

2007

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \#2

Mathematics

Extension 1

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 61

- Attempt questions 1-3

Total marks - 61

Attempt all questions
All questions are NOT of equal value
Answer each SECTION in a SEPARATE writing booklet

Section A

Question 1 (19 marks)
(a) Differentiate $\sin ^{-1} 3 x$
(b) Find the exact value of the following:
(I) $\quad \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
(II) $\tan ^{-1}(-1)$
(III) $\sin ^{-1}\left(\cos ^{2} \frac{\pi}{4}\right)$
(c) For the function $f(x)=2 \cos ^{-1}\left(\frac{x}{2}\right)$
(I) Write down the domain and range 2
(II) Sketch the graph of $y=f(x) \quad 1$
(III) Find $f^{\prime}(x)$
(d) Find the indefinite integral of $\frac{1}{\sqrt{1-4 x^{2}}}$
(e) ABCD is a cyclic quadrilateral in which the opposite sides AB and DC are equal.
(I) Draw a diagram
(II) Prove that the diagonals AC and BD are equal
(f) Find the value of k if $\int_{0}^{1} \frac{d x}{x^{2}+3}=k \pi$
(g) A committee of 4 is to be formed from a group of 10 people containing 6 men and 4 women
(I) In how many ways can this committee be formed so that it always contains at least one woman?
(II) If the selection is determined by the drawing of names from a hat, what is the probability that the committee will contain a majority of women?

Section B (Use a SEPARATE writing booklet)

Question 2 (21 marks)
(a) Use the substitution $u=x^{2}-4$ to find an expression for $\int \frac{2 x}{\sqrt{x^{2}-4}} d x \quad 2$
(b) An urn contains 3 red, 4 white and 5 blue marbles. Three marbles are drawn at random in succession, and after each marble is drawn it is replaced in the urn. What is the probability that:
(I) marbles of different colours are drawn?
(II) red, white, and blue marbles are drawn in that order?
(III) at least 2 red marbles are drawn?
(c) Use the method of mathematical induction to prove that

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots \ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}
$$

(d) Find the exact area between the curve $y=\sin ^{-1} x$, the x-axis, and the lines $x=0$ and $x=\frac{1}{2}$
(e) Find $\cos \left[\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)+\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]$
(f) Use Newton's method once to find an approximation for $\sqrt{4.02}$ which is better than 2
(g) (I) How many five digit numbers can be formed from the digits 1, 3, 5, 7, 9
$(\alpha) \quad$ without repeating any digit? $\mathbf{1}$
(β) allowing each digit to be used any number of times? 1
(II) Consider now the numbers less than 5000 which can be formed from four or fewer of the digits $1,3,5,7,9$ (without repeats)
(α) How many of these are there? 1
(β) One of these numbers is selected at random. What is $\mathbf{1}$ the probability that it is divisible by 5 ?
(h) Prove by induction that $2^{3 n}-3^{n}$ is divisible by 5 , if n is a positive integer

Section C (Use a SEPARATE writing booklet)

Question 3 (21 marks)
(a) Find the volume formed when the area between the curve $y=\sin x \cos x$, the x-axis, and the lines $x=0$ and $x=\frac{\pi}{3}$ is rotated about the x-axis
(b) Find the value of $\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2}(\sin x)}{\sec x} d x$ using the substitution $u=\sin x$
(c) Given that $y=\sin ^{-1} \sqrt{x}$ show that $\frac{d y}{d x}=\frac{1}{\sin 2 y}$
(d) State the largest domain and the corresponding range of the function $y=\sin ^{-1}\left(\sqrt{1-x^{2}}\right)$
(e) (I) Find $\frac{d y}{d x}$ for $y=\cos ^{-1}(\sin x)$
(II) Hence, or otherwise, sketch $y=\cos ^{-1}(\sin x)$ for $-2 \pi \leq x \leq 2 \pi$

In the above diagram, ABC is a triangle inscribed in a circle.
The perpendicular from A onto BC meets it at D and is then produced to meet the circumference at K .

The perpendicular from C onto AB meets it at F and is then produced to meet the circumference at G .

The two perpendiculars AD and CF meet at the point H .
(I) Show that the quadrilaterals AFDC and BFHD are both cyclic
(II) Prove that AB bisects the angle GBH
(III) Prove that $\mathrm{GB}=\mathrm{BK}$
(g) Given that $\sin x+\cos x=2^{\frac{1}{2}} \sin \left(x+\frac{\pi}{4}\right)$ and $y=e^{x} \sin x$, prove by mathematical induction, that $\frac{d^{n} y}{d x^{n}}=2^{\frac{n}{2}} e^{x} \sin \left(x+\frac{n \pi}{4}\right)$
where $\frac{d^{n} y}{d x^{n}}$ denotes the $n^{\text {th }}$ derivative of y with respect to x

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

3 uñt Sectorin 2007 may AssessTask 3.
(a)

$$
\frac{d}{d x}\left(\sin ^{-1} 3 x\right)=\frac{1}{\sqrt{1-9 x^{2}}} \times 3=\frac{3}{\sqrt{1-9 x^{2}}}
$$

(b)
(i) $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}\left(30^{\circ}\right)$
(ii) $\tan ^{-1}(-1)=-\tan ^{-1} 1=-\frac{\pi}{4}\left(-45^{\circ}\right)$
(iii) $\sin ^{-1}\left(\cos ^{2} \frac{\pi}{4}\right)=\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$
(c) (i) $f(x)=2 \cos ^{-1}\left(\frac{x}{2}\right)$
domain of $f(x)=\cos ^{-1} x ; \quad-1 \leqslant x \leqslant 1$
domain of $f(x)=2 \cos ^{-1}\left(\frac{x}{2}\right):-1 \leq \frac{x}{2} \leq 1$

$$
\begin{equation*}
-2 \leq x \leq 2 \tag{1}
\end{equation*}
$$

ange of $f(x)=\cos ^{-1} x: 0 \leq y \leq \pi$.
range of $f(x)=2 \cos ^{-1}\left(\frac{x}{2}\right): 0 \leq 2 \cos ^{-1}\left(\frac{x}{2}\right) \leq 2 \pi$
$f(x)$
(.ii)

(iii)

$$
\begin{align*}
f^{\prime}(x) & =\not 2 \times \frac{-1}{\sqrt{1-\frac{x^{2}}{4}}} \times \frac{1}{2} \\
& =\frac{-1}{\sqrt{4-x^{2}}}=\frac{-1}{\sqrt{4-x^{2}}}=\frac{-2}{\sqrt{4-x^{2}}} \tag{1}
\end{align*}
$$

(d) $\frac{i}{2}$
(e) (i)

$$
\begin{equation*}
\frac{i}{2} \int \frac{21}{\sqrt{1-4 x^{2}}} d x= \tag{2}
\end{equation*}
$$

$$
\frac{1}{2} \sin ^{-1} 2 x+c
$$

 anges standung ow same dic.

$$
\begin{aligned}
& \hat{A B E}=\hat{D C E}=\beta \\
& \text { angles standm }
\end{aligned}
$$

angles standing on same ore

$$
\begin{aligned}
& \triangle A B E \equiv \triangle D C E \text { (AAS) }
\end{aligned}
$$

$$
\begin{align*}
& A C=A E+C E \tag{3}\\
& D B=D E+B E \\
& \therefore A C=D B \text { as reeded }
\end{align*}
$$

$$
\begin{align*}
& \text { (f) } \int_{0}^{1} \frac{1 d x}{x^{2}+3}=k \pi \\
& \left.\quad \frac{1}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}\right]_{0}^{1}=\frac{1}{\sqrt{3}}\left(\tan ^{-1} \frac{1}{\sqrt{3}}-\tan ^{-1} 0\right) \\
& \text { So } \cdot \frac{1}{\sqrt{3}} \frac{\pi}{6}=\frac{\pi}{6 \sqrt{3}} \\
& k=\frac{1}{6 \sqrt{3}} \text { or } \frac{1}{6 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\left(\frac{\sqrt{3}}{18}\right. \tag{2}
\end{align*}
$$

(g) 10 people: 6 men, 4 women. Committer of 4 .
(1) at least / woman

$$
\begin{align*}
& 1 \text { woman }+2 \text { women }+3 \text { women }+4 \text { women } \\
& 3 \text { men } \\
& 1 \text { man } \tag{2}\\
& { }^{4} C_{1} \times{ }^{6} C_{3}+{ }^{4} C_{2} \times{ }^{6} C_{2}+{ }^{4} C_{3} \times{ }^{6} C_{1}+{ }^{4} C_{4} \\
& =4 \times \frac{6 \times 5 \times 4}{3 \times 2 \times 1}+\frac{4 \times 3}{2 \times 1} \times \frac{4 \times 5}{2 \times 1}+\frac{4 \times 3 \times 2}{3 \times 2 \times x} \times 6+1 \\
& =80+90+24+1=195
\end{align*}
$$

(ii) sample space is ${ }^{10} C_{4}=\frac{10 \times 9 \times 8 \times 7}{3 \times 3 \times 2 \times 1}=210$
majority of women? 3 women +4 women $=25$

$$
\frac{25}{210^{\circ}}=\frac{5}{42}(2)
$$

$$
\begin{aligned}
& Q 2(a) \quad u=x^{\prime}-4 \\
& \frac{d u}{d x}=2 x \\
& d x=2 x \cdot d x . \\
& \therefore \int \frac{2 x d c}{\sqrt{x^{2}-4}}=\int \frac{d x}{\sqrt{x}} \\
& =\int u^{-\frac{1}{2}} d u \\
& =2 \cdot a^{\frac{1}{2}}+C \\
& =2 \sqrt{x^{2}-4}+c \\
& \text { (b) I } P(R W B)=\frac{3}{12} \times \frac{4}{12} \times \frac{5}{12} \\
& =\frac{5}{144} \\
& \text { But } R_{1} \omega \propto B \text { caw bearanged } \\
& \text { in } 6 \text { orders } \\
& \begin{aligned}
\therefore P(3 \text { different coles }) & =\frac{5}{144} \times 6 \\
& =\frac{5}{24}
\end{aligned} \\
& \text { II } P(R W B)=\frac{5}{144} \text { from I } \\
& \text { III } P(E)=P(R R R)+P(R R O) \\
& +P(R O R)+P(O R R) \\
& =\frac{3}{12} \times \frac{3}{12} \times \frac{3}{12}+3 \times\left(\frac{3}{12} \times \frac{3}{12} \times \frac{3}{12}\right) \\
& =\frac{1}{64}+3 \times \frac{3}{64} \\
& =\frac{10}{64} \\
& =\frac{5}{32}
\end{aligned}
$$

Steps: Now The sturumeit is time joe
$n=b+l$ I it is time for $n=b$
But it is taue for $n=1$
\therefore It is true for $n=1+1=2$
Thew if trine foe $n=2$, truefor $n=2+1=3$ andel so en pos all integral n.
(l) Lut $\cos \left[\sin ^{-1} \frac{\sqrt{3}}{2}+\cos ^{-1} \frac{\sqrt{3}}{2}\right]=\cos [A+B]$
ther $\begin{aligned} \sin ^{-1} \frac{\sqrt{3}}{2} & =A \\ \therefore A & =\frac{\pi}{3}\end{aligned}$ and $\cos ^{-1} \frac{\sqrt{3}}{2}=B$

$$
\text { ie } \cos (A+B)=\cos \left(\frac{\pi}{3}+\frac{\pi}{6}\right)
$$

$$
=\cos \frac{3 \pi}{2}
$$

$$
=0
$$

(f) $\sqrt{4.2}$ is given by the x intenept

$$
\begin{aligned}
& \text { of } y=x^{2}-4.02 \\
& \text { ie } f(x)=x^{2}-4-02 \text { and } f^{\prime}(x)=2 x
\end{aligned}
$$

Now if $x_{1}=2$ is aw app-toximatuen to a neout a beltes apphoximatein is

$$
\begin{aligned}
& \text { (d) } \quad y=\sin ^{-1} x \\
& \text { ie } x=\sin y \\
& \text { Kequived ama = Arear rectengle } \\
& -\int_{0}^{\frac{\pi}{6}} s \operatorname{tr} y d y \\
& =\frac{1}{2} \times \frac{\pi}{6}-[-\cos y]_{0}^{\frac{\pi}{6}} \\
& =\frac{\pi}{12}-\left[-\frac{\sqrt{3}}{2}-(-1)\right] \\
& =\frac{\pi}{12}+\frac{\sqrt{3}}{2}-1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { goven by } x_{2}=2-\frac{x(2)}{f^{\prime}(2)} \\
& =2-\frac{4-4.02}{4} \\
& =2-\frac{-0.02}{4} \\
& =2.005 \\
& (g) I(\alpha) M(s)=5!=120 \\
& (\beta) M(s)=5^{5}=3125 \\
& \text { Ind } 4 \text { digits } 24312=48 \\
& \text { zoligits } \sqrt{5 / 4]}=60 \\
& 2 \text { digite } 55=20 \\
& \text { Leliget } 5 \\
& \text { Total }=133 \\
& \text { (B) } 4 \text { digits } 23 / 211=12 \\
& \text { 3odgits } 4311=12 \\
& 2 \text { dugits } 41=4 \\
& \text { idigit. } \quad \square=\frac{1}{29} \\
& \therefore P(E)=\frac{29}{133}
\end{aligned}
$$

(h) Stepl! Consider $n=1$

$$
2^{3}-3=8-3=5
$$

\therefore Thne for $n=1$
Step 2: Assume $2^{3 k}-3^{b}=S A$
Cohsider $n=k+1$

$$
\begin{aligned}
& 2^{3 k+3}-3^{k+1}=2^{3 k} \cdot 2^{3}-3^{k} \cdot 3 \cdot 3 k \\
& =8.2^{3 k}-3.3^{3 k} \\
& =5.2^{3 k}+3.2^{3 k}-3.3 \\
& =5 \cdot 2^{3 k}+3\left(2^{3 k}-3^{k}\right) \\
& =52^{3 k}+3.5 A \\
& \begin{array}{l}
=S\left(2^{3 k}+3 A\right) \text { ili } \\
=\text { frive tos } n=h t 1)
\end{array}
\end{aligned}
$$

SECTION C

QUESTION 3
(a)

$$
\begin{aligned}
V & =\pi \int_{0}^{\frac{\pi}{3}}(\sin x \cdot \cos x)^{2} d x \\
& =\pi \int_{0}^{\frac{\pi}{2}}\left(\frac{1}{2} \sin 2 x\right)^{2} d x \\
& =\frac{\pi}{4} \int_{0}^{\frac{\pi}{3}} \sin ^{2} 2 x d x \\
& =\frac{\pi}{4} \int_{0}^{\frac{\pi}{3}} \frac{1}{2}(1-\cos 4 x) d x+ \\
& =\frac{\pi}{8}\left[x-\frac{1}{4} \sin 4 x\right]_{0}^{\frac{\pi}{3}} \\
& \left.=\frac{\pi}{8}\left[\frac{\pi}{3}-\frac{1}{4} \sin \frac{4 \pi}{3}\right)-0\right] \\
& =\frac{\pi}{8}\left[\frac{\pi}{3}+\frac{\sqrt{3}}{8}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \frac{\sec ^{2}(\sin x)}{\sec x} d x \\
= & \int_{0}^{\pi / 2} \sec (\operatorname{set} x \\
= & \int_{0}^{1} \sec ^{2} u d u \\
= & {[\cos x d x} \\
= & \operatorname{sta}_{0}^{1}=\tan 1
\end{aligned}
$$

(2) $\therefore \frac{d y}{d x}=\frac{1}{2 \sqrt{\sin ^{2} y} \cdot \sqrt{1-\sin ^{2} y}}$

$$
\begin{aligned}
& \text { (c) } y=\sin ^{-1} \sqrt{x} \Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-x}} \cdot \frac{1}{2 \sqrt{x}} \\
& \left\lvert\, \frac{x}{x=\sin y \mid}\right.
\end{aligned}
$$

$x=\sin y$

$$
\begin{equation*}
=\frac{1}{2 \sin y \cdot \cos y} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{1}{\sin 2 y} \tag{1}
\end{equation*}
$$

(d) $\quad y=\sin ^{-1}\left(\sqrt{1-x^{2}}\right)$

Domain: $-1 \leq \sqrt{1-x^{2}} \leq 1$

$$
\Rightarrow-1 \leq x \leq 1
$$

Range: $\quad 0 \leqslant y \leqslant \frac{\pi}{2}$
(e)

$$
\begin{equation*}
\text { (1) } \quad y=\cos ^{-1}(\sin x) \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-1}{\sqrt{1-\sin ^{2} x}} \cdot \cos x \\
& =\frac{-\cos x}{\sqrt{\cos ^{2} x}}=\frac{-\cos x}{|\cos x|}
\end{aligned}
$$

$\left\{\begin{array}{l}\text { If } \cos x<0, \frac{d y}{d x}=-\frac{\cos x}{-\cos x}=1 \\ \text { If } \cos x>0, \frac{d y}{d x}=-\frac{\cos x}{\cos x}=1\end{array}\right\}$
(11) かy (2)

(f)

$$
\hat{A F D}=\hat{A D C}=90^{\circ}
$$

Both angles subtended at the
cire. by chord (diameter) $A C$.
abc
$\therefore A F D C$ cyclic

$$
\begin{gathered}
\text { abo } \\
\hat{B F H}=-\hat{B D H}=90^{\circ}
\end{gathered}\binom{\text { opp } \text { augles }}{\text { suppl. }}
$$

\Rightarrow BDHF cyclic

$$
\hat{G B A}=\hat{G C A}\left(\begin{array}{c}
\text { angles at circ. } \\
\text { subtended by } \\
\text { arc } A G
\end{array}\right)
$$

$\hat{G C A}=\hat{F D A}$ (angles at circe. chad) subtended by AF
$\hat{F D A}=\hat{F B H}$ (angles at cire: sub. by chord FH
BDHF cyclic quod.

$$
\Rightarrow \hat{G B A}=\hat{F B H}
$$

$\therefore A B$ bisects $\hat{G B H}$
FDCA is cyclic quad.
chord $F D$ subtends $\mathcal{F A D}$ and $\hat{F C D}$ attire.

$$
\therefore \hat{F A D}=F \hat{F C D}
$$

\Rightarrow chord $B K$ subtends $B \hat{A K}=F \hat{A D}$
also chord $B G$ sulitends $\widehat{C B}$ atcirc. which equals $\hat{F C D}$
\therefore chord $B C=$ chord. $B K$.
since they subtend equal angles at the cir. of large C.

There are other ways of answering these questions.

(g) $\sin x+\cos x=2^{\frac{1}{2}} \cdot \sin \left(x+\frac{\pi}{4}\right)$

$$
y=e^{x} \sin x
$$

3) Prone $\frac{d^{n} y}{d x^{n}}=2^{\frac{n}{2}} e^{x} \sin \left(x+\frac{n \pi}{4}\right)$ $\frac{d y}{d x}=e^{x}[\sin x+\cos x]$

When $n=1 \quad \frac{d y}{d x}=2^{\frac{1}{2}} e^{x} \sin \left(x+\frac{\pi}{4}\right)$
and $\frac{d y}{d x}=2^{\frac{1}{2}} e^{x} \sin \left(x+\frac{1 \pi}{4}\right)$ using *
\therefore © true for $n=1$
Assume $\frac{d^{k} y}{d x^{k}}=2^{\frac{k}{2}} e^{x} \sin \left(x+\frac{k \pi}{4}\right)$

$$
\operatorname{RTP} \quad \begin{aligned}
\frac{d^{k+1}(y)}{d x^{k+1}} & =2^{\frac{k+1}{2}} e^{x} \sin \left[x+\frac{(k+1) \pi}{4}\right] \\
\text { LHS } & =\frac{d}{d x}\left(\frac{d^{k} y}{d x^{k}}\right) \\
& =\frac{d}{d x}\left[2^{k / 2} e^{x} \sin \left(x+\frac{k \pi}{4}\right)\right]
\end{aligned}
$$

by prod. rule $\Rightarrow \quad=2^{k / 2} \cdot e^{x}\left[\cos \left(x+\frac{k \pi}{4}\right)+\sin \left(x+\frac{k \pi}{4}\right)\right]$

$$
\begin{aligned}
& =2^{k / 2} e^{x}\left[2^{\frac{1}{2}} \sin \left(x+\frac{k \pi}{4}+\frac{\pi}{4}\right)\right] \\
& =2^{\frac{k+1}{2}} e^{x} \sin \left[x+\frac{(k+1)}{4} \pi\right] \\
& =\text { RHS }
\end{aligned}
$$

