

SYDNEY BOYS HIGH SCHOOL **MOORE PARK, SURRY HILLS**

2007

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK #2

Mathematics Extension 1

General Instructions

- Reading Time - 5 Minutes
- Working time 90 Minutes •
- Write using black or blue pen. Pencil may • be used for diagrams.
- Board approved calculators maybe used. •
- Each Section is to be returned in a separate ٠ bundle.
- All necessary working should be shown in ٠ every question.

Total Marks - 61

Attempt questions 1 - 3 •

Examiner: A Fuller

Total marks – 61 Attempt all questions All questions are NOT of equal value

Answer each SECTION in a SEPARATE writing booklet			
		Section A	
Question 1 (19 mark	s)	
(a)	Diffe	rentiate $\sin^{-1} 3x$	1
(b)	Find	the exact value of the following:	
	(I)	$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$	1
	(II)	$\tan^{-1}(-1)$	1
	(III)	$\sin^{-1}\left(\cos^2\frac{\pi}{4}\right)$	1
(c)	For th	the function $f(x) = 2\cos^{-1}\left(\frac{x}{2}\right)$	
	(I)	Write down the domain and range	2
	(II)	Sketch the graph of $y = f(x)$	1
	(III)	Find $f'(x)$	1
(d)	Find the indefinite integral of $\frac{1}{\sqrt{1-4x^2}}$		2
(e)	ABCD is a cyclic quadrilateral in which the opposite sides AB and DC		
	are ec	qual.	
	(I)	Draw a diagram	-
	(11)	Prove that the diagonals AC and BD are equal	3

(f) Find the value of k if
$$\int_0^1 \frac{dx}{x^2 + 3} = k\pi$$
 2

- (g) A committee of 4 is to be formed from a group of 10 people containing6 men and 4 women
 - (I) In how many ways can this committee be formed so that it 2 always contains at least one woman?
 - (II) If the selection is determined by the drawing of names from a 2 hat, what is the probability that the committee will contain a majority of women?

Section B (Use a SEPARATE writing booklet)

Question 2 (21 marks)

(a) Use the substitution
$$u = x^2 - 4$$
 to find an expression for $\int \frac{2x}{\sqrt{x^2 - 4}} dx$ 2

(b) An urn contains 3 red, 4 white and 5 blue marbles. Three marbles are drawn at random in succession, and after each marble is drawn it is replaced in the urn. What is the probability that:

- (I) marbles of different colours are drawn? 1
- (II) red, white, and blue marbles are drawn in that order? 1

1

- (III) at least 2 red marbles are drawn?
- (c) Use the method of mathematical induction to prove that $\frac{1}{1\times3} + \frac{1}{3\times5} + \frac{1}{5\times7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$

(d) Find the exact area between the curve $y = \sin^{-1} x$, the *x*-axis, and the 2 lines x = 0 and $x = \frac{1}{2}$

(e) Find
$$\cos\left[\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) + \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]$$
 2

(f) Use Newton's method once to find an approximation for $\sqrt{4.02}$ which 2 is better than 2

(g)	(I)	How many five digit numbers can be formed from the digits			
		1, 3, 5, 7, 9			
		(α) without repeating any digit?	1		
		(β) allowing each digit to be used any number of times?	1		
	(II)	Consider now the numbers less than 5000 which can be formed			
		from four or fewer of the digits 1, 3, 5, 7, 9 (without repeats)			
		(α) How many of these are there?	1		
		(β) One of these numbers is selected at random. What is	1		
		the probability that it is divisible by 5?			
$(\mathbf{l}_{\mathbf{r}})$	Dagard	by induction that 2^{3n} 2^n is divisible by 5 if y is a positive	2		

(h) Prove by induction that $2^{3n} - 3^n$ is divisible by 5, if *n* is a positive **3** integer

Section C (Use a SEPARATE writing booklet)

Question 3 (21 marks)

(a) Find the volume formed when the area between the curve $y = \sin x \cos x$, the x-axis, and the lines x = 0 and $x = \frac{\pi}{3}$ is rotated about the x-axis

3

(b) Find the value of
$$\int_{0}^{\frac{\pi}{2}} \frac{\sec^2(\sin x)}{\sec x} dx$$
 using the substitution $u = \sin x$ 2

(c) Given that
$$y = \sin^{-1} \sqrt{x}$$
 show that $\frac{dy}{dx} = \frac{1}{\sin 2y}$ 2

(d) State the largest domain and the corresponding range of the function 2 $y = \sin^{-1}(\sqrt{1-x^2})$

(e) (I) Find
$$\frac{dy}{dx}$$
 for $y = \cos^{-1}(\sin x)$ 2

(II) Hence, or otherwise, sketch $y = \cos^{-1}(\sin x)$ for $-2\pi \le x \le 2\pi$ 2

In the above diagram, ABC is a triangle inscribed in a circle. The perpendicular from A onto BC meets it at D and is then produced

to meet the circumference at K.

The perpendicular from C onto AB meets it at F and is then produced to meet the circumference at G.

The two perpendiculars AD and CF meet at the point H.

(I)	Show that the quadrilaterals AFDC and BFHD are both cyclic	1
-----	--	---

2

2

- (II) Prove that AB bisects the angle GBH
- (III) Prove that GB = BK

(g) Given that
$$\sin x + \cos x = 2^{\frac{1}{2}} \sin \left(x + \frac{\pi}{4} \right)$$
 and $y = e^x \sin x$, prove by 3

mathematical induction, that $\frac{d^n y}{dx^n} = 2^{\frac{n}{2}} e^x \sin\left(x + \frac{n\pi}{4}\right)$

where $\frac{d^n y}{dx^n}$ denotes the n^{th} derivative of y with respect to x

End of paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

3 unit Section A 2007 May assess Task 3. (a) $\frac{d}{doc}(\sin^{-1}3x) = \frac{1}{\sqrt{1-9x^2}} \times 3 =$ $= \frac{3}{\sqrt{1-9\chi^2}}$ (b) (i) $\cos^{-1}(\frac{\sqrt{3}}{2}) = \frac{11}{6}(30^{\circ})$ (i) (ii) $\tan^{-1}(-1) = -\tan^{-1}(-1) = -\frac{\pi}{4}(-45^{\circ})$ (1) \bigcirc (iii) $\sin^{-1}(\cos^2\frac{\pi}{4}) = \sin^{-1}(\frac{\pi}{2}) = \frac{\pi}{6}$ (30°) (c) (i) $f(x) = \lambda \cos^{-1}(\frac{x}{2})$ domain of $f(x) = \cos^{-1} x : -1 \le x \le 1$ domain of $f(x) = 2\cos^{-1}(\frac{x}{2}): -1 \le \frac{x}{2} \le 1$ $-2 \leq \alpha \leq 2$ () range of $f(x) = \cos x$: $0 \le y \le \pi$. range of $f(x) = 2\cos^{-1}(\frac{x}{2}): 0 \le 2\cos^{-1}(\frac{x}{2}) \le 2\pi (1)$ (ĬÌ) $\left(1\right)$ $\xrightarrow{\lambda} \infty$ U -2 (iii) $f'(x) = \chi_{X} - \frac{1}{\sqrt{1 - \frac{x^{2}}{4}}} \times \frac{1}{\chi}$ $\sqrt{4-x^2}$

 $(d) = \frac{1}{2} \int \frac{1}{\sqrt{1-4x^2}} dx$ (e) (b) 180=0 D SAE = BDC = N angles standing on same are. ABE = DCE = B angles standing on same orc ... AE = DE ? Corresponding flagles BE = CE] IN congruent flagles $\triangle ABE \equiv \triangle DCE (AAS)$ · AC=DBasneeded 3 AC = AE+CE DB=DE+BE

 $(f) \left(\frac{1}{x^2 + 3} = k T \right)$ $\frac{1}{\sqrt{3}} \tan^{-1} \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} (\tan^{-1} \frac{1}{\sqrt{3}} - \tan^{-1} 0)$ 青.开 So $kT = \frac{T}{LT}$ $\frac{1}{6.5} \times \frac{13}{12} = \frac{13}{18}$ $k = \left(\frac{1}{6\sqrt{3}}\right) 0 r^{2}$

 $\frac{1}{2}$ sin 2x + c

2

(3) 10 people: 6 men, 4 Women. Committee of 4 () i at least / woman 1 Woman + 2 Women + 3 Women + 4 Women 3 men 2 men 1 man ${}^{4}C_{1} \times {}^{6}C_{3} + {}^{4}C_{2} \times {}^{6}C_{2} + {}^{4}C_{3} \times {}^{6}C_{1} + {}^{4}C_{4}$ $= 4 \times \frac{6}{3} \times \frac{5}{2} \times \frac{4}{1} + \frac{2}{2} \times \frac{4}{1} \times \frac{3}{2} \times \frac{5}{2} \times \frac{5}{1} + \frac{4}{2} \times \frac{5}{2} \times \frac{5}{2}$ (2)= 80 + 90 + 24 + 1 = 195Ways-(ii) sample space is ${}^{10}C_4 = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} = 210$ 25 majority of women? 3 women + 4 women = $\frac{25}{210} = \frac{5}{42} (2)$

02(R) $M = \chi^{2} - 4$ $\binom{C}{1\times3} + \frac{1}{3\times5} + \frac{1}{(2n-1)(2n+1)} = \frac{11}{2n+1}$ $\frac{d\mu}{d\kappa} = 2\pi$ step1: Consider the statement for n=1 $dir = 2a \cdot drc.$ $LHS = \frac{1}{1x3} = \frac{1}{3}$ $RHS = \frac{1}{2x(+1)} = \frac{1}{3} = LHS$. $\int \frac{2se}{Da^{2}-4} = \int \frac{du}{du}$ oothe statement is true for 1=1 $=\int u^{-\frac{1}{2}} du$ = 2 M2 +C Step 2: Assume the statement is true for N = k. $\frac{1}{12k+3k+1} + \frac{1}{2k+1} + \frac{1}{2k+1} = \frac{1}{2k+1}$. $= 2\sqrt{a^2-4}tC$ (b) Γ P(RWB) = $\frac{3}{12}x + \frac{5}{12}x$ Consider the statement for n=k+1 = 5 144 $ii_{1\times3} + \frac{1}{3\times5} - \frac{1}{(2h-1)(2h+1)} + \frac{1}{(2h+1)(2h+3)}$ But R. Wa B can be alranged in 6 orders $L + K = \frac{k+1}{2(k+1)+1} + \frac{1}{(2k+1)(2k+1)} + \frac{1}{(2k+1)(2k+1)(2k+1)} + \frac{1}{(2k+1)(2k+1)(2k+1)} + \frac{1}{(2k+1)(2k+1)(2k+1)} + \frac{1}{(2k+1)(2k+1)(2k+1)(2k+1)(2k+1)} + \frac{1}{(2k+1)(2k+1$.". P(3 different calolos) = 5 x6 = 5 $= \frac{b}{2k+1} + \frac{1}{(2k+1)(2k+3)}$ using the assumption $\boxed{\prod P(RWB)} = \frac{S}{144} from \boxed{I}$ $= \frac{k(2k+3)}{(2k+1)(2k+3)} + \frac{1}{(2k+1)(2k+3)}$ $\overline{U} P(\overline{E}) = P(RRR) + P(RRO)$ $=2k^{r}+3k+1$ (2k+1)(2k+3)+P(ROR) +P(ORR) $= \frac{(2k+1)(k+1)}{(2k+3)}$ $=\frac{3}{12}\times\frac{3}{12}\times\frac{3}{12}+\frac{3}{12}\times\frac{3}{12}\times\frac{9}{12}$ $-\frac{b+l}{2k+3}$ $= \frac{1}{64} + 3x \frac{3}{64}$ $= \frac{10}{64}$ = RHS.is The statement is tone fear n=kty if it is true for n=kr = 5 32

Step 5: New the statement is take yes equel by $3C_2 = 2 - \frac{J(2)}{2}$ n=ktl 21 it is tome for n=ki But it is take for n=1 $=2-\frac{4-4.02}{11}$ \therefore It is true the $\Lambda = 1 + 1 = 2$ Then if the fees N=2, thurs N=2+1=3 $=2-\frac{-0.02}{V}$ and'so on ps all integral n. = 2.005 y=Sin-loc $(q)I(\alpha)M(s) = 5! = 120$ (cl) $(\beta)_{MS} = 5^{5} = 3125$ ie oc = Sing 11-6 They 4 digits 2432 = 48 304prits [5]4]37 = 60 $2 \operatorname{digits}(54) = 20$ Required ana = Area iectangle Idiget $\overline{\overline{S}} = \overline{S}$ - 16 strug dy Total = 133 (β) 4 digits 2321 = 12 $=\frac{1}{2}x\overline{b}^{T}-[-\cos q]$ 3 digits 4311 = 12- # - [-53 - 61] 20190ts 1411 = loligit - #+ 13-1. <u>[]</u> = (e) Let $\cos\left[\sin^{-1}\frac{\sqrt{3}}{2} + \cos^{-1}\frac{\sqrt{3}}{2}\right] = \cos\left[A+B\right]$ $(E) = \frac{24}{133}$ (h) stepl: busider n=1 $2^3-3'=8-3=5$ then sin 3= A and 05 3= B ... A= - B=- B=- B :. True for n=1 12 (s) (A+B)= (s) (于+ 晋) 二 (s) 王 step2: Assume 23h 3= SA - (b) - 0 $\begin{array}{c} \text{lanside} & n = k + l \\ 2^{3k+3} - 3^{k+1} = 2^{3k} \cdot 2^3 - 3 \cdot 3^{-3} \cdot 3^{$ (f) Juiz is given by the x intercept $= \frac{2}{5} \cdot 2^{3h} - 3 \cdot 3^{3h} - 3^{$ $qf = y = x^2 - 4.02$ $ie f(x) = x^{2} - 4 - 02 \text{ and } f'(x) = 2x$ $=5.2^{*}+3(2^{*}-3)$ = $52^{34}+3.54$ Now if sc = 2 is an approximation to a nover a better approximation is (23b + 3H is take tos n=h, (etc)

$$\frac{SECTION C}{QVESTION 3} (3) (3)$$
(a) $V = \pi \int_{0}^{\infty} \int_{0}^{12} \sin x \cdot \cos x \int_{0}^{12} dx$

$$= \pi \int_{0}^{\infty} \int_{0}^{12} \sin x \cdot \cos x \int_{0}^{12} dx$$

$$= \pi \int_{0}^{\infty} \int_{0}^{12} \sin 2x \int_{0}^{12} dx$$

$$= \pi \int_{0}^{\infty} \int_{0}^{12} \sin 2x \int_{0}^{12} dx$$

$$= \frac{1}{2 \sin 2} \int_{0}^{\infty} \int_{0}^{12} \sin 2x \int_{0}^{12} dx$$

$$= \frac{1}{2 \sin 2} \int_{0}^{\infty} \int_{0}^{12} x dx$$

$$= \frac{1}{2 \sin 2} \int_{0}^{12} \int_{0}^{12} (1 - \cos 4x) dx$$

$$= \frac{1}{2} \int_{0}^{12} \int_{0}^{12} (1 - \cos 4x) dx$$

$$= \frac{1}{2} \int_{0}^{12} \int_{0}^{12} (1 - \cos 4x) dx$$

$$= \frac{1}{2} \int_{0}^{12} \int_{0}^{12} (1 - \cos 4x) dx$$

$$= \frac{1}{2} \int_{0}^{12} \int_{0}^{12$$

There are other ways of answering these questions.

(g)
$$\sin x + \cos x = 2^{\frac{1}{2}} \sin (x + \frac{\pi}{4})$$
 $y = e^{x} \sin x$
 $dx = e^{x} [\sin x + \cos x]$
Prove $\frac{d^{n}y}{dx^{n}} = 2^{\frac{n}{2}} e^{x} \sin (x + n\pi) - e^{x} = e^{x} [2^{\frac{1}{2}} \ln (x + \pi)]$
When $n = 1$ $\frac{dy}{dx} = 2^{\frac{1}{2}} e^{x} \sin (x + \pi)$
and $\frac{dy}{dx} = 2^{\frac{1}{2}} e^{x} \sin (x + \pi)$
and $\frac{dy}{dx} = 2^{\frac{1}{2}} e^{x} \sin (x + \pi)$
 $\frac{d^{k}y}{dx^{k}} = 2^{\frac{k}{2}} e^{x} \sin (x + \frac{k\pi}{4})$
RTP $\frac{d^{k+1}}{dx^{k+1}} = 2^{\frac{k+1}{2}} e^{x} \sin \left[x + \frac{(k+1)\pi}{4}\right]$
 $L HS = \frac{d}{dx} \left[\frac{d^{\frac{k}{2}}y}{dx^{k}}\right]$
 $= \frac{d}{dx} \left[2^{\frac{k}{2}} e^{x} \sin (x + \frac{k\pi}{4})\right]$
ky Arod. rule $\Rightarrow = 2^{\frac{k}{2}} e^{x} \left[\cos(x + \frac{k\pi}{4}) + \sin(x + \frac{k\pi}{4})\right]$
 $= 2^{\frac{k}{2}} e^{x} \left[2^{\frac{1}{2}} \sin (x + \frac{k\pi}{4} + \pi)\right]$
 $= 2^{\frac{k}{2}} e^{x} \sin \left[x + \frac{(k+1)\pi}{4}\right]$
 $= 2^{\frac{k}{2}} e^{x} \left[x + \frac{(k+1)\pi}{4}\right]$
 $= 2^{\frac{k}{2}} e^{x} \sin \left[x + \frac{(k+1)\pi}{4}\right]$
 $= 2^{\frac{k}{2}} e^{x} \sin \left[x + \frac{(k+1)\pi}{4}\right]$