

SYDNEYBOYS HIGH SCHOOL
MOOREPARK, SURRY HILLS

2015
 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \# 2

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 90 Minutes
- Write using black or blue pen. Black pen is preferred.
- Board approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- In Questions 8-10, show ALL relevant mathematical reasoning and/or calculations.
- Marks may NOT be awarded for untidy or badly arranged work.
- Answer in simplest EXACT form unless otherwise instructed.

Total marks - 52

Section I Pages 2-4 (7 marks)

- Attempt Questions 1-7 on the Multiple Choice answer sheet provided.
- Allow about 10 minutes for this section.

Section II Pages 5-15 (45 marks)

- Attempt Questions 8-10.
- Start a new answer booklet for each question.
- Allow about 1 hours and 20 minutes for this section.

Examiner: V. Likourezos

This is an assessment task only and does not necessarily reflect the content of the Higher School Certificate.

Blank Page

Section I

7 marks
Attempt Questions 1-7
Allow about 10 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-7.

1 Seven people are to be seated around a circular table. If two particular people must be seated together, how many seating arrangements are possible?
(A) 7 !
(B) $5!\times 2$
(C) $6!\times 2$
(D) 6 !

2 It is known that an approximate root to the curve $y=e^{x}-3 x^{2}$ is $x=3.8$. Using Newtons Method of Approximation with one application what is an approximation of the root?

Round your answer correct to 2 decimal places.
(A) $\quad x=3.74$
(B) $\quad x=4.22$
(C) $\quad x=-12.06$
(D) $\quad x=3.70$

3 What is the amplitude and period of the graph $y=2 \pi \cos \left(2 x+\frac{\pi}{3}\right)$?
(A) amplitude $=2$ and period $=\pi$
(B) amplitude $=2 \pi$ and period $=\pi$
(C) amplitude $=2 \pi$ and period $=2$
(D) amplitude $=2$ and period $=2$

4 Four female and four male athletes are arranged in a row for the presentation of prizes. In how many ways can this be done if the males and females must alternate?
(A) $4!\times 4$!
(B) $2 \times 4!\times 4$!
(C) $4!\times 5$!
(D) $2 \times 4!\times 5$!

5 Which diagram best represents the function $y=\sin ^{-1}(\sin x)$?
(A)

(B)

(C)

(D)
y

6 What is the value of $\frac{(n+r+1)!}{(n+r-1)!}$ in simplest form?
(A) $n(n+r)$
(B) $n+r+1$
(C) $n(n+r-1)$
(D) $\quad(n+r)(n+r+1)$
$7 \quad$ What is the derivative of $y=3^{3 x+1}$?
(A) $\frac{d y}{d x}=(3 x+1) \times 3^{3 x}$
(B) $\frac{d y}{d x}=3 \times 3^{3 x+1} \ln 3$
(C) $\frac{d y}{d x}=3^{3 x+1} \ln 3$
(D) $\frac{d y}{d x}=3 \times 3^{3 x+2} \ln 3$

End of Section I

Section II

45 marks

Attempt Questions 8 - $\mathbf{1 0}$

Allow about 1 hour and 20 minutes for this section.

Answer each question in a new writing booklet. Extra writing booklets are available.
In Questions 8-10, your responses should include ALL relevant mathematical reasoning and/or calculations.

Question 8 (15 marks) Start a new writing booklet for each question.
(a) Using the table of standard integrals, find

$$
\int 3 \sec \left(\frac{1}{3} x\right) \tan \left(\frac{1}{3} x\right) d x
$$

(b) Differentiate $y=x \cos \left(x^{2}+1\right)$ with respect to x.
(c) Find $\int \frac{\cos x}{1+\sin x} d x$
(d) (i) Let $f(x)=\ln \left(x+\sqrt{x^{2}-1}\right)$, what is the domain of $f(x)$?
(ii) Show that the derivative $f^{\prime}(x)=\frac{1}{\sqrt{x^{2}-1}}$
(e) (i) Find $\frac{d}{d x}\left(x^{2} e^{x^{2}}\right)$
(ii) Hence, evaluate $\int_{0}^{1} x^{3} e^{x^{2}} d x$

Question 8 continued
(f) The diagram above shows two regular hexagons joined to both sides of a circle. The corner of the hexagons meets the circle at its centre. The side length of the hexagon is 5 cm . Find the exact perimeter of the resulting shape.

End of Question 8

Question 9 (15 marks) Start a new writing booklet for each question.
(a) Five people enter a railway carriage in which there are 8 empty seats. Below is a diagram showing the layout of the seats.

ENGINE

Direction carriage is travelling.

In how many ways can they take places if:
(i) Any person can sit in any seat?
(ii) If one of the passengers, Chloe, sits in a corner?
(iii) Chloe sits with her back to the engine while her friend, Vicki, sits facing the engine?
(b) (i) Show that $\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} \sin ^{2} 2 x d x=\frac{1}{8}(\pi+2)$
(ii) Hence or otherwise find the volume of the solid of revolution formed when the curve $y=1+\sin 2 x$ is rotated about the x-axis between $x=\frac{\pi}{8}$ and $x=\frac{3 \pi}{8}$. Give your answer correct to 3 significant figures.

Question 9 continued
(c) In physics and geometry, a catenary is the curve that an idealised hanging chain or cable assumes under its own weight when supported only at its ends. The diagram below shows the region bounded by the catenary, the x-axis, the y-axis and the line $x=1$.

The equation of the catenary is given by $y=\frac{e^{x}+e^{-x}}{2}$.
(i) Find the exact area of the shaded region.
(ii) Using Simpson's rule with three function values, find an 2 approximation to the shaded area correct to 2 decimal places.
(iii) Hence deduce that $e \approx 2.7$ correct to 1 decimal place.

End of Question 9

Question 10 (15 marks) Start a new writing booklet for each question.
(a) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 2 x}{5 x}$
(b) Prove by mathematical induction $7^{n}+3 n \times 7^{n}-1$ is divisible by 9 for all positive integers n.
(c) The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$.

The variable chord $P Q$ is such that it is always parallel to the line $y=2 x$.
(i) Show that $p+q=4$.
(ii) Show that the equation of the normal at P is $x+p y=2 a p+a p^{3}$.
(iii) The normals at P and Q intersect at $R\left(-a p q(p+q), 2 a+a\left(p^{2}+p q+q^{2}\right)\right)$. Find the locus of R. (Ignore any restrictions).
(iv) Find the domain of the locus of R.

Question 10 continued
(d) Consider the pair of simultaneous equations

$$
\begin{aligned}
& y=\sin x \cos x \\
& y=m x
\end{aligned}
$$

(i) Suppose m is positive. By sketching, or otherwise, find any restrictions on m so that it will have a unique simultaneous solution.
(ii) Suppose m is negative. Show that the pair of equations have a unique simultaneous solution if $m<\cos \theta$, where θ satisfies the equation $\tan \theta=\theta$ for $\pi<\theta<\frac{3 \pi}{2}$.

End of paper

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad n \neq 0 ; \text { if } n<0 . \\
\int \frac{1}{x} d x & =\ln x, \quad x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, \quad a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, \quad a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, \quad a \neq 0 \\
\int \sec \tan ^{2} a x d x, \quad a \neq 0 \\
\int \frac{1}{a} d x \sec a x \tan a x d x, \quad a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin { }^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right), \\
\int &
\end{array}
$$

Note: $\ln x=\log _{e} x \quad x>0$

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2015

HSC Task \#2

Mathematics Extension 1

Suggested Solutions
 \&

Markers' Comments

QUESTION	Marker
$1-7$	-
8	PB
9	BK
10	BD

Multiple Choice Answers

1.	B
2.	A
3.	B
4.	B
5.	D
6.	D
7.	B

1 Seven people are to be seated around a circular table. If two particular people must be seated together, how many seating arrangements are possible?
(A) 7 !
(B) $5!\times 2$
(C) $6!\times 2$
(D) 6 !

2 It is known that an approximate root to the curve $y=e^{x}-3 x^{2}$ is $x=3.8$. Using Newtons Method of Approximation with one application what is an approximation of the root?

Round your answer correct to 2 decimal places.
(A) $x=3.74$
(B) $\quad x=4.22$
(C) $\quad x=-12.06$
(D) $x=3.70$

3 What is the amplitude and period of the graph $y=2 \pi \cos \left(2 x+\frac{\pi}{3}\right)$?
(A) amplitude $=2$ and period $=\pi$
(B) amplitude $=2 \pi$ and period $=\pi$
(C) amplitude $=2 \pi$ and period $=2$
(D) amplitude $=2$ and period $=2$

4 Four female and four male athletes are arranged in a row for the presentation of prizes. In how many ways can this be done if the males and females must alternate?
(A) $4!\times 4$!
(B) $2 \times 4!\times 4$!
(C) $4!\times 5$!
(D) $2 \times 4!\times 5$!

5 Which diagram best represents the function $y=\sin ^{-1}(\sin x)$?
(A)

(B)

(C)

6 What is the value of $\frac{(n+r+1)!}{(n+r-1)!}$ in simplest form?
(A) $n(n+r)$
(B) $n+r+1$
(C) $n(n+r-1)$
(D) $(n+r)(n+r+1)$
$7 \quad$ What is the derivative of $y=3^{3 x+1}$?
(A) $\frac{d y}{d x}=(3 x+1) \times 3^{3 x}$
(B) $\frac{d y}{d x}=3 \times 3^{3 x+1} \ln 3$
(C) $\frac{d y}{d x}=3^{3 x+1} \ln 3$
(D) $\frac{d y}{d x}=3 \times 3^{3 x+2} \ln 3$

COMMEMTS a Sohutions FOR QuEston 8.
$\Rightarrow 9 \sec \frac{x}{3}$
commart Well done. Abery feew were renath to anamer verectly.
b, $y^{\prime}=\cos \left(x^{2}+1\right)-2 x^{2} \sin \left(x^{2}+1\right)$
Commint well dre.
c, $\int \frac{\cos x d x}{1+\sin x}=\ln (1+\sin x)+c$.
commont. Veny few students pailed ts get pull smactes.
$d \quad$ (1) $x \geqslant 1$.
CoMMrati The cormmon heser was to conarder $\quad x^{2}-1 \geqslant 0$
ie. $x \leq-1, x \geqslant 1$.
Cleady if $x \leq-1$ then $x+\sqrt{x^{2}-1}<0$
$*$ herax ho $\left\{x+\sqrt{x^{2}-1}\right)$ is undefuid
(11) If $f(x)=\ln \left(x+\sqrt{x^{2}-1}\right)$

$$
\begin{aligned}
f^{\prime}(x)= & \frac{1+\frac{1}{2}\left(x^{2}-1\right)^{-\frac{1}{2}} \times 2 x}{x+\sqrt{x^{2}-1}} \\
= & \frac{1+\frac{x}{\sqrt{x^{2}-1}}}{x+\sqrt{x^{2}-1}} \\
& =\frac{\sqrt{x^{2}-1}+x}{\sqrt{x^{2}-1}} \times \frac{1}{x+\sqrt{x^{2}-1}} \\
& =\frac{1}{\sqrt{x^{2}-1}}
\end{aligned}
$$

Commbat
A siguifiact number M students ured ithe Standad Antegals to find the anewer.
wru dere.
(e)
(1) Find

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2} e^{x^{2}}\right) & =x^{2} \times 2 x e^{x^{2}}+2 x e^{x^{2}} \\
& =2 x e^{x^{2}}\left(x^{2}+1\right)
\end{aligned}
$$

(II)

$$
\begin{aligned}
& \text { Hence } \int_{0}^{1} \partial x e^{x^{2}}\left(x^{2}+1\right) d x=\left[x^{2} e^{x^{2}}\right]_{0}^{1} \\
& \therefore 2 \int_{0}^{1} x^{3} e^{x^{2}} d x+\int_{0}^{1} 2 x e^{x^{2}} d x=e
\end{aligned}
$$

ie. $2 \int_{0}^{1} x^{3} e^{x^{2}} d x+\left[e^{x^{2}}\right]_{0}^{1}=e$.

$$
\begin{aligned}
2 \int_{0}^{1} x^{3} e^{2^{2}} d x+(e-1) & =e \\
2 \int_{0}^{1} x^{3} e^{x^{2}} d x & =1 \\
\int_{0}^{1} x^{3} e^{x^{2}} d x & =\frac{1}{2}
\end{aligned}
$$

Commint. Pact (s) was well dore. None stuggled with (II).
(d)

$$
\begin{aligned}
\text { Penmelés } & =8 \times 5 \mathrm{~cm}+\frac{1}{3} \mathrm{f} 2 \pi \times 5 \\
& =\left(40+\frac{10 \pi}{3}\right) \mathrm{cm}
\end{aligned}
$$

Commint. Inoat were akle to gain pule sanks.

Girmizar commint Neny Rew snasts belaw 10 ont Y 15. A agificiont sumber attained fuel monts.

$$
\begin{aligned}
& \text { Q. } 9 \text { Ex }+1 \\
& \text { (o) (i) }{ }^{8} P_{5}=6720 \text { ways } \\
& \text { (ii) } 4 \times{ }^{7} P_{4}=3360 \text { ways } \\
& \text { (ii) } 4 \times 4 \times{ }^{6} P_{3}=1920 \text { ways }
\end{aligned}
$$

Q9(a) For the most part students either did all correctly or all incorrectly. Errors included using combinations or using n ! instead of ${ }^{n} P_{r}$

(b)(i) Mostly correct. Some errors with signs of trig functions.
(b) (ii) $V=\int_{\frac{\pi}{8}}^{-8} \pi(1+\sin 2 x)^{2} d x$
$=\pi \int_{\frac{\pi}{5}}^{\frac{3 \pi}{3}}\left(1+2 \sin 2 x+\sin ^{2} 2 x\right) d x$ $=\pi\left[x-\frac{2 \cos 2 x}{2}\right]_{\frac{\pi}{8}}^{\frac{3 \pi}{8}}+\pi x \frac{Y}{8}(\pi+2)$

$=\frac{3 \pi^{2}}{8}+\pi\left(\sqrt{2}+\frac{1}{4}\right)$
$=\begin{array}{r}3.70110+15.22828 \% \\ 8.9293\end{array}$

$$
\begin{aligned}
& =8.9293 \\
& =8.9 .3 \text { to } 3 \mathrm{sf}
\end{aligned}
$$

(ii) Again mostly correct. Errors tended to be arithmetic.
(c) $y=\frac{e^{x}+e^{-x}}{2}$

$$
\text { (c) } \begin{aligned}
\text { (c) } \begin{aligned}
y & =\frac{1}{2} \int_{0}^{1}\left(e^{x}+e^{-x}\right) d x \\
& =\frac{1}{2}\left[e^{x}-e^{-x}\right]_{0}^{1} \\
& =\frac{1}{2}\left[\left(e-e^{-1}\right)-(1-1)\right] \\
& =\frac{1}{2}\left(e-\frac{1}{e}\right) \text { units }^{2}
\end{aligned} .
\end{aligned}
$$

(ii)

x	0	0.5	1
y	1	1.1276	1.543

$$
\begin{aligned}
\text { Area } & =\frac{w}{3}[\text { ends }+4 \text { odds }] \\
& =\frac{0.5}{3}[1+1.543+4(1.1276)] \\
& =1.175580 \mathrm{~m}^{2} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \therefore \frac{1}{2}\left(e-\frac{1}{e}\right)=1175580 \frac{1}{2} \\
& e-\frac{1}{e}=2.351160212 \\
& e^{2}-2.351160212 e-1=0 V(2) \\
& e=\frac{2.351160212 \pm \sqrt{2-351160212^{2}+4}}{2} \\
& e=2.71894 \quad(\text { reject negative ancurer } \\
& \quad \text { sine } e>0)
\end{aligned}
$$

(c) (i) Done well.
(ii) Done well
(iii) Most equated (i) and (ii) to get equation. Most errors involved using the value of e from the calculator in order to solve the equation to find e.

Q10 Y12 Ext 1 Task 22015
The mean score for this question was $7.15 / 15$
(a) Most students were able to receive full marks.

$$
\text { 10(a) } \begin{align*}
& \lim _{x \rightarrow 0} \frac{\sin 2 x}{5 x} \\
= & \lim _{2 x \rightarrow 0} \frac{2}{5} \frac{\sin 2 x}{2 x} \\
= & \frac{2}{5} \cdot 1 \\
= & \frac{2}{5} \tag{1}
\end{align*}
$$

0	0.5	1	Av
15	41	107	0.78

(b) Most students found this Mathematical Induction question difficult. Identifying an appropriate way to use the $S(k)$ expression was difficult.
(b) $5(n) \equiv 7^{n}+3_{n} \times 7^{n}-1=9 m_{n}$,

$$
M_{n} \text { an integer. }
$$

$$
\text { i.e } 7^{n}(3 n+1)-1=9 m_{n}
$$

Step 1: Show $S(1)$ is true

$$
\begin{aligned}
\text { Lite } & =7^{\prime}(3 \times 1+1)-1 \\
& =7 \times 4-1 \\
& =27 \\
& =9 \times 3 \\
& =9 M_{1}, M_{1} \text { an integer }
\end{aligned}
$$

Step 2: Assume $S(k)$ is time i.e $7^{k}(3 k+1)-1=9 m_{k}, M_{k}$ an integer Show $5(k+1)$ is true

$$
\text { ie } 7^{k+1}(3 k+4)-1=9 m_{k+1},
$$

$$
M_{k+1} \text { an intajer }
$$

$$
\begin{aligned}
\text { LIS } & =(3 k+1) \cdot 7^{k} \cdot 7+3 \cdot 7^{k+1}-1 \\
& =7\left((3 k+1) \cdot 7^{k}-1\right)+3 \cdot 7^{k+1}+6 \\
& =7.9 m_{k}+3.7 \cdot 7^{k}+6 \\
& =7.9 m_{k}+3.7\left(9 m_{k}-3 k \cdot 7^{k}+1\right)+6 \\
& =7.9 m_{k}+21.9 m_{k}-7.9 k \cdot 7^{k}+21+6 \\
& =9\left(7 m_{k}+21 m_{k}-7 k \cdot 7^{k}+3\right) \\
& =9 m_{k+1}, M_{k+1} \text { an integar }
\end{aligned}
$$

as the set of integer y is closed

$$
\begin{equation*}
\text { under }+,-, \times \tag{3}
\end{equation*}
$$

\therefore If $s(k)$ ir trine, $s(k+1)$ is the
$S(1)$ is true, therefore by the
process of mathematical Induction $S(n)$ is tree fur all integral $n \geqslant 1$.
Other (better) uses of $S(k)$ were:

$$
\begin{aligned}
& -1=9 m_{k}-(3 k+1) \cdot 7^{k} \\
& 7^{k+1}+(3 k+3) 7^{k+1}-1 \\
= & (3 k+4) \cdot 7^{k+1}+9 m_{k}-(3 k+1) \cdot 7^{k} \\
= & 9 m_{k}+7^{k}(21 k+28-3 k-1) \\
= & 9 m_{k}+7^{k}(18 k+27) \\
= & 9\left(m_{k}+7^{k}(2 k+3)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& 7^{k+1}+(3 k+3) \cdot 7^{k+1}-1 \\
= & 28 \cdot 7^{k}+21 k \cdot 7^{k}-1 \\
= & 7^{k}+3 k \cdot 7^{k}-1+27 \cdot 7^{k}+18 k \cdot 7^{k} \\
= & 9 m_{k}+27 \cdot 7^{k}+18 k \cdot 7^{k} \\
= & 9\left(m_{k}+3 \cdot 7^{k}+2 k \cdot 7^{k}\right)
\end{aligned}
$$

0	0.5	1	1.5	2	2.5	3	Av
1	0	45	75	4	4	34	1.70

(c) (i) Most students were able to receive full marks.
(c) (i) $m_{P Q}=\frac{a q^{2}-a p^{2}}{2 a q-2 a p}$

$$
\begin{aligned}
& =\frac{a(q-p)(q+p)}{2 a(q-p)} \\
& =\frac{p+q}{2}
\end{aligned}
$$

As $P Q \| y=2 x$

$$
\begin{aligned}
& \frac{p+q}{2}=2 \\
& \therefore p+q=4 .
\end{aligned}
$$

0	0.5	1	Av
21	4	138	0.86

(c) (ii) This part was done well.

$$
\begin{align*}
& \text { (ii) } y^{\prime}=\frac{2 x}{4 a} \\
& \text { AtP, } \begin{aligned}
& \prime=\frac{2 \cdot 2 a p}{4 a} \\
&=p \\
& \therefore \text { Eq of normal is } \\
& y-a p^{2}=-\frac{1}{p}(x-2 a p) \\
& \therefore p y-a p=-x+2 a p \\
& \therefore x+p y=2 a p+a p{ }^{3}
\end{aligned} .
\end{align*}
$$

0	0.5	1	1.5	2	Av
5	0	1	0	157	1.93

(c) (iii) Students who remembered that $p+q=4$ usually did well in this part.
(iii) Eqn of normal at Q is

$$
\begin{aligned}
& x+q y=2 a q+a q \\
& x=-a p q(p+q) \\
& y=2 a+a\left(p^{2}+p q+q^{2}\right)
\end{aligned}
$$

$$
\begin{array}{rl}
x & =-a p q \cdot 4 \\
\therefore p q & =-\frac{x}{4 a} \\
y & =2 a+a\left[(p+q)^{2}-p q\right] \\
& =2 a+a[16-p q] \\
& =2 a+a\left[16+\frac{x}{4 a}\right] \\
& =2 a+16 a+\frac{x}{4} \\
& =18 a+\frac{x}{4} \\
\therefore 4 y & =72 a+x \\
4 y-x & 72 a
\end{array}
$$

0	0.5	1	1.5	2	Av
39	11	19	15	79	1.26

(c) (iv) No students received marks in this part.

Again it was useful to remember that $p+q=4$.
(iv) $x=-4 a p q$

$$
=-4 a p(4-p)
$$

$P Q$ has gradient 2

$$
\begin{aligned}
& p<V \\
& \text { Tangent occurs when } p=2=q \\
& \therefore \quad p<2 \text { (and } q>2 \text {) } \\
& \therefore \quad x>-16 a \\
& \left.\begin{array}{|c|c|c|}
\hline 0 & 0.5 & 1
\end{array}\right] \text { Av } \\
& \hline 163
\end{aligned}
$$

(d) (i) A number of students realised that the tangent at the origin was important in this question but did not then deduce that $m=1$ was the lowest value of m that would give the required result.
(d) $\quad y=\sin x \cos x=\frac{1}{2} \sin 2 x$

$$
\begin{align*}
& \text { A single root is possible if } \\
& \quad m \geqslant g \text { gradient of tanget at } 0 . \\
& y^{\prime}=\frac{1}{2} \cos 2 x \cdot 2 \\
& =\cos 2 x \tag{2}
\end{align*}
$$

$$
\text { At } x=0, y^{\prime}=1
$$

\therefore for single solution $m \geqslant 1$.

0	0.5	1	1.5	2	Av
61	17	26	5	24	0.55

(d) (ii) This part was poorly done; possibly students had run out of time at this stage of the paper.
(ii)

at 0 .

$$
\begin{aligned}
& y^{\prime}=\cos 2 x \\
& \text { Let } A \text { be }\left(\alpha, \frac{1}{2} \sin 2 \alpha\right)
\end{aligned}
$$

Eqn of on is

$$
y-\frac{1}{2} \sin 2 \alpha=\cos 2 \alpha(x-\alpha)
$$

As the live parses through the

$$
\begin{aligned}
-\frac{1}{2} \sin ^{2} 2 \alpha & =-\alpha \cos 2 \alpha \\
2 \alpha & =2 \alpha
\end{aligned}
$$

$$
\therefore \sin ^{2} 2 \alpha=2 \alpha \cos ^{2} \alpha
$$

$$
\begin{array}{ll}
\therefore & \sin 2 \alpha \\
\therefore & 2 \alpha=\tan 2 \alpha \quad \frac{\pi}{2}<\alpha<\frac{3 \pi}{4}
\end{array}
$$

$$
\therefore \pi<2 \alpha<\frac{3 \pi}{2}
$$

$$
\text { OR } \theta=\tan \theta \quad \pi<\theta<\frac{3 \pi}{2}
$$

$$
\text { when } \theta=2 \alpha
$$

Gradient of of is $\cos 2 \alpha=\cos \theta$
\therefore If m is negative for single solution, $m<\operatorname{cor} \theta$

0	0.5	1	1.5	2	2.5	3	Av
144	1	14	0	2	1	1	0.15

