SYDNEY BOYS HIGE SCHOOL MOORE PARK, SURRY HILLS

April 2014

Assessment Task 2
 Year 12

Mathematics Extension 1

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question if full marks are to be awarded.
- Answer in simplest exact form unless otherwise instructed.

Total Marks - 80

- Attempt sections A - D.
- Start each NEW section in a separate answer booklet.
- Hand in your answers in 4 separate bundles:

Section A
Section B
Section C
Section D

Examiner: J. Chen

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2 x} \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

START A NEW ANSWER BOOKLET

SECTION A [20 marks]

1. If $f(x)=x+5$, find the inverse function $f^{-1}(x)$.
2. Find the Cartesian equation whose parametric equations are

$$
x=8 t, \quad y=4 t^{2}
$$

3. If α, β, γ are the roots of the equation $x^{3}+x^{2}-2 x-1=0$. Find the value of
(i) $\alpha+\beta+\gamma$
(ii) $\alpha \beta \gamma$
(iii) $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$
4. Let $y=e^{x}$. Find $\frac{d y}{d x}$ when $x=1$.
5. Find

$$
\frac{d}{d x} \cos ^{-1} 2 x
$$

6. There are 40 Students in a class. 38 of them are boys. If 5 students are randomly selected, find the number of ways that at least 1 girl is selected.
7. Let $P(x)$ be a polynomial. When $P(x)$ is divided by $x-2$, the quotient is $6 x^{2}+5 x+9$. It is given that $P(2)=20$.
(i) Find $P\left(\frac{2}{3}\right)$.
(ii) Solve $P(x)=0$
8. Peter invites 8 friends to join his birthday party. There are 5 boys and 4 girls at the party including Peter. In a game, boys and girls sit in a row. What is the probability that the boys and girls sit alternatively?
9. Find

$$
\int \frac{2}{\sqrt{16-x^{2}}} \cdot d x
$$

End of Section A

START A NEW ANSWER BOOKLET

SECTION B [20 marks]

1. Let $P(x)=x^{3}+x^{2}+m x+n$. If $P(1)=0$ and the remainder of $P(x)$ divided by $x-2$ is 11 , then factorise $P(x)$.
2. Consider the function $f(x)=\sin ^{-1}(x-2)$, evaluate $f\left(\frac{3}{2}\right)$.
3. There are 24 boys and 4 girls in a class. From the class, 5 students are randomly selected to form the class committee.
(i) Find the probability that the class committee consists of boys only.
(ii) Find the probability that the class committee consists of at least 2 boys and 1 girl.
4. Show that if $t=\tan x$, then

$$
\frac{d x}{d t}=\frac{1}{1+t^{2}}
$$

5. Find
(i)

$$
\begin{equation*}
\int \frac{1}{\sqrt{25-9 x^{2}}} \cdot d x \tag{2}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\int \frac{x+1}{x^{2}+1} d x \tag{2}
\end{equation*}
$$

6. Find

$$
\int\left(e^{x}+e^{-x}\right)^{2} \cdot d x
$$

7. Find the volume of the solid generated when the region bounded by the curve $y=e^{x}$ and the x-axis in the interval $0 \leq x \leq 2$ is rotated about the x-axis.

End of Section B

START A NEW ANSWER BOOKLET

SECTION C [20 marks]

1. Find

$$
\int_{0}^{\frac{\sqrt{3}}{2}} \frac{d x}{\sqrt{3-4 x^{2}}}
$$

2. In the diagram below, the line $L: y=\frac{1}{4 \ln 2} x+\left(2-\frac{1}{\ln 2}\right)$ touches the curve $C: y=\log _{2} x$ at the point P . Find the coordinates of P .

3. Prove, by mathematical induction, that $9^{n}-1$ is divisible by 8 for all positive integers n.
4. The slope at any point (x, y) of a curve is given by $\frac{d y}{d x}=2 e^{2 x}-3 e^{x}$.

The y-intercept of the curve is 0 . Find the area bounded by the curve and the x-axis.

Section C continues on next page

5.

(i) Find $\frac{d}{d x}\left(x^{2} \ln x\right)$
(ii) Hence, find

$$
\int x \ln x \cdot d x
$$

6. Sketch $y=3 \cos ^{-1} 2 x$. State the domain and range.

End of Section C

START A NEW ANSWER BOOKLET

SECTION D [20 marks]

1. $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two points on the parabola $x^{2}=4 a y$. The tangents at P and Q meet at the point T.
(i) Show that the equation of the tangent at P is $y=p x-a p^{2}$ and similarly, write down the equation of the tangent at Q.
(ii) Find the coordinates of T.
(iii) Let M be the midpoint of PQ , find the coordinates of M.
(iv) The point R is the midpoint of $M T$, show that R has coordinates

$$
\left[a(p+q), \frac{a(p+q)^{2}}{4}\right]
$$

(v) Find the Cartesian equation of the locus of R and describe the locus in geometrical terms.
2. Consider the following letters

$$
A, A, B, B, C, C
$$

how many different arrangements are possible if no two identical letters are next to one another?
3.
(i) Show that

$$
a^{n}+b^{n}=(a+b)\left(a^{n-1}+b^{n-1}\right)-a b\left(a^{n-2}+b^{n-2}\right),
$$

where a and b are real numbers.
(ii) Let $x+\frac{1}{x}=2 \cos \theta$, where $\theta \neq \pi$ and $x \neq 0$. Suppose
$x^{k}+\frac{1}{x^{k}}=2 \cos k \theta$ and $x^{k+1}+\frac{1}{x^{k+1}}=2 \cos (k+1) \theta$ for a positive integer k.

Show that $x^{k+2}+\frac{1}{x^{k+2}}=2 \cos (k+2) \theta$.
(iii) It is given that $x^{n}+\frac{1}{x^{n}}=2 \cos n \theta$. Prove, by mathematical
induction, that
$\left(x+x^{3}+x^{5}+\cdots+x^{2 n-1}\right)+\left(\frac{1}{x}+\frac{1}{x^{3}}+\frac{1}{x^{5}}+\cdots+\frac{1}{x^{2 n-1}}\right)=\frac{\sin 2 n \theta}{\sin \theta}$
for all positive integers n, where $\theta \neq k \pi$.

Ext 1 Ass 22004
Section A

1. $f(x)=x+5$
ie $y=x+5$
For $f^{-1}(x)$:

$$
x=y+5
$$

ie. $y=x-5$
So $f^{-1}(x)=x-5$
2.

$$
\begin{align*}
x=8 t ; y & =4 t^{2} \\
t=\frac{x}{8} ; y & =4\left(\frac{x}{8}\right)^{2} \\
& =\frac{4 x^{2}}{64} \\
\therefore y & =\frac{x^{2}}{16} \tag{1}
\end{align*}
$$

3. $x^{3}+x^{2}-2 x-1=0$
(i) $\alpha+\beta+\gamma=-1$
(ii) $\alpha \beta \gamma=1$
(iii) $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$

$$
=\alpha \beta \gamma(\alpha+\beta+\gamma)
$$

$$
=+1 x-1
$$

$$
=-1
$$

[1]

4. $y=e^{x}$

$$
\frac{d y}{d y}=e^{x}
$$

What $x=1$

$$
\begin{align*}
d y & =e^{\prime} \\
& =e \tag{2}
\end{align*}
$$

$$
\text { 5. } \begin{align*}
& \frac{d}{d x} \cos ^{-1} 2 x \\
& =\frac{-1}{\sqrt{1-(2 x)^{2}}} \times 2 \\
& =\frac{-2}{\sqrt{1-4 x^{2}}} \tag{2}
\end{align*}
$$

6. No. of ways of choosing

5 inchacing at least one
girl is the total no. of Trays of choosing 5, minus the m- of ways ooh choosing 5 boys.

$$
\begin{array}{r}
{ }^{40} C_{5}-{ }^{38} C_{5} \\
=156066 \\
{[2]}
\end{array}
$$

7. Division transformation:

$$
\begin{aligned}
& P(x)=(x-2)\left(6 x^{2}+5 x+9\right)+20 \\
& (1) P\left(\frac{2}{5}\right)=0 \quad[2]
\end{aligned}
$$

(v)

$$
P(x)=6 x^{3}-7 x^{2}-x+2
$$

$$
\operatorname{From}(1)\left(x-\frac{2}{3}\right) \text { is a factor }
$$

$$
P(1)=0
$$

$\therefore(x-1)$ is a factors

$$
\begin{aligned}
& \text { Now } \alpha \beta \gamma=\frac{-2}{6} \\
&=-\frac{1}{3} \\
& \therefore \frac{2}{3} \times 1 \times \gamma=-\frac{1}{3} \\
& \gamma=-\frac{1}{3} \times \frac{3}{2} \\
&=-\frac{1}{2} \\
& \therefore P(x)=0 \text { for } x=-\frac{1}{2},+\frac{8}{3}, 1 \\
& \therefore 37
\end{aligned}
$$

8. $B||B|| B||B|| B \mid$

$$
\begin{aligned}
\text { Probecbity } & =\frac{5!\times 4!}{9!} \\
& =\frac{1}{126}
\end{aligned}
$$

$$
[2]
$$

(xi) Sectron B
(1)

$$
\begin{array}{r}
P(1)=0 \Rightarrow 1+1+m+n=0 \\
\text { ie } m+n=-2
\end{array}
$$

aloo $P(x)=11 \Rightarrow 8+4+2 m+n=11$

$$
\begin{equation*}
\therefore 2 m+n=-1 \tag{2}
\end{equation*}
$$

Fran (1) + (2)

$$
\begin{array}{ll}
\therefore P(x)=x^{3}+x^{2}+x-3 \\
\text { haw }(x-1) \text { is a factor } & x-1 \frac{x^{2}+2 x+3}{x^{3}+x^{2}+x-3} \\
\therefore & \frac{x^{3}-x^{2}}{2 x^{2}+x} \\
& P_{(x)}=(x-1)\left(x^{2}+2 x+3\right)
\end{array} \quad \frac{2 x-2 x}{3 x-3}
$$

(2.)

$$
\begin{aligned}
f(x) & =\sin ^{-1}(x-2) \\
\therefore f\left(\frac{3}{2}\right) & =\sin ^{-1}\left(\frac{3}{2}-2\right) \\
& =\sin ^{-1}\left(-\frac{1}{2}\right) \\
& =-\frac{\pi}{6}
\end{aligned}
$$

NB. $\left|\sin ^{-1} \theta\right| \leqslant \frac{\pi}{2}$
(3)

$$
\begin{aligned}
& \text { (n) } \left.\frac{\binom{24}{5}}{\binom{28}{5}}=\frac{2}{\frac{253}{585}} \right\rvert\, \\
& (11) \frac{\binom{24}{4} \times\binom{ 4}{1}+\binom{24}{3} \times\binom{ 4}{2}+\binom{24}{2} \times\binom{ 4}{3}}{\binom{28}{5}} \\
& \quad=\frac{2323}{4095}
\end{aligned}
$$

(4)

$$
t=\tan x
$$

(in)

$$
\begin{aligned}
\int \frac{x+1}{x^{2}+1} d x & =\int \frac{x}{x^{2}+1} d x+\int \frac{d x}{x^{2}+1} \\
1 & \left.=\frac{1}{2} \ln \left(x^{2}+1\right)+\tan ^{-1} x+c \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& \therefore x=\tan ^{-1} t \\
& \frac{d x}{d t}=\frac{1}{1+t^{2}} \\
& \text { (s) in } \int \frac{d x}{\sqrt{25-9 x^{2}}}=\int \frac{d x}{\sqrt{9\left(\frac{25}{9}-x^{2}\right)}} \\
& =\frac{1}{3} \int \frac{d x}{\sqrt{(5 / 3)^{2}-x^{2}}} \\
& 1=\frac{1}{3} \sin ^{-1} \frac{3 x}{5}+c
\end{aligned}
$$

(6)

$$
\begin{aligned}
\int\left(e^{x}+e^{-x}\right)^{2} d x & =\int\left(e^{2 x}+2 e^{0}+e^{-2 x}\right) d x \\
& =\int\left(e^{2 x}+2+e^{-2 x}\right) d x \\
1 & =\frac{1}{2} e^{2 x}+2 x-\frac{1}{2} e^{-2 x}+c
\end{aligned}
$$

(7).

$$
\begin{aligned}
V & =\pi \int_{0}^{2}\left(e^{x}\right)^{2} d x \\
& =\pi \int_{0}^{2} e^{2 x} d x \\
& =\pi\left[\frac{1}{2} e^{2 x}\right]_{0}^{2} \\
& =\frac{\pi}{2}\left(e^{4}-e^{0}\right) \\
1 & =\frac{\pi}{2}\left(e^{4}-1\right) u^{3}
\end{aligned}
$$

SECTISN :
15

$$
\text { li) } \begin{aligned}
x^{2} & =4 a y, \\
\therefore 2 x & =4 a y \\
\therefore y^{\prime} & =\frac{x}{2 a} \\
\text { At } y^{\prime} y^{\prime} & =\frac{2 a p}{2 a} \\
& =p
\end{aligned}
$$

\therefore Eqn of tangent ir

$$
\begin{aligned}
& y-a p^{2}=p(x-2 a p) \\
& y-a p^{2}=p x-2 a p^{2} \\
& y=p x-a p^{2}
\end{aligned}
$$

Equ of tangente at Q is

$$
\begin{equation*}
y=q x-a q^{2} \tag{2}
\end{equation*}
$$

(ii)

$$
\begin{align*}
& p x-a p^{2}=q x-a q^{2} \\
& \therefore(p-q) x=a p^{2}-a q^{2} \\
& \therefore(p-q) x=a(p-q)(p+q) \\
& \therefore x=a(p+q) \\
& \therefore y=p(a(p+q))-a p^{2} \\
& =a p q \tag{2}
\end{align*}
$$

$\therefore T$ is $(a(p+q), a p q)$
(iii) m is $\left(\frac{2 a p+2 a q}{2}, \frac{a p^{2}+\alpha_{p}^{2}}{2}\right)$

$$
\begin{equation*}
=\left(a(p+q), \frac{a\left(p^{2}+q^{2}\right)}{2}\right) \tag{0}
\end{equation*}
$$

(iv) $R: s\left(\frac{a(p+G)+a(p+z)}{2} ;\right.$

$$
\begin{align*}
& =\left(a(p+q), \frac{a\left(2 p q+p^{2}+q^{2}\right)}{4}\right) \\
& =\left(a(p+q), \frac{a(p+q)^{2}}{4}\right) \text { as given } \tag{1}
\end{align*}
$$

(v) Let $x=a(p+q)$

$$
\begin{align*}
\therefore y & =\frac{x^{2}}{a} \cdot \frac{1}{4} \\
x^{2} & =4 a y \tag{2}
\end{align*}
$$

$\therefore R$ lie; on the parabola $x^{2}=4 a y$

2

$$
\begin{array}{r}
C=A-B-C-B \\
B<A-C-B \\
C-B-B \\
C B-A .
\end{array}
$$

10 arrargematr.
\therefore Total arrargcments

$$
\begin{align*}
& =10 \times 3 \\
& =30 \tag{3}
\end{align*}
$$

3 (i) $(a+b)\left(a^{n-1}+b^{n-1}\right)-a b\left(a^{n-2}+b^{n-2}\right)$

$$
\begin{aligned}
& =a^{n}+a b^{n-1}+b a^{n-1}+b^{n}-a^{n-3} b-a b^{n-1} \\
& =a^{n}+b^{n}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& x^{k+2}+\frac{1}{x^{k+2}=}=\left(x+\frac{1}{x}\right)\left(x^{k+1}+\frac{1}{x^{k+1}}\right) \\
&- 1 \cdot\left(x^{\left.k+\frac{1}{x^{k}}\right)}\right. \\
&= 2 \cos \theta \cdot 2 \cos (k+1) \theta- \\
& 2 \cos k \theta \\
&= 2 \cos \theta(2 \cos k \theta \cos \theta-2 \sin \theta \sin \theta) \\
&-2 \cos k \theta \\
&= 2 \cos k \theta \cos ^{2} \theta-4 \sin k \theta \sin \theta \\
& \cos \sin
\end{aligned}
$$

- 2 cojke

$$
\begin{align*}
& =2 \cos k \theta\left(2 \cos ^{2} \theta-1\right)-2 \sin k \theta \sin 20 \\
& =2(\cos k \cos 2 \theta-\sin k \sin 2 \theta) \\
& =2 \cos (k+2) \theta \tag{3}
\end{align*}
$$

(iii)

$$
\begin{aligned}
f(n) & =\left(x+x^{3}+\cdots x^{2 n-1}\right)+\left(\frac{1}{x}+\frac{1}{x^{3}}+\cdots\right. \\
& \left.+\frac{1}{x^{2 n-1}}\right) \\
& =\frac{\sin 2 n \theta}{\sin \theta}
\end{aligned}
$$

Step 1: show $S(1)$ is true

$$
\text { in } \begin{array}{rl}
x & x \frac{1}{x}=\frac{\sin 20}{\sin \theta} \\
\operatorname{Rit} j & =2 \cos \theta \\
& =\frac{2 \sin \theta \cos \theta}{\sin \theta} \\
& =2 \cos \theta
\end{array}
$$

$\therefore s(1)$ is trome
sinow $s(k+1)$ is troue

$$
=\frac{\sin 2 k \theta+\operatorname{cosk} \theta \cdot 2 \sin \theta \cos x-\sin 2 \sin ^{2}}{\sin \theta}
$$

$$
=\frac{\operatorname{sos} 2 k i=\sin 2 \theta+\sin 2 k \theta\left(1-2 \sin ^{2} \theta\right.}{\sin \theta}
$$

$$
=\frac{\cos 2 k \theta \sin 7 \theta+\sin 2 k \theta \cos 20}{\sin \theta}
$$

$$
=\frac{\sin (2 k+2) \theta}{\sin \alpha}
$$

$$
=R 10^{\circ}
$$

\therefore if $S(k)$ is trum, $S(k+1)$ istrue

Stip 3' $S(1)$ is tome a-r $S(51)$ ir trame if $S(k)$ otrue.
\therefore By tha procers of paphemefied Imduction $S(x)$ is trme fr all integne $n \geqslant 1$ (4)

$$
\begin{aligned}
& i=2\left(x+x^{3}+\cdots+x^{2 k+1}\right)+\left(\frac{1}{x}+\frac{1}{x^{3}}+\cdots+\frac{1}{x^{21-1}}\right. \\
& =\frac{\sin (2 k+1) \theta}{\sin \theta} \\
& A H=\frac{\sin 2 k G}{\sin \theta}+x^{2 k i}+\frac{1}{2^{2 k+1}} \\
& =\frac{\sin 2 k x}{\sin \theta}+2 \cos (2 x+1)^{2} \\
& =\sin 2 k \theta \div 2 \cos (2 k+1) \theta \sin \theta \\
& \sin 0 \\
& =\frac{\sin 2 k \theta+2 \sin \theta\left(\cos \theta 0 \cos \theta-\sin 2 \cos ^{2} \sin \right.}{\sin \theta}
\end{aligned}
$$

stepi: ASSune $S^{\prime}(k)$ istruce

$$
\begin{aligned}
& \frac{1}{1-2\left(x+x^{3}+\ldots+x^{2 k-1}\right)}+\left(\frac{1}{2}+\frac{1}{x^{3}+\cdots}+\frac{1}{x^{2 k-1}}\right) \\
& =\frac{\sin 2 k c}{\sin \theta}
\end{aligned}
$$

