

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

May 2011 Assessment Task 2 Year 12

Mathematics Extension 1

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question.
- All answers to be given in simplified exact form unless otherwise stated.

Total Marks - 66

- Attempt questions 1-6
- All questions are of equal value.
- Start each new question in a separate answer booklet.
- Hand in your answers in 3 separate bundles:

Section A (Questions 1 and 2),

Section B (Questions 3 and 4) and

Section C (Questions 5 and 6).

Examiner: A Ward

Section A

Question 1 (11 Marks).

- Three roads lead from town A to town B and five roads lead from town B a) to town C. How many ways are there of going from town A to town C?
- b) Find:
 - (i) $\int (x^2 + 6x) dx$ (ii) $\int \left(\frac{1}{\sqrt{x}} - \sqrt{x}\right) dx$
- Find the value of *x* giving reasons. c)

- d) Using the letters of the word DISPLAY, how many 5 letter arrangements 1 are possible? 2
- e)
- f) Write in factorial form $6 \times 5 \times 4$.
- Evaluate the following to 3 significant figures: **g**)

Page 1 3/05/2011 11:58:44 AM

End of Question 1

Marks

1

2

2

1

Question 2 (11 Marks).

2 a) Find the Cartesian equation of the curve whose parametric equations are:

 $x = 6t, y = 3t^2$

- b) Using isosceles triangles, prove that the angle subtended by a diameter at the 3 circumference of a circle is a right angle.
- c) By differentiating $(3x+1)^4$, find the integral of $\int (3x+1)^3 dx$.
- d) Find the volume of the solid generated by rotating the region bounded by the 4 curve $y = 4 - x^2$ and y = 0 about the x-axis through a complete revolution. Leave your answer in terms of π .

End of Question 2

End of Section A

Marks

Section B – Start a new booklet.

Question 3 (11 Marks).

a) A curve is defined by

$$y = \frac{2x^2 - x + 2}{x}$$
, $x \neq 0$.

- (i) Find the co-ordinates of any turning points.
- (ii) Sketch the curve, showing these turning points and determine the equations of any asymptotes.
- b) A curve has the parametric equations $x = 2t^2$ and y = 4t. Find the value(s) of 3 k if y = x + k is a tangent to the curve.
- c) Using the trapezoidal rule with 2 strips, evaluate the following to 1 decimal3 places:

$$\int_{2}^{6} \left(x - \frac{1}{x} \right) dx$$

End of Question 3

Marks

Question 4 (11 Marks).

a) Prove by mathematical induction where *n* is a positive integer:

$$\sum_{r=1}^{n} 4^{r} = \frac{4}{3} \left(4^{n} - 1 \right)$$

b) Use Simpson's Rule with 4 sub intervals to evaluate the following to 23 decimal places:

$$\int_0^2 \left(2^x + 1\right) dx$$

c) Find the area of the region bounded by the line $y = \frac{x}{2}$ and the parabola 4

 $y^2 = 8 - x \, .$

End of Question 4

End of Section B

Section C – Start a new booklet.

Question 5 (11 Marks).

Marks

3

- a) Take 0.5 as a first approximation to the root of $y = x^3 + 2x 1$, and use Newton's Method to improve this to 2 decimal places.
- b) (i) How many permutations of the letters of the word DEFEATED are there?
 (ii) How many permutations of the letters of the word DEFEATED are 4
 - (ii) How many permutations are there in which the E's are separated from each other?
- c) Prove by mathematical induction that $n! > 2^n$ for all positive integers greater 4 than or equal to 4.

End of Question 5

Question 6 (11 Marks).

a) Two circles touch internally at a point *P*. The smaller circle passes through the centre *O*, of the larger circle. *PQ* is any chord on the larger circle, intersecting the smaller circle at *K*. Tangents at *P* and *Q* of the larger circle meet at *T*.

- (i) Prove that PK=QK.
- (ii) Prove that *O*, *K* and *T* are collinear.
- **b**) $P(2t,t^2)$ is a variable point on the parabola $x^2 = 4y$ whose focus is *S*.

Q(x, y) divides the interval from P to S in the ratio t^2 :1

- (i) Find x and y in terms of t.
- (ii) Verify that $t = \frac{y}{r}$.
- (iii) Prove that as P moves on the parabola, Q moves on a circle, thus find the centre and radius.

End of Question 6.

End of Section C.

End of Examination.

Marks

5

6 5×3 = 15 roads Q1. $(3) \left(5 \right) \left(5 \right)$ (ii) Sta-Vx.dx = 2Vx - 3x^{3/2} $\begin{array}{c} O & A \widehat{C} B = 32^{\circ} & (Angle in Alt. Segnent) \\ A \widehat{B} C = 72^{\circ} & ('' '' '' ''' ''' ''') \\ \vdots z C = 76^{\circ} & (Angle Sum in Iningle). \end{array}$ $\chi^2 = 5\gamma$ Ð :.4a = 5 $a = \frac{3}{4}$ $bc = 2at = \frac{5}{2}t$ $\gamma = at^{2} = \frac{5}{4}t^{2}$ $6 \times 5 \times 4 = 120 = 5! = \frac{6!}{3!}$ Ð S JZ2 - JX.dx 3 $= \int x^{\frac{2}{3}} - 2x^{\frac{1}{5}} dx$ $= \left(\frac{3 \times 5^{3}}{5} - \frac{5 \times 5^{3}}{6}\right)^{2}$ 58.3

2 & $\therefore \gamma = 3\left(\frac{z}{6}\right)^2$ $12y = 2c^{2}$ Now in \triangle ACB 2x+2y= 180 (L Sum of A) N.B: Une of A = B = 45° resulted in O manks. $\therefore sC + Y = 90$ Q.E.D $Y = (3 \times + 1)^{4}$ $\frac{dy}{dx} = 4 (3 \times + 1)^{3} \cdot 3 \text{ (Chain Rule)}$ (\mathcal{E}) $= 12(32(+1)^3)$ $\int (3x+1)^3 dx = \frac{1}{12} (3x+1)^4 + c$ $\forall = rt \int y^2 \cdot dz$ = $\pi \int (4-x^2)^2 dx$ =217 $\left[\frac{16x-\frac{8x^3}{3}+\frac{x^5}{5}\right]^2$ $=2\pi \left[32 - \frac{64}{3} + \frac{32}{5} \right]$ $=\frac{512TT}{15}$ u³ = (34·13TT) u³

$$\begin{array}{c} (A) & Q & ues + lon(3)^{\circ} \\ (1) & y &= \frac{2x^{2} - k + 2}{\chi} \\ (2) & y &= \frac{2x^{2} - k + 2}{\chi} \\ (2) & y &= \frac{2x^{2} - k + 2}{\chi} \\ (2) & y &= \frac{2x^{2} - k + 2}{\chi} \\ (2) & y &= \frac{2x^{2} - k + 2}{\chi} \\ (2) & y &= \frac{2x^{2} - k + 2}{\chi} \\ (2) & y &= \frac{2x^{2} - k + 2}{\chi} \\ (2) & y &= \frac{2x^{2} - k + 2}{\chi} \\ (3) & y &= \frac{2x^{2} - k + 2}{\chi} \\ (4) & y &= \frac{2x^{2} - k + 2}{\chi} \\ (4)$$

$$\begin{array}{c} (a) \\ L_{2} + S(n) \\ b_{2} + d_{2} \\ (a) \\ = \frac{4}{3} (4^{n} - 1) \\ n = 1 \\ L_{1} + s \\ = \frac{4}{3} (4^{n} - 1) \\ (b) \\ n = 1 \\ L_{2} + s \\ = \frac{4}{3} (4^{n} - 1) \\ (c) \\ n = 1 \\ L_{2} + s \\ = \frac{4}{3} (4^{n} - 1) \\ (c) \\ n = 1 \\ (c) \\ n = 1 \\ (c) \\ n = 1 \\ (c) \\ (c) \\ n = 2 \\ (c) \\ (c) \\ n = 2 \\ (c) \\$$

Section C $5(x) = x^3 + 2x - 1$ $f'(x) = 3x^2 + 2$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $\chi_1 = 0.5 - \frac{(0.5)^3 + 2(0.5) - 1}{3(0.5)^2 + 2}$ $\mathcal{R}_{1} = 0.454545...$ st, = 0.45 (to 2 decimal places) b)i) DEFEATED 3 E's 2 D's <u>-8!</u> = 3360 <u>-3!21</u> ii) Fix D, F, A, T, D. There are 5! ways. 6_6_0_0 since E's are all the same there are 63 ways of placing them (in the gaps) 5! x 6C3 = 1200 $\frac{OR}{21} = \frac{51}{21} \times \frac{6 \times 5 \times 4}{31}$ = 1200

Prove true for n=4 د_) $RHS = 2^4$ LHS= 4! = 24 = 16 LHS > RHS t. true for n=4. Assume true for n=k where kEN, k74 k! >2" Prove true for n=k+1 $ie (k+1)! > 2^{k+1}$ LHS = (RH)! = (R+1).k! (using assumption) (since k7r4) > (k+1). 2 7.5.2^k $> 2.2^{k}$ $= 2^{k+1}$ = RHS :. true for n=k+1 If true for n=k it is true for n=k+1. Since true for n=4 by the principle of mathematical induction it is true for all positive integers greater than or equal to 4.

6)a)i) OP is the diameter of the smaller wirde (when vircles touch, the line of centres passes) through the point of contact PKO = 90° (angle in a semi circle) MK=KQ (perpendicular from the centre to a) chord bisects the chord ii) PT=TQ (tangents from an external point) SPTQ is vosceles TKLPQ (the from midpoint (K) of the base (PQ) of an isosceles triangle (SPTR) to opposite vertex (T) is perpendicular to the base to the base Since OKLPQ (OKp=90°) & KTLPQ where K is sommon O, K, T are collinear $Q(x,y) = \left(\frac{1 \times 2t + t^{2} \times 0}{1 + t^{2}}, \frac{1 \times t^{2} + t^{2} \times 1}{1 + t^{2}}\right)$ $- \chi = \frac{2t}{1+t^2}$ $y = \frac{2t^2}{1+t^2}$ $\frac{y}{x} = \frac{2t^2}{1+t^2}$ $\frac{2t}{1+t^2}$ $\frac{1+t^2}{1+t^2}$ $\frac{1+t^2}{1+t^2}$ $= 2t^2$ = E-

iii) $\chi = \frac{2t}{1+t^2}$ subth $t = \frac{y}{n}$ $\chi = \frac{2\left(\frac{y}{x}\right)}{1+\left(\frac{y}{x}\right)^2}$ ····· тала 2013 г. т. Т. Майлан , т. с. . . $\chi + \frac{y'}{\chi} = \frac{2y}{\chi}$ стани с тала с то с то с тала с то с то с тала с то с то с то с $-\chi^2 + y^2 = 2y$ $x^{2} + y^{2} - 2y + 1 = 1$ $x^{2} + (y^{-1})^{2} = 1$ which is a circle centre (0,1) radius 1 unit. n a stand and have been a black of black and black and black a ا المالية الم