

SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2009

YEAR 12 Mathematics Extension 1
HSC Task \#2

Mathematics
 Extension

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- All answers must be given in exact simplified form unless otherwise stated.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.

Total Marks - 61

- Attempt questions 1-3
- Start each new section of a separate answer booklet

Examiner: D.McQuillan

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0
\end{aligned}
$$

$$
\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0
$$

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a
$$

$$
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0
$$

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
$$

NOTE: $\ln x=\log _{e} x, x>0$

Section A (21 marks)

(1) O is the centre of the circle. Find the value of θ.

(2) Find
(a) $\int 3 x^{5} d x$
(b) $\quad \int \frac{(3 x+2)^{2}}{3} d x$
(c) $\int \frac{d x}{\sqrt{7 x-1}}$
(3) Evaluate
(a) $\int_{-8}^{8} \frac{x^{3}}{2} d x$
(b) $\quad \int_{-3}^{3}\left(x^{2}+3\right) d x$
(c) $\quad \int_{0}^{4} \sqrt{4-x} d x$
(4) The new NSW number plates have three letters then two numbers followed by a letter.

$$
\pm X Y Z-12 A
$$

How many number plates with this configuration are possible?
(5) AB is a tangent. Find the value of x.

(6) Given the parametric equations $x=2 t-1$ and $y=4 t^{2}$ find $\frac{d y}{d x}$.
(7) Find the volume when $y=x^{2}-3$ is rotated about the y-axis between $y=-3$ and $y=2$.
(8) ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC} . \mathrm{AD}$ and BC are the diameters of their respective circles, and these circles cut DC at X and Y respectively. Prove that $A B Y X$ is a rectangle.

End of Section A

Start a new ANSWER BOOKLET

Section B (20 marks)

Marks
(1) Use Simpson's Rule with 3 function values to find an approximation to the area under the arc of $y=\log _{10} x$ between $x=2$ and $x=4$. Round answer to 2 decimal places.
(2) For the function $f(x)=x^{3}-3 x+1$.
(a) Show that $f(x)$ has a zero for x between 0 and 1 .
(b) Take $x=0$ as your first approximation and use two applications of Newton's method to find a better approximation to 3 decimal places.
(c) Explain why you could not use $x=1$ as your first approximation.
(3) A five-card hand is dealt from a standard 52 -card deck. How many ways can you be dealt,
(a) three hearts and two clubs.
(b) three of one suit and two of another.
(4) Find the area enclosed between $y=x+2$ and $y=x^{2}-2 x+2$.
(5) If ${ }^{n} P_{k}=120^{n} C_{k}$, find the value of k.
(6) Given that the equation for the chord of contact is $x x_{0}=2 a\left(y+y_{0}\right)$. Find the point of intersection of the tangents to $x^{2}=8 y$ at the points where the chord of contact $y=x-1$ intersects the parabola.
(7) For the parabola $x^{2}=4 a y$.
(a) Derive the equation of the chord joining the points $P=\left(2 a p, a p^{2}\right)$ and $Q=\left(2 a q, a q^{2}\right)$.
(b) Show that as q approaches p the equation of the chord becomes the equation of the tangent.

End of Section B

Start a new ANSWER BOOKLET

Section C (20 marks)

(1) Prove that ${ }^{n} P_{k}={ }^{n-1} P_{k}+k \cdot{ }^{n-1} P_{k-1}$.
(2) AB is a chord of a circle and PA is a tangent at A . XY is a perpendicular bisector of AB and passes through the centre of the circle, O. PY is perpendicular to PA.
(a) Copy the diagram into your answer booklet.
(b) Show that triangle AYB is an isosceles triangle.
(c) If $\angle P A Y=\alpha$ show that $\angle Y A B=\alpha$.
(d) Prove that $\mathrm{PY}=\mathrm{XY}$.

(3) In how many ways can the letters of the word TOMATO be arranged if the Ts are to be separated?
(4) A Rugby League team of 13 players are to be selected at random from 20 boys. What is the probability that of 3 friends, 2 are selected and one misses out.
(5) For the parabola $x=4 t, y=2 t^{2}$.
(a) Derive the equations of the normals at $t=p$ and $t=-p$.
(b) The normals intersect at R. Find the locus of R.
(6) Use mathematical induction to prove that

$$
\frac{1}{2}+\frac{2}{3}+\cdots+\frac{n}{n+1}<\frac{n^{2}}{n+1}
$$

for all integers $n \geq 2$.

End of Section C

End of Exam

SECTION A

1) $\theta=55^{\circ}$
$2 /$
(a) $\int 3 x^{5} d x=\frac{x^{6}}{2}+c$
(b) $\int \frac{(3 x+2)^{2}}{3} d x=\frac{(3 x+2)^{3}}{27}+c=2$

$$
\begin{aligned}
\text { or } & =x^{3}+2 x^{2}+\frac{4 x}{3}+c \\
\text { (c) } \int \frac{d x}{(7 x-1)^{\frac{1}{2}}} & =\frac{2}{7} \sqrt{7 x-1}+c 2
\end{aligned}
$$

3/ (a) $\int_{-8}^{8} \frac{x^{3}}{2} d x=\left[\frac{x^{4}}{8}\right]_{-8}^{8}=10 \quad 2$
[Could use $\int_{-a}^{a} f(x) d x=0$ if $f(x)$ odd]
(b)

$$
\begin{aligned}
\int_{-3}^{3}\left(x^{2}+3\right) d x & =\left[\frac{x^{3}}{3}+3 x\right]_{-3}^{3} \\
& =[(9+a)-(-9-9)]
\end{aligned}
$$

$\left[\right.$ Could use $\left.\begin{array}{c}=36 \\ \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x \\ \text { if } \\ f(x) \\ \text { even }\end{array}\right]$.
(c)

$$
\int \sqrt{x-4} d x=\frac{2}{3}(x-4)^{3 / 2}+c 1
$$

4 $26.26 .26 \cdot 10 \cdot 10 \cdot 26=4569760$.

5

$$
\begin{aligned}
(A B)^{2} & =2 x \times x \quad 1 \\
100 & =2 x^{2} \\
x & =\sqrt{50}=5 \sqrt{2} \quad
\end{aligned}
$$

${ }^{6}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d t} \div \frac{d x}{d t} \\
& =8 t \div 2 \\
& =4 t \\
& =4\left(\frac{x+1}{2}\right) \\
& =2 x+2
\end{aligned}
$$

I

$$
\begin{aligned}
V & =\pi \int_{-3}^{2}(y+3) d y \\
& =\pi\left[\frac{y^{2}}{2}+3 y\right]_{-3}^{2} 1 \\
& =\pi[(2+6)-(-4-5)] \\
& =12.5 \pi \text { units }^{3} 1
\end{aligned}
$$

8/3
$\hat{A X D}=90^{\circ}$ (angle in semi- -)
$\hat{A x y}=90^{\circ}$ (adj , angles en str. live'
Similarly
$\hat{B Y C}=90^{\circ}$ (angle in sem- -C)
, $B \hat{Y X}=90^{\circ}$ (add. and. on str. line)
$\Rightarrow A x / \int B y$ since the cointerior angles ABy and $B Y X$ are supplementary.
$\therefore A B Y X$ is a /I gram with one angle a right angle.
ie a rectangle.

Section B
1)

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{b}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]
$$

x	2	3	4
$f(x)$	$\log _{10} 2$	$\log _{10} 3$	$\log _{10} 4$

$$
\begin{aligned}
\int_{2}^{4} \log _{10} x d x & \approx \frac{4-2}{6}\left[\log _{10} 2+4 \log _{10} 3+\log _{10} 4\right] \\
& \approx 0.94 \text { units }^{2}
\end{aligned}
$$

2) a)

$$
\begin{aligned}
& f(x)=x^{3}-3 x+1 \\
& f(0)=1 \\
& f(1)=-1
\end{aligned}
$$

since $f(x)$ is continuous and opposite in sign at endpoints. $f(x)$ has at least one zero when $0 \leq x \leq 1$.
b)

$$
\begin{array}{ll}
a_{1}=a-\frac{f(a)}{f^{\prime}(a)} & f(x)=x^{3}-3 x+1 \\
f(0)=1 \\
a_{1}=0-\frac{1}{-3} & f^{\prime}(x)=3 x^{2}-3 \\
a_{1}=\frac{1}{3} & f\left(\frac{1}{3}\right)=-3 \\
a_{2}=\frac{1}{3}-\frac{1}{\left(-\frac{8}{3}\right)} & f^{\prime}\left(\frac{1}{3}\right)=-\frac{8}{3} \\
a_{2}=\frac{25}{72} & \\
a_{2} \approx 0.347 &
\end{array}
$$

c) $f^{\prime}(1)=0$ tangent when $x=1$ is horizontal
\therefore doesn't cross the x-axis.
\therefore Newton's method fouls.
3) a) ${ }^{13} C_{3} \times{ }^{13} C_{2}=22308$
b) 3 cards

2 cards

$$
12 \times 22308=267696
$$

4)

$$
\begin{aligned}
& y=x^{2}-2 x+2 \quad y=x+2 \\
& y=x^{2}-2 x+1+1
\end{aligned}
$$

$$
y=(x-1)^{2}+1
$$

sub (1) into (2)

$$
\begin{aligned}
& x^{2}-2 x+p=x+p \\
& x^{2}-3 x=0 \\
& x(x-3)=0 \\
& x=0, x=3
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\int_{0}^{3}\left[x+2-\left(x^{2}-2 x+2\right)\right] d x \\
& =\int_{0}^{3}\left(3 x-x^{2}\right) d x \\
& =\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3(3)^{2}}{2}-\frac{(3)^{3}}{3}-(0) \\
& =\frac{9}{2} \text { units }^{2}
\end{aligned}
$$

5)

$$
\begin{aligned}
n_{k} & =120^{n} C_{k} \\
\frac{n^{\prime}}{(n-k)!} & =120 \frac{n^{\prime}}{(n-k)!k!} \\
k! & =120 \\
\therefore k & =5 .
\end{aligned}
$$

6)

$$
\begin{array}{lll}
x^{2}=8 y & x x_{1}=2 a\left(y+y_{1}\right) \\
x^{2}=4 a y & x x_{1}=4\left(y+y_{1}\right) & y=x-1 \\
a=2 & & x=y+1 \\
& \text { equate } & x=4 x=4(y+1) \\
& x_{1}=4, y_{1}=1
\end{array}
$$

1. point of intersection of the tangent is $(4,1)$

$$
m_{p q}=\frac{a p^{2}-a q^{2}}{2 a p-2 a q}
$$

$$
=\frac{a\left(p^{2}-q^{2}\right)}{2 a(p-q)}
$$

$$
=\frac{(p-q)(p+q)}{2(p-q)}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
=\frac{p+q^{\prime}}{2}
$$

$$
\begin{aligned}
& y-a p^{12}=\frac{1}{2}(p+q) x-a p^{2}-a p q \\
& y-\frac{1}{2}(p+q) x+a p q=0
\end{aligned}
$$

b) as $q \rightarrow p$

$$
\begin{aligned}
& y-\frac{1}{2}(p+(p)) x+a p(p)=0 \\
& y-p x+a p^{2}=0
\end{aligned}
$$

which is the equation of the tangent.

SECTION C. (EXT. 1.)
QI

$$
\begin{aligned}
\text { RUS } & =n^{n-1} P_{k}+k^{n-1} P_{k-1} \\
& =\frac{(n-1)!}{(n-1-k)!}+\frac{k(n-1)!}{(n-k)!} \\
& =\frac{(n-1)!}{(n-k)!}[n-k+k] \\
& =\frac{n(n-1)!}{(n-k)!} \\
& =\frac{n!}{(n-k)!} \\
& =n P_{r} \\
& =L H S .
\end{aligned}
$$

Q2. (a)

(b)
$A X=B X \quad$ (data)
$\widehat{A X Y}=\hat{B} \hat{X} Y$ (data)
$X Y$ is common.

$$
\therefore \triangle A X Y \equiv \Delta B \times Y \quad(S . A . S)
$$

$\therefore A Y=B Y$ (comemonding sides of cangment Siuaingles)
$\therefore \triangle A Y B$ is
is esceles.
(c) $\angle P A Y=\alpha$.
$\therefore \angle A B Y=\alpha$ (angle between tangent
and chad is equal is the angle in the alternate respment)
how $\angle Y A B=\angle A B Y$ (aseraberstrisingle, bare angles equal).

$$
\therefore \angle Y A B=\alpha .
$$

(d) APYX is a oyclic quadilatiol (oxstite angles $A \hat{P} Y$ and $A \hat{x} Y$ are oupllementary)
$\therefore \quad \therefore y=p r \quad$ equal angles ase subterded hy egral chosds, at the cireumberence ofa cuide).
[OR. Shew That $\triangle A X Y \equiv \triangle A P Y$ uning (AAS) bett]
Q3. $\frac{6!}{2!\times 2!}-\frac{5!}{2!}=120 . \quad$ OR $\quad \frac{4!}{2!} \times\binom{ 5}{2}=120$.

Q4: $\frac{\binom{3}{2} \times\binom{ 17}{11}}{\binom{20}{13}}=\frac{91}{190}$.

Q5. Gpven $y=2 t^{2}+x=4 t$.

$$
\begin{aligned}
\frac{d y}{d t}=4 t \cdot & \frac{d x}{d t}
\end{aligned}=4
$$

$$
\begin{aligned}
\therefore \frac{d y}{d x} & =\frac{d y}{d t} \cdot \frac{d t}{d x} \\
& =4 t \times \frac{1}{4} \\
& =t .
\end{aligned}
$$

\therefore slete of neaval wetere $t=p$ is $-\frac{1}{p}$.
\therefore eqn. o/ntroual is $\frac{y-2 p^{2}}{x-4 p}=\frac{-1}{p}$.

$$
\begin{align*}
p y-2 p^{3} & =-x+4 p \\
x+p y & =2 p^{3}+4 p
\end{align*}
$$

at $A=-p . \quad \frac{y-2 p^{2}}{x+4 p}=\frac{1}{p} \quad \therefore \quad p y-2 p^{3}=x+4 p$.

$$
-x+p y=2 p^{3}+4 p
$$

add (1) + (2)

$$
\begin{aligned}
2 p y & =4 p^{3}+8 p \\
y & =2 p^{2}+4
\end{aligned}
$$

Anbtract (2) fism (1).

$$
\begin{aligned}
2 x & =0 . \\
x & =0 . \\
\therefore R \text { is }\left(0,2 p^{2}+4\right) &
\end{aligned}
$$

new the soces O/R is the y-asis, rerue. $y \geqslant 4$.

Q6. Steh I. Conarder $n=2$.

$$
\text { LHS }=\frac{1}{2}+\frac{2}{3}=\frac{7}{6} \quad \text { RHS }=\frac{4}{3}
$$

\therefore Nive when $n=2$ as $\frac{7}{6}<\frac{4}{3}$
Aleh II Assune the statement to be tive wher $n=k$. ie. $\frac{1}{2}+\frac{2}{3}+\cdots+\frac{k}{k+1}<\frac{k^{2}}{k+1}$.

Atel泟 Requied to purere. The staturatis tive Nir $n=k+1$. under she aosunthiti in Sted II. ie. $\frac{1}{2}+\frac{2}{3}+\cdots+\frac{k}{k+1}+\frac{k+1}{k+2}<\frac{(k+1)^{2}}{k+2}$.
now

$$
\begin{aligned}
L H S & =\frac{1}{2}+\frac{2}{3}+\cdots+\frac{k}{k+1}+\frac{k+1}{k+2} \\
& <\frac{k^{2}}{k+1}+\frac{k+1}{k+2}(1+k \text { momantion) } \\
& =\frac{k^{2}(k+2)+(k+1)^{2}}{(k+1)(k+2)} \\
& =\frac{k^{3}+2 k^{2}+k^{2}+2 k+1}{(k+1)(k+2)} \\
& <\frac{k^{3}+3 k^{2}+3 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)^{3}}{(k+1)(k+2)} \\
& =\frac{(k+1)^{2}}{k+2}=k+5 \\
& \frac{1}{2}+\frac{2}{3}+\cdots+\frac{k+1}{k+2}<\frac{(k+1)^{2}}{k+2}
\end{aligned}
$$

Stet II. By the Principe of mathervatical Induction the statement is true for ale integral $n \geqslant 2$.

