)=x^{2}-\ln x-10 \\
& f^{\prime}(x)=2 x-\frac{1}{x} \\
& a_{1}=3-\frac{3}{6}-\frac{1 n}{6}-\frac{10}{3}
\end{aligned}
$$

(f)
approx $x=3.37$

$$
\begin{aligned}
& x-1>0 \quad x>1 \\
& \ln (x-1) \neq 0>x-1 \neq 1 \\
& x>1+x \neq 2
\end{aligned}
$$

(g)

Domain $-3 \leq x \leq 3$
Range $-\pi \leq y \leq \pi$

(h) $f(x)=\frac{x+1}{x+2}-y$

Inverse $x=\frac{y+1}{y+2}$

$$
\begin{aligned}
x y+2 x & =y+1 \\
y(x-1) & =1-2 x \\
f^{-1}(x)=y & =\frac{1-2 x}{x-1}
\end{aligned}
$$

(i) $y=x e^{-x}$
(i)

$$
\begin{aligned}
y & =x e^{-x} \\
y^{\prime} & =e^{-x} 1+x-e^{-x} \\
& =e^{-x}(1-x)
\end{aligned}
$$

$$
\begin{aligned}
& y=0 \quad x=1 \quad y=\frac{1}{e} \\
& y_{\text {only one solution }}
\end{aligned}
$$

only one solution A is the point ($1, \frac{1}{e}$)
(ii) range $y \leq 1 e$
(iii) $x e^{-x}=k$

$$
x e^{-x}-k=0
$$

(i) cure mons down less than $\frac{1}{e}$ units
roots
(ii) $x e^{-x}-(-k)$ cure moves up
$\rightarrow 1$ root
(iii) Curve moves down more than $\frac{1}{e} u$
noroots.

Question 3
(a)

$$
\begin{aligned}
\text { period }=3 \pi & =\frac{2 \pi}{b} \\
\therefore b & =\frac{2}{3} \\
a & =5
\end{aligned}
$$

Has the right shape BUT we want.

The curve we want shifts $y=5 \cos \left(\frac{2}{5} x\right)$
horizontally $\frac{3 \pi}{2}$ units (to left or right) vertically 10 units (up)

$$
\begin{aligned}
\therefore y & =5 \cos \left(\frac{2}{3}\left(x+\frac{3 \pi}{2}\right)\right)+10 \text { OR } y & =5 \cos \left(\frac{2}{3}\left(x-\frac{3 \pi}{2}\right)\right)+10 \\
y & =5 \cos \left(\frac{2}{3} x+\pi\right)+10 \quad y & =5 \cos \left(\frac{2}{3} x-\pi\right)+10
\end{aligned}
$$

OR $y=-5 \cos \left(\frac{2}{3} x\right)+10$
(b)

(i)

$$
\text { Area of minor segment (shaded) } \begin{aligned}
& =\frac{1}{2} r^{2}(\theta-\sin \theta) \\
& =\frac{1}{2}(2)^{2}(\theta-\sin \theta) \\
& =2(\theta-\sin \theta)
\end{aligned}
$$

Area concerned

$$
\begin{aligned}
& A=2(2(\theta-\sin \theta)) \\
& A=4(\theta-\sin \theta) \\
& A=4 \theta-\sin \theta)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Area of circle } & =\pi r^{2} \\
& =\pi(2)^{2} \\
& =4 \pi
\end{aligned}
$$

If the thence regions have the same area Area of atcle $=2 \mathrm{~A}$

$$
\begin{aligned}
& \text { arcle }=2 A \\
& 4 \pi=2(4 \theta-4 \sin \theta) \\
& 4 \pi=8 \theta-8 \sin \theta \\
& 8 \theta-8 \sin \theta-4 \pi=0 \\
& \theta-\sin \theta-\frac{\pi}{2}=0
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
A & =\int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{2}}(1-\cos 2 x) d x \\
& =\frac{1}{2}\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{1}{2}\left[\frac{\pi}{2}-\frac{1}{2} \sin ^{\pi} \pi-\left(0-\frac{1}{2} \sin 0\right)\right] \\
& \frac{\pi}{4} \text { units }^{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& V=\pi \int_{0}^{\frac{\pi}{2}} y^{2} d x \\
& =\pi \int_{0}^{\frac{\pi}{2}} \sin ^{4} x d x \\
& f(x)=\sin ^{4} x
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \sin ^{4} x d x & \approx \frac{\frac{\pi}{2}}{6}\left[0+4\left(\frac{1}{4}\right)+1\right] \\
& =\frac{\pi}{12}[2] \\
& =\frac{\pi}{6} \\
\therefore V & =\pi \int_{0}^{\frac{\pi}{2}} \sin ^{4} x d x \\
& \approx \frac{\pi^{2}}{6} \text { units }^{3}
\end{aligned}
$$

(d) (i)

$$
\begin{aligned}
f(x) & =\frac{8}{4+x^{2}} \\
f(-x) & =\frac{8}{4+(-x)^{2}} \\
& =\frac{8}{4+x^{2}}
\end{aligned}
$$

since $f(x)=f(-x)$
$f(x)$ is even
(ii)

(iii) P has x coordinate -2
Q has x coordinate 2

$$
\begin{aligned}
\text { (iv) Area } & =2\left[\int_{0}^{2} \frac{8}{4+x^{2}} d x-2 \times 1\right] \\
& =2\left[8\left[\frac{1}{2} \tan ^{-1} \frac{x}{2}\right]_{0}^{2}-2\right] \\
& =2\left[4 \tan ^{-1} 1-4 \tan ^{-1} 0-2\right] \\
& =2\left[4 \cdot \frac{\pi}{4}-2\right] \\
& =2[\pi-2] \text { units }^{2}
\end{aligned}
$$

(\checkmark)

$$
\begin{array}{rl}
y & y=\frac{8}{4+x^{2}} \\
4+x^{2}=\frac{8}{y} \\
& x^{2}=\frac{8}{y}-4 \\
v & =\pi \int_{1}^{2} x^{2} d y \\
v & =\pi \int_{1}^{2}\left(\frac{8}{y}-4\right) d y \\
& =\pi[8 \ln y-4 y]^{2} \\
& =\pi[8 \ln 2-4(2)-(8) / 8] \\
& =\pi[8 \ln 2-4] \\
& =4 \pi(2 \ln 2-1)
\end{array}
$$

(e) $6\left(1^{2}+2^{2}+3^{2}+\ldots+n^{2}\right)=n(n+1)(2 n+1)$

Prove true for $n=1$

$$
\begin{aligned}
\text { CHS }=6(1)^{2} & \text { RHS }
\end{aligned}=(1)(1+1)(2(1)+1)
$$

$\angle H S=$ RMS
\therefore true for $n=1$
Assume true for $n=k$ where k is a positive integer.

$$
\begin{aligned}
& \text { Assume true for } n=k \text { where } \\
& 6\left(1^{2}+2^{2}+3^{2}+\ldots+k^{2}\right)=k(k+1)(2 k+1)
\end{aligned}
$$

Prove true for $n=k+1$
ie Prove

$$
\begin{aligned}
& 6\left(1^{2}+2^{2}+\ldots+k^{2}+(k+1)^{2}\right)=(k+1)(k+2)(2(k+1)+1) \\
& =(k+1)(k+2)(2 k+3) \\
& L H S=6\left(1^{2}+2^{2}+\cdots+k^{2}\right)+6(k+1)^{2}
\end{aligned}
$$

using assumption.

$$
\begin{aligned}
& =k(k+1)(2 k+1)+6(k+1)^{2} \\
& =(k+1)\left(2 k^{2}+k+6 k+6\right) \\
& =(k+1)\left(2 k^{2}+7 k+6\right) \quad \times \frac{12}{7} \\
& =(k+1)\left(\frac{2 k+3)\left(k^{1} k+4\right.}{3}\right) \\
& =(k+1)(k+2)(2 k+3)^{2} \\
& =\text { RUS }
\end{aligned}
$$

\therefore true for $n=k+1$
If true for $n=k$ it is frue for $n=k+1$. Since true for $n=1 \mathrm{by}$ the principle of mathernatical induction it is true for all positive integers n.
(ii)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left(1^{2}+2^{2}+3^{2}+\cdots+n^{2}\right)}{n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{6 n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{2 n^{3}+3 n^{2}+n}{6 n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{2 n^{3}}{\frac{n^{3}}{}+\frac{3 n^{2}}{n^{3}}+\frac{n}{n^{3}}} \frac{1}{3}
\end{aligned}
$$

