SYDNEYBOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

April 2012

Assessment Task 2

Year 12

Mathematics Extension 1

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question if full marks are to be awarded.
- Answer in simplest exact form unless otherwise instructed.

Total Marks - 60

- Attempt sections A - C.
- Start each NEW section in a separate answer booklet.
- Hand in your answers in 3 separate bundles:

Section A
Section B
Section C

Examiner: J. Chen

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

START A NEW ANSWER BOOKLET

SECTION A [20 marks]

For these 10 questions there is one correct answer per question. Write down in your answer booklet the question number and letter of your answer.
1.

$$
\int_{1}^{2} \frac{d x}{2 x+5}
$$

equals
(a) $\ln \left(\frac{9}{7}\right)$
(b) $\frac{1}{2} \ln (63)$
(C) $\frac{1}{2} \ln \left(\frac{9}{7}\right)$
(d) $\ln (63)$
2.
equals
(a) 2
(b) 1
(c) 0
(d) $\frac{1}{2}$
3. If $\log _{m} 64+\log _{m} 4=x \log _{m} 2$, then the value of x is:
(a) 4
(b) 8
(c) 6
(d) 2
4. $\frac{d}{d x} \log _{e}\left(e^{3 x}+2\right)$ equals
(a) $3 e^{3 x}$
(b) $e^{3 x}+2$
(c) $\frac{1}{e^{3 x}+2}$
(d) $\frac{3 e^{3 x}}{e^{3 x}+2}$
5. The diagram below shows a part of the graph of a trigonometric function.

A possible equation for the function is
(a) $y=2 \sin 2 x$
(b) $y=-2 \cos 2 x$
(c) $y=-2 \sin \frac{x}{2}$
(d) $y=2 \cos \frac{x}{2}$
6.

$$
\int \cos 6 x \cdot d x
$$

equals
(a) $\frac{\sin 6 x}{6}+C$
(b) $-\frac{\sin 6 x}{6}+C$
(c) $6 \sin 6 x+C$
(d) $-6 \sin 6 x+C$
7.

$$
\int 8 x e^{x^{2}} \cdot d x
$$

equals
(a) $4 x e^{x^{2}}+C$
(b) $8 e^{x^{2}}+C$
(c) $2 x e^{x^{2}}+C$
(d) None of the above
8. What is the exact value of $\sin 75^{\circ}$?
(a) $\frac{\sqrt{2}+\sqrt{6}}{4}$
(b) $\frac{\sqrt{2}-\sqrt{6}}{4}$
(c) $\frac{\sqrt{6}+\sqrt{2}}{4}$
(d) $\frac{\sqrt{6}-\sqrt{2}}{4}$
9.
equals
(a) 0
(b) 2
(c) $2 \int_{0}^{\pi} 2 \sin x \cdot d x$
(d) $\left|\int_{-\pi}^{0} 2 \sin x \cdot d x\right|+\int_{0}^{\pi} 2 \sin x . d x$
10. If $f(x)=\cos 2 x$, then $f^{\prime}\left(-\frac{\pi}{6}\right)$ is:
(a) $\frac{\sqrt{3}}{2}$
(b) $\sqrt{3}$
(c) $-\frac{\sqrt{3}}{2}$
(d) None of the above
11. Differentiate $\cot x$.
12. Solve the equation,

$$
3 \ln (x+1)=\ln \left(x^{3}+19\right)
$$

13. Find the equation of the tangent to the curve $y=\sin x$ at $x=\pi$.
14. PQ and XY are arcs of concentric circles with centre $\mathrm{O} . \mathrm{OP}=\mathrm{PX}=4 \mathrm{~m}$. [3] The shaded sector OPQ has area $\frac{2 \pi}{3}$ square metres. Find $\angle \mathrm{POQ}$ in degrees.

End of Section A

START A NEW ANSWER BOOKLET

SECTION B [20 marks]

1. At any point on the curve $y=f(x)$ the gradient function is given
by $\frac{d y}{d x}=\frac{x+1}{x+2}$. If $y=-1$ when $x=-1$, find the value of y when $x=1$, correct your answer to the nearest 3 significant figures.
2. P and Q are centres of the circles, AXB is a straight line. Prove that
$\angle \mathrm{APY}=\angle \mathrm{BQY}$ as marked below.

3. Evaluate
[2]

$$
\int_{0}^{\frac{\pi}{6}} \sec ^{2} x \tan ^{8} x . d x
$$

4. Consider the function $f(x)=\frac{\log _{e} x}{x^{2}}$.
(i) Find the x intercept of the curve.
(ii) Find the coordinates of the turning point and the point of inflexion.
(iii) Hence, sketch the curve $y=f(x)$ and label the critical points and any asymptotes.
5. Consider the function $f(x)=x-\sin x$.
$P(X, 1)$ is a point on the curve $y=f(x)$. Starting with an initial approximation of $X=2$, use one application of Newton's Method to find an improved approximation to the value of X , giving the answer correct to 3 decimal places.
6. Prove by Mathematical Induction that $3^{3 n}+2^{n+2}$ is divisible by 5 for all integers $n \geq 1$.

End of Section B

START A NEW ANSWER BOOKLET

SECTION C [20 marks]

1.

(i) Show that there is a solution to the equation $x-2=\sin x$ between $x=2.5$ and $x=2.6$.
(ii) By halving the interval, find the solution correct to 2 decimal places.
2.
(i) Use the Principle of Mathematical Induction to prove that

$$
\sin (x+n \pi)=(-1)^{n} \sin x
$$

for all positive integers n.
(ii) If

$$
S=\sum_{k=1}^{n} \sin (x+k \pi)
$$

for $0<x<\frac{\pi}{2}$ and for all positive integers n.
Prove that $-1<S \leq 0$.
3. Consider the function $f(x)=e^{x}\left(1-\frac{x}{4}\right)^{4}$.
(i) Find the coordinates of the stationary points and determine their nature.
(ii) Sketch the curve $y=f(x)$ and label the turning points and any asymptotes.
(iii) Hence, prove that $\left(\frac{5}{4}\right)^{4} \leq e \leq\left(\frac{4}{3}\right)^{4}$.
4. In the diagram, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and P are points on the circumference of the circle and $\triangle \mathrm{ABC}$ is an equilateral triangle. X is a point on the straight line PC such that $\mathrm{PX}=\mathrm{BX}$. Prove that $\mathrm{PC}=\mathrm{PA}+\mathrm{PB}$.

Copy or trace the diagram into your answer booklet.

End of Section C

End of Exam
$\because 12$ half yearly extension i 2012

SECTION A
1.

$$
\begin{aligned}
\int_{1}^{2} \frac{d x}{2 x+5} & =\frac{1}{2}[\ln (2 x+5)]_{1}^{2} \\
& =\frac{1}{2}\{\ln 9-\ln 7\} \\
& =\frac{1}{2} \ln \frac{4}{7} C C
\end{aligned}
$$

2.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x} & = \pm \lim _{2 x \rightarrow 0} \frac{\sin 2 x}{2 x} \\
& =2 \times 1 \\
& =2
\end{aligned}
$$

3. $\quad \log _{m} 64+\log _{m} 4=x \log _{m} 2$

$$
\begin{align*}
\operatorname{LH5} & =\log _{m} 256 \\
& =\log _{m} 2{ }^{8} \\
& =8 \log _{m} 2 \\
x & =8
\end{align*}
$$

4.

$$
\begin{align*}
& \frac{d}{d x} \log e\left(e^{3 x}+2\right) \\
& =\frac{1}{e^{3 x}+2} \cdot e^{3 x} \\
& =\frac{3 e^{3 x}}{e^{3 x}+2}
\end{align*}
$$

5. $\quad c \quad y=-2 \sin \frac{x}{2}$
6.

$$
\begin{aligned}
& \int \cos 6 x d x \\
= & \frac{1}{6} \sin 6 x+c
\end{aligned}
$$

(4)
7. $\int 8 x e^{x^{2}} d x$

Let $u=x^{2}$

$$
\begin{aligned}
& =4 \int e^{u} d u \\
& =4 e^{u}+c \\
& =4 e^{x^{2}}+c
\end{aligned}
$$

(D). Nore of the above
(8)

$$
\begin{align*}
\sin 75^{\circ} & =\sin (45530)^{\circ} \\
& =\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ} \\
& =\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2} \\
& =\frac{\sqrt{3}+1}{2 \sqrt{2}} \\
& =\frac{\sqrt{6}+\sqrt{2}}{4} \quad \text { A } C
\end{align*}
$$

9.

$$
\begin{aligned}
& \int_{-\pi}^{\pi} 2 \sin x d x \\
= & 2[-\cos x]_{-\pi}^{\pi} \\
= & 2[-\cos \pi--\cos (-\pi)] \\
= & 2[4+-1] \\
= & 0
\end{aligned}
$$

10

$$
\begin{aligned}
f(x) & =\cos 2 x \\
f^{\prime}(x) & =-\sin 2 x \cdot 2 \\
f^{\prime}\left(-\frac{\pi}{6}\right) & =-\sin \left(-\frac{\pi}{3}\right) \cdot 2 \\
& =-2 \times-\sin \frac{\pi}{3} \\
& =2 \times \frac{\sqrt{3}}{2} \\
& =\sqrt{3}
\end{aligned}
$$

in.

$$
\begin{aligned}
\frac{d}{d x}(\cot x) & =\frac{d}{d x}\left(\frac{\cos x}{\sin x}\right) \\
& =\frac{\sin x \cdot-\sin x-\cos x \cdot \cos x}{\sin ^{2} x} \\
& =\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x} \\
& =\frac{-1}{\sin ^{2} x} \\
& =-\operatorname{cosec}^{2} x
\end{aligned}
$$

12.

$$
\begin{aligned}
& \quad 3 \ln (x+1)=\ln \left(x^{3}+19\right) \\
& \therefore \quad \ln \left((x+1)^{3}\right)=\ln \left(x^{3}+19\right) \\
& \therefore \quad x^{3}+3 x^{2}+3 x+1=x^{3}+19 \\
& \therefore \quad 3 x^{2}+3 x-19=0 \\
& x^{2}+x-6=0 \\
& (x+3)(x-2)=0 \\
& x=-3 \text { or } x=2
\end{aligned}
$$

As $x+1>0, \quad x \neq-3$

$$
\therefore \text { Soln : } x=2
$$

13.

$$
\begin{aligned}
& y=\sin x \\
& y^{\prime}=\cos x
\end{aligned}
$$

$$
\text { when } x=\pi, \quad y=\sin \pi=0
$$

$$
\begin{aligned}
\therefore \text { Egn of tanguti is } y-0 & =-1(x-\pi) \\
y & =-x+\pi \\
y+x & =\pi
\end{aligned}
$$

14.

$$
\begin{aligned}
\text { Ara } & =\frac{1}{2} r^{2} \theta \\
=\frac{1}{2} \times 16 \times \theta & =\frac{2 \pi}{3} \\
\therefore 8 \theta & =\frac{2 \pi}{3} \\
\therefore \theta & =\frac{2 \pi}{24} \\
& =\frac{\pi}{12} \\
& =15^{\circ} \\
\therefore \angle P Q & =15^{\circ}
\end{aligned}
$$

2012 Extension 1 Mathematics Task 2:

Solutions- Section B

1. At any point on the curve $y=f(x)$ the gradient function is given
by $\frac{d y}{d x}=\frac{x+1}{x+2}$. If $y=-1$ when $x=-1$, find the value of y when $x=1$, correct your answer to the nearest 3 significant figures.

Solution: $\frac{d y}{d x}=1-\frac{1}{x+2}$,
$y=x-\ln (x+2)+c$.
$-1=-1-\ln 1+c$,

-2| $\begin{array}{rr}1 & 1 \\ & -2\end{array}$ | |
| ---: | ---: |
| 1 | -1 |

$c=0$.
$y=x-\ln (x+2)$,
$=1-\ln 3$ when $x=1$,
≈-0.0986 (3 sig. fig.)
2. P and Q are centres of the circles, $A X B$ is a straight line. Prove that $\angle A P Y=\angle B Q Y$ as marked below.

$$
\text { Solution: } \begin{aligned}
A \widehat{P} Y & =2 A \widehat{X} Y(\angle \text { at centre } 2 \times \angle \text { at circumf. }), \\
360^{\circ}-B \widehat{Q} Y & =2 B \widehat{X} Y(\angle \text { at centre } 2 \times \angle \text { at circumf. }), \\
A \widehat{X} Y+B \widehat{X} Y & =180^{\circ}(A \widehat{X} B \text { is straight }), \\
A \widehat{P} Y+360^{\circ}-B \widehat{Q} Y & =2 \times 180^{\circ}, \\
A \widehat{P} Y & =B \widehat{Q} Y, \\
\therefore \text { reflex } A \widehat{P} Y & =\text { reflex } B \widehat{Q} Y .
\end{aligned}
$$

3. Evaluate $\quad \int_{0}^{\frac{\pi}{6}} \sec ^{2} x \tan ^{8} x . d x$

$$
\text { Solution: } \begin{array}{rlr}
\mathrm{I} & =\int_{0}^{\frac{1}{\sqrt{3}}} u^{8} \cdot d u, & \begin{aligned}
\text { put } u & =\tan x \\
d u / d x & =\sec ^{2} x \\
\text { when } x=\pi / 6, & u=1 / \sqrt{3} \\
x & =0, \\
& \\
& \left.=\frac{u^{9}}{9}\right]_{0}^{\frac{1}{\sqrt{3}}}, \\
& =\frac{1}{9} \times \frac{1}{81 \sqrt{3}}-0, \\
& =\frac{\sqrt{3}}{2187} .
\end{aligned}
\end{array}
$$

4. Consider the function $f(x)=\frac{\log _{e} x}{x^{2}}$.
(a) Find the x intercept of the curve.

Solution: $\ln x=0$ when $x=1$, so the x-intercept is at $(1,0)$.
(b) Find the coordinates of the turning point and the point of inflexion.

$$
\begin{aligned}
& \text { Solution: } \begin{array}{rlrl}
f^{\prime}(x) & =\frac{\frac{x^{2}}{x}-2 x \ln x}{x^{4}}, & f^{\prime \prime}(x) & =\frac{x^{3}\left(\frac{-2}{x}\right)-3 x^{2}(1-2 \ln x)}{x^{6}}, \\
& =\frac{1-2 \ln x}{x^{3}}, & & =\frac{-2-3+6 \ln x}{x^{4}}, \\
& =0 \text { when } x=e^{1 / 2} . & & =\frac{6 \ln x-5}{x^{4}}, \\
\therefore \text { Maximum }\left(e^{1 / 2}, \frac{1}{2 e}\right), & & =0 \text { when } x=e^{5 / 6} . \\
\text { Inflexion }\left(e^{5 / 6}, \frac{5}{6 e^{5 / 3}}\right), & f^{\prime \prime}\left(e^{1 / 2}\right) & =\frac{-2}{e^{2}}<0 .
\end{array}
\end{aligned}
$$

(c) Hence sketch the curve $y=f(x)$, and label the critical points and any asymptotes.

5. Consider the function $f(x)=x-\sin x$. $P(X, 1)$ is a point on the curve $y=f(x)$. Starting with an initial approximation of $X=2$, use one application of Newton's Method to find an improved approximation to the value of X, giving the answer correct to 3 decimal places.

Solution: $f^{\prime}(x)=1-\cos x$.

$$
\begin{aligned}
a_{1} & =2-\frac{2-\sin 2-1}{1-\cos 2} \\
& \approx 1.936(3 \mathrm{dec} \cdot \mathrm{pl} .)
\end{aligned}
$$

6. Prove by Mathematical Induction that $3^{3 n}+2^{n+2}$ is divisible by 5 for all integers $n \geqslant 1$.

Solution: $\quad S_{n}=3^{3 n}+2^{n+2}$.
Test $n=1, S_{1}=3^{3}+2^{3}$,

$$
=27+8
$$

$$
=35
$$

\therefore True for $n=1$.
Assume true for $n=k$,

$$
\begin{aligned}
\text { i.e. } S_{k} & =5 p \text { where } p \in \mathbb{Z} . \\
\text { Test } n & =k+1, \\
\text { i.e. } S_{k+1} & =5 q \text { where } q \in \mathbb{Z} . \\
\text { L.H.S. } & =3^{3(k+1)}+2^{k+1+2} \\
& =3^{3 k+3)}+2^{k+3} \\
& =27.3^{3 k}+2.2^{k+2} \\
& =27\left(3^{3 k}+2^{k+2}\right)^{k}-25.2^{k+2} \\
& =27 S_{k}-25.2^{k+2} \\
& =27.5 p-25.2^{k+2}(\text { using the assumption }), \\
& =5\left(27 p-5.2^{k+2}\right) \\
& =5 q .
\end{aligned}
$$

So, true for $n=k+1$ if true for $n=k$; true for $n=1$,
and so true for $n=2,3, \ldots$, for all $n \geqslant 1$.

Section C Solutions

1.

(i) Show that there is a solution to the equation $x-2=\sin x$ between $x=2.5$ and $x=2.6$.
(ii) By halving the interval, find the solution correct to 2 decimal places.

Let $f(x)=x-2-\sin x$
$f(2.5)=-0.098472144$
$f(2.6)=0.084498628$
As $f(x)$ is continuous and $f(2.5) \cdot f(2.6)<0$ then there is a solution for $2.5<x<2.6$
One application of the "halving the interval" gives an approximation as $x=2.55$.

[This is probably what the question meant for 1 mark]

However, what the question is really asking means that we have to find the correct solution rounded to 2 d.p.

Is $x=2.55$ the correct solution rounded to 2 dp ? $f(2.55)=-0.007683717$
So a smaller interval containing the solution is $2.55<x<2.6$ and so a second approximation would be $x=2.575$
As $f(2.575)=0.038239727$ then a smaller subinterval containing the solution is $2.55<x<2.575$.

Using the table below, the correct solution to 2 dp is 2.55

a	b	$f(a)$	$f(b)$	$f(a) \times f(b)$	midpoint	f (midpoint)
2.5	2.6	-0.098472144	0.084498628	-	2.55	-
2.55	2.6	-0.007683717	8.863738035	-	2.575	+
2.55	2.575	-0.007683717	8.556317158	-	2.5625	+
2.55	2.5625	-0.007683717	8.405697317	-	2.55625	+
2.55	2.55625	-0.007683717	8.331148842	-	2.553125	-
2.553125	2.55625	-0.001962081	8.331148842	-	2.5546875	+
2.553125	2.5546875	-0.001962081	8.312590505	-	2.55390625	-

2.

(i) Use the Principle of Mathematical Induction to prove that

$$
\sin (x+n \pi)=(-1)^{n} \sin x
$$

for all positive integers n.
Test $n=1$

$$
\begin{aligned}
& \text { LHS }=\sin (x+\pi)=-\sin x \quad\left(3^{\text {rd }} \text { quadrant results }\right) \\
& \text { RHS }=(-1)^{1} \sin x=-\sin x
\end{aligned}
$$

\therefore true for $n=1$
Assume true for $n=k$ i.e. $\sin (x+k \pi)=(-1)^{k} \sin x$
Need to prove true for $n=k+1$ i.e. $\sin [x+(k+1) \pi]=(-1)^{k+1} \sin x$

$$
\begin{aligned}
\text { LHS } & =\sin [x+(k+1) \pi] \\
& =\sin [(x+k \pi)+\pi] \\
& =-\sin (x+k \pi) \\
& =-(-1)^{k} \sin x \quad \text { [from assumption] } \\
& =(-1)^{k+1} \sin x \\
& =\text { RHS }
\end{aligned}
$$

So the formula is true for $n=k+1$ when it is true for $n=k$.
By the principle of mathematical induction the formula is true for all positive integers.
(ii) If

$$
S=\sum_{k=1}^{n} \sin (x+k \pi)
$$

for $0<x<\frac{\pi}{2}$ and for all positive integers n.
Prove that $-1<S \leq 0$.

$$
\text { For } 0<x<\frac{\pi}{2}, \sin x>0, \text { but } \sin x \neq 1
$$

$$
\begin{aligned}
S & =\sum_{k=1}^{n} \sin (x+k \pi) \\
& =\sum_{k=1}^{n}(-1)^{k} \sin x \\
& =\sin x \times \sum_{k=1}^{n}(-1)^{k}
\end{aligned}
$$

$$
=\sum_{k=1}^{n}(-1)^{k} \sin x \quad[\text { From (i) }]
$$

If n is even then $\sum_{k=1}^{n}(-1)^{k}=0$ and if n is odd then $\sum_{k=1}^{n}(-1)^{k}=-1$
$\therefore-1<\sin x \sum_{k=1}^{n}(-1)^{k} \leq 0 \quad$ [As indicated $\sin x \neq 1$, so $S \neq-1$]
$\therefore-1<S \leq 0$
3. Consider the function $f(x)=e^{x}\left(1-\frac{x}{4}\right)^{4}$.
(i) Find the coordinates of the stationary points and determine their nature.

$$
\begin{aligned}
f(x) & =e^{x}\left(1-\frac{x}{4}\right)^{4} \\
f^{\prime}(x) & =e^{x} \times 4\left(1-\frac{x}{4}\right)^{3} \times\left(-\frac{1}{4}\right)+e^{x}\left(1-\frac{x}{4}\right)^{4} \\
& =-e^{x}\left(1-\frac{x}{4}\right)^{3}+e^{x}\left(1-\frac{x}{4}\right)^{4} \\
& =e^{x}\left(1-\frac{x}{4}\right)^{3}\left[\left(1-\frac{x}{4}\right)-1\right] \\
& =-\frac{x}{4} e^{x}\left(1-\frac{x}{4}\right)^{3}
\end{aligned}
$$

Stationary points occur when $f^{\prime}(x)=0$ i.e. $-\frac{x}{4} e^{x}\left(1-\frac{x}{4}\right)^{3}=0$
$\therefore x=0,4$
NB $e^{x}>0$ for all x, so this has been ignored from the calculations.

x	-1	0	1	3	4	5
y^{\prime}	$\frac{1}{4}\left(\frac{5}{4}\right)^{3}$	0	$-\frac{1}{4}\left(\frac{3}{4}\right)^{3}$	$-\frac{3}{4}\left(\frac{1}{4}\right)^{3}$	0	$\frac{5}{4}\left(\frac{1}{4}\right)^{3}$
+						

$f(0)=1$
$f(4)=0$
$\therefore(0,1)$ is a maximum turning point and $(4,0)$ is a minimum turning point.
(ii) Sketch the curve $y=f(x)$ and label the turning points and any asymptotes.

As $x \rightarrow-\infty, f(x) \rightarrow 0^{+}$, and as $x \rightarrow \infty, f(x) \rightarrow \infty$
So the horizontal asymptote is $y=0$.

(iii) Hence, prove that $\left(\frac{5}{4}\right)^{4} \leq e \leq\left(\frac{4}{3}\right)^{4}$.

$$
\begin{aligned}
f(x) & =e^{x}\left(1-\frac{x}{4}\right)^{4} \\
f^{\prime}(x) & =e^{x} \times 4\left(1-\frac{x}{4}\right)^{3} \times\left(-\frac{1}{4}\right)+e^{x}\left(1-\frac{x}{4}\right)^{4} \\
& =-e^{x}\left(1-\frac{x}{4}\right)^{3}+e^{x}\left(1-\frac{x}{4}\right)^{4} \\
& =e^{x}\left(1-\frac{x}{4}\right)^{3}\left[\left(1-\frac{x}{4}\right)-1\right] \\
& =-\frac{x}{4} e^{x}\left(1-\frac{x}{4}\right)^{3}
\end{aligned}
$$

So from the graph, $f(-1) \leq 1$ i.e. $e^{-1}\left(1+\frac{1}{4}\right)^{4} \leq 1$

$$
\therefore\left(\frac{5}{4}\right)^{4} \leq e
$$

Also from the graph $f(1) \leq 1$ i.e. $e\left(\frac{3}{4}\right)^{4} \leq 1$
$\therefore e \leq\left(\frac{3}{4}\right)^{-4}$
$\therefore e \leq\left(\frac{4}{3}\right)^{4}$
$\therefore\left(\frac{5}{4}\right)^{4} \leq e \leq\left(\frac{4}{3}\right)^{4}$
4. In the diagram, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and P are points on the circumference of the circle and $\triangle \mathrm{ABC}$ is an equilateral triangle. X is a point on the straight line PC such that $\mathrm{PX}=\mathrm{BX}$. Prove that $\mathrm{PC}=\mathrm{PA}+\mathrm{PB}$.

As $\triangle A B C$ is equilateral then $\angle B A C=60^{\circ}$
$\therefore \angle B P X=60^{\circ}$
Similarly, $\angle A P C=\angle A B C=60^{\circ}$
$P X=P B$ means that $\angle P B X=60^{\circ}$
$\therefore \angle P X B=60^{\circ}$
$\therefore \triangle P X B$ is equilateral and $P X=P B=X B$

Now $\angle P A B=\angle P C B$
$\angle A P B=\angle B P X+\angle A P C=120^{\circ}$
$\angle B X C=120^{\circ}$
In $\triangle P A B$ and $\triangle B X C$
$P B=X B$
$\angle P A B=\angle X C B$
$\angle B P A=\angle B X C=120^{\circ}$
$\therefore \triangle P A B \equiv \triangle B X C$
$\therefore A P=X C$
(proved earlier)
(proved earlier)
(proved earlier)
(AAS)
(matching sides of congruent $\Delta \mathrm{s}$)
Now $P C=P X+X C$

$$
\begin{aligned}
& =P B+X C \\
& =P B+A P
\end{aligned}
$$

($P X=P B$, sides of equilateral $\triangle P B X$)
($A P=X C$, proved above)

