SYDNEY BOYS HIGH SCHOOL moore pari, surry hills

2016
 HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK \# 2

Mathematics Extension 1

General Instructions

- Reading Time - 5 Minutes.
- Working time - 90 Minutes.
- Write using black or blue pen.
- Board approved calculators maybe used.
- The Board Approved Reference Sheet is Provided.
- ALL necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for untidy or badly arranged work.
- Answer in simplest EXACT form unless otherwise instructed.
- Attempt Questions 1-9
- The mark value of each question is shown on the right hand side.
- Attempt Questions 1-6 on the Multiple Choice answer sheet provided.
- Each section is to be answered in a NEW writing booklet, clearly labelled Question 7, Question 8 and Question 9.
- Total Marks - 63
Examiner
A. Wang

Section I - Multiple Choice

6 Marks

Attempt Questions 1-6

Use the multiple-choice answer sheet for Questions 1-6

1 What is the derivative of $y=3 \sin x-4 \cos x$?
(A) $\frac{d y}{d x}=3 \cos x-4 \sin x$
(B) $\frac{d y}{d x}=3 \cos x+4 \sin x$
(C) $\frac{d y}{d x}=-3 \cos x+4 \sin x$
(D) $\frac{d y}{d x}=-3 \cos x-4 \sin x$

2 In how many ways can 12 students of unique height be arranged in a line, so that the tallest and the shortest student never come together?
(A) $11!\times 10$
(B) $10!\times 10$
(C) $11!\times 9$
(D) $10!\times 11$

3 Consider the function $f(x)=x^{4}+3 x^{2}-x-5$. It has one root at $x=-1$.
Take $x=2$ as a first approximation for this root.

Using two applications of Newton's method, which of the following is a better approximation for the root?
(A) $x=-1.257$
(B) $x=1.257$
(C) $x=-1.512$
(D) $\quad x=1.512$

4 In the diagram A, B, C and D are points on a circle with centre O.
$\angle B A D=x^{\circ}$ and $\angle B O D=\angle B C D$.

What is the value of x ?
(A) 75°
(B) 120°
(C) 90°
(D) 60°

5 What is the solution to $\frac{{ }^{n} C_{4}}{{ }^{n-2} C_{2}}=1$?
(A) 5
(B) 4
(C) 6
(D) 2

6 What is the length of the chord of the parabola $x^{2}=4$ ay passing through the vertex and having slope $\tan \alpha$?
(A) $4 a \operatorname{cosec} \alpha \cot \alpha$
(B) $4 a \sec \alpha \tan \alpha$
(C) $4 a \cos \alpha \cot \alpha$
(D) $4 a \sin \alpha \tan \alpha$

Section II

57 marks

Attempt Questions 7-9

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 7-9, your responses should include relevant mathematical reasoning and/or calculations.

Question 7 (19 marks)

Start a NEW Writing Booklet

(a) The diagram below shows a parabola defined by the parametric equations

$$
x=2 t \text { and } y=t^{2}
$$

i) Write down the equations of the tangents at the points $P\left(2 p, p^{2}\right)$ and $Q\left(2 q, q^{2}\right)$.
ii) Show that the point of intersection of the two tangents is $R(p+q, p q)$.
iii) Show that the equation of the chord $P Q$ is $(p+q) x-2 y-2 p q=0$.
iv) Points P and Q move on the parabola in such a way that $p q=-2$.
v) $\quad N$ is the intersection of the chord $P Q$ and the line through R and O. Show that $R N$ is perpendicular to $P Q$.

Question 7 continues on the next page

b) In the diagram below, $D G$ is a tangent to the circle at D.
$G A B F$ and $D C F$ are straight lines.

i) Copy the diagram into your writing booklet.
ii) Prove $2 \times \angle A D G=\angle B E C+\angle B F C$.
c) Evaluate $\lim _{x \rightarrow 0} \frac{1}{x} \sin \frac{x}{2 \pi}$.
d) Find:
i) $\quad \frac{d}{d x} \cos (\sqrt{x})$
ii) $\frac{d}{d x} \tan (\sin 3 x)$
e) Show that $\frac{d}{d x}(\sec x)=\sec x \tan x$
f) Find the area bounded by the curve $y=\sin \left(\frac{x}{2}\right)$, the lines $x=-\pi, x=\pi$, and the x-axis.
a) $\quad O$ is the centre of the circle $A P B$.
$B P Q, O R Q, A R P$ and $A O B$ are straight lines. $\angle Q O B=90^{\circ}$.

i) Copy the diagram into your writing booklet.
ii) Prove that A, O, P and Q are concyclic points.
b) In how many rearrangements of the letters of the word SCINTILLATING will no two 'I's appear together?
c) The function $f(x)=x^{2}-\ln (x+1)$ has one root between 0.5 and 1 .
i) Show that the root lies between 0.7 and 0.8 .
ii) Hence use the halving interval method to find the value of the root 2 correct to 1 decimal place.
d) Let A be a point on the parabola $x^{2}=4 b y$ whose coordinates are $\left(2 b t, b t^{2}\right)$.

Tangents are drawn from A to another parabola $x^{2}=4 a y$, where $b>a$.
These tangents touch the parabola $x^{2}=4 a y$ at $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$.

From P and Q, normals are drawn to intersect at N.
i) Sketch a diagram to represent the above information.
ii) Show that $b t^{2}-2 b p t+a p^{2}=0$ and $b t^{2}-2 b q t+a q^{2}=0$
iii) Show that the coordinates of N are given by

$$
x=-a p q(p+q), y=a\left[(p+q)^{2}-p q+2\right] .
$$

iv) From part ii) above, show that $a(p+q)=2 b t$ and $a p q=b t^{2}$.
v) Hence show that the locus of N, the intersection of the normals to $x^{2}=4 a y$, 3 is the curve

$$
x^{2}(4 b-a)^{3}=4 a b(y-2 a)^{3}
$$

End of Question 8

Question 9 (19 marks)

a) The incircle of triangle $C D E$ has centre O and touches the sides of $\triangle C D E$ at V, W and Y. The circumcircle of triangle $C D E$ meets $C O$ produced to H.

i) Copy the diagram to your writing booklet.
ii) Prove that H is the midpoint of $\operatorname{arc} D E$.
iii) Prove that $\triangle O D V \equiv \triangle O D Y$.
iv) Prove that $\angle O D H=\angle D O H$.
v) Prove $H D=H O$.
b) i) Simplify $\cos (A-B)-\cos (A+B)$
ii) Prove by the method of mathematical induction that

$$
\sin w+\sin 3 w+\sin 5 w+\ldots+\sin (2 n-1) w=\frac{1-\cos 2 n w}{2 \sin w}
$$

for a constant w and for integers $n \geq 1$.
c) The straight line $y=m x+b$ meets the parabola $x^{2}=4 y$ at two points L and N.
M is the midpoint of $L N$.
i) Find the coordinates of M in terms of m and b.
ii) Find the locus of M if $b=-2$.
iii) What are the restrictions on the domain of M ? Justify your answer.

End of paper

SYDNEYBOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2016

HSC Task \#2

Mathematics Extension 1

Suggested Solutions
 \&

 Markers' Comments| QUESTION | Marker |
| :---: | :---: |
| $1-6$ | - |
| 7 | EC |
| 8 | BK |
| 9 | AF |

Multiple Choice Answers

1. B
2. B
3. B
4. A
5. D
6. B
(a) The diagram below shows a parabola defined by the parametric equations

$$
x=2 t \text { and } y=t^{2}
$$

i) Write down the equations of the tangents at the points $P\left(2 p, p^{2}\right)$ and $Q\left(2 q, q^{2}\right) . \quad \mathbf{1}$

Tangent at $P: y=p x-p_{2}^{2}$
Tangent at $Q: y=q x-q^{2}$
ii) Show that the point of intersection of the two tangents is $R(p+q, p q)$.

$$
\begin{array}{ll}
y=p x-p^{2} \\
y=q x-q^{2} & -(1) \tag{2}\\
\text { Equating }(1) \text { and }(2): & -(2)
\end{array} \quad(p-q) x=p^{2}-q^{2}
$$

$\therefore(p-q) x=(p-q)(p+q)$
$\therefore x=p+q$
Substitute into (1): $\quad y=p(p+q)-p^{2}$

$$
\therefore y=p q
$$

\therefore the point of intersection is $(p+q, p q)$.
iii) Show that the equation of the chord $P Q$ is $(p+q) x-2 y-2 p q=0$.

$$
\begin{aligned}
& \quad m_{P Q}=\frac{q^{2}-p^{2}}{2 q-2 p} \\
& \quad=\frac{(q-p)(q+p)}{2(q-p)} \\
& \quad=\frac{1}{2}(p+q) \\
& \therefore y-q^{2}=\frac{1}{2}(p+q)(x-2 q) \\
& \therefore 2 y-2 q^{2}=(p+q) x-2 q(p+q) \\
& \therefore(p+q) x-2 y+2 q^{2}-2 q(p+q)=0 \\
& \therefore(p+q) x-2 y-2 p q=0
\end{aligned}
$$

(a) iv) Points P and Q move on the parabola in such a way that $p q=-2$.

Prove that the chord $P Q$ always passes through the point $A(0,2)$.
Substitute $p q=-2$ into $(p+q) x-2 y-2 p q=0$
$\therefore(p+q) x-2 y+4=0$
y-intercept when $x=0$
$\therefore-2 y+4=0$
$\therefore y=2$
i.e. $(0,2)$ always lies on the chord $P Q$.
v) $\quad N$ is the intersection of the chord $P Q$ and the line through R and O.

Show that $R N$ is perpendicular to $P Q$.

$$
\begin{aligned}
& m_{R N}=\frac{p q}{p+q} \\
&=\frac{-2}{p+q} \\
& m_{P Q} \times m_{R N}=\frac{1}{2}(p+q) \times \frac{-2}{p+q} \\
&=-1 \\
& \therefore P Q \perp R N
\end{aligned}
$$

b) In the diagram below, $D G$ is a tangent to the circle at D.
$G A B F$ and $D C F$ are straight lines.

i) Copy the diagram into your writing booklet.
ii) Prove $2 \times \angle A D G=\angle B E C+\angle B F C$.
$\angle A D G=\angle A B E$
(angle between tangent and chord)
Similarly, $\angle A D G=\angle A C D$

$$
\begin{array}{ll}
\angle B E C+\angle B F C=2 \pi-(\angle E B F+\angle E C F) & \text { (angle sum of quad. } B E C F \text {) } \\
\angle E B F=\pi-\angle A B E & \text { (straight } \angle \text {) } \\
\text { Similarly, } \angle E C F=\pi-\angle A C D &
\end{array}
$$

$$
\begin{aligned}
& \therefore \angle B E C+\angle B F C=\angle A C D+\angle A B E \\
& \therefore \angle B E C+\angle B F C=2 \times \angle A D G
\end{aligned}
$$

c) Evaluate $\lim _{x \rightarrow 0} \frac{1}{x} \sin \frac{x}{2 \pi}$.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1}{x} \sin \frac{x}{2 \pi} & =\lim _{x \rightarrow 0} \frac{\sin \frac{x}{2 \pi}}{x} \\
& =\lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{2 \pi}}{\frac{x}{2 \pi}} \times \frac{1}{2 \pi}\right) \\
& =\frac{1}{2 \pi} \times \lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{2 \pi}}{\frac{x}{2 \pi}}\right) \\
& =\frac{1}{2 \pi}
\end{aligned}
$$

d) Find:

$$
\text { i) } \begin{aligned}
& \frac{d}{d x} \cos (\sqrt{x}) \\
& \begin{aligned}
\frac{d}{d x} \cos (\sqrt{x}) & =\frac{d}{d x} \cos \left(x^{\frac{1}{2}}\right) \\
& =-\sin \left(x^{\frac{1}{2}}\right) \times \frac{1}{2} x^{-\frac{1}{2}} \\
& =-\frac{\sin \left(x^{\frac{1}{2}}\right)}{2 x^{\frac{1}{2}}}
\end{aligned}
\end{aligned}
$$

ii) $\frac{d}{d x} \tan (\sin 3 x)$

$$
\begin{aligned}
\frac{d}{d x} \tan (\sin 3 x) & =\sec ^{2}(\sin 3 x) \times \frac{d}{d x}(\sin 3 x) \\
& =3 \cos 3 x \sec ^{2}(\sin 3 x)
\end{aligned}
$$

e) Show that $\frac{d}{d x}(\sec x)=\sec x \tan x$

$$
\begin{aligned}
\frac{d}{d x}(\sec x) & =\frac{d}{d x}(\cos x)^{-1} \\
& =-(\cos x)^{-2} \times(-\sin x) \\
& =\frac{\sin x}{\cos ^{2} x} \\
& =\frac{\sin x}{\cos x} \times \frac{1}{\cos x} \\
& =\tan x \sec x
\end{aligned}
$$

f) Find the area bounded by the curve $y=\sin \left(\frac{x}{2}\right)$, the lines $x=-\pi, x=\pi$, and the x-axis.

$$
\begin{aligned}
\text { Area } & =2 \times \int_{0}^{\pi} \sin \left(\frac{x}{2}\right) d x \\
& =2 \times\left[-2 \cos \left(\frac{x}{2}\right)\right]_{0}^{\pi} \\
& =-4\left[\cos \left(\frac{\pi}{2}\right)-\cos 0\right] \\
& =4
\end{aligned}
$$

8(b.) SCINTMLATINS
(a) $(-i)$

Put all 10 letters, aport from the I's, down first

$$
\frac{10!}{212!2!} \text { ways. }
$$

$$
+
$$

Then there are 11 possible spaces in which to place the $3 \bar{I} S \Rightarrow$ choose 3 space from II.

$$
={ }^{" 1} C_{3} \text { ways }=\frac{14!}{3!8!} \text { ways. }
$$

$$
\text { Then total warp }=\frac{10!}{2!2!2!} \times \frac{11!}{3!8!}
$$

$$
=74844000 \text { way. }
$$

(M) Prove $A, O, P Q$ are concyclic

$$
\begin{aligned}
& \angle A P B=90^{\circ} \text { (Angle in a semi-circle) } \\
& \Rightarrow \angle A P Q=90^{\circ} \\
& \Rightarrow \angle \text { (singtemertary } \angle s \text { on straight line) } \\
& \text { and } \angle A O Q \\
& \angle A P Q=\angle A 0^{\circ} \\
& \text { Then } \angle A Q=90^{\circ}
\end{aligned}
$$

Then P and O are angles at the circumference of a circle with UQA as the diameter e
ie they are angles in a semi-cirde
$\therefore A O P Q$ is a circle and $A, O P Q$
are conc cop lie:
About two-thirds of the students used the
Mostly done well. Some did a longer solution using eon hgruent triangles:

	A
	sp

Others tried to do cases but none did so successfully.

$8(c)(i) y=x^{2}=\ln (x+1) \quad$ Most did this question well.

(ii) Show $b t^{2}-2 b p t+a p^{2}=0$ and $b t^{2}-2 b y t+a y^{2}=0$

$$
\begin{aligned}
& y=\frac{x^{2}}{4} \\
& y^{\prime}=\frac{x}{2 a} \\
& A t P-y^{\prime}=\frac{2 a p}{2 a}=P \text {. } \\
& \begin{array}{r}
\therefore \text { en of tangentat } p \text { is } y=a p^{2}=p(x-2 a p) \\
y=d p^{2}=p x-2 a p=2
\end{array}
\end{aligned}
$$

But A lies on tang ai $i e\left(2 b t, b t^{2}\right)$ Satisfies eq

$$
\begin{aligned}
& \Rightarrow b t^{2}=2 b t p-a p^{2}=0 \\
& \Rightarrow b t^{2}-2 b t p+a p^{2}=0
\end{aligned}
$$

Simitocty, tangent at Q is $y=q x-a q^{2}$ and A. ines on tangent

$$
\Rightarrow b t^{2}-2 b t q+a q^{2}=0
$$

All those who did not have correct diagram in -(i) received- 1 mark -for the correct process of finding a tangent at A and the equations through the other points.

8(d)
(iu) Equation of Normal at p ?

$$
\begin{aligned}
& y-a p^{2}=-\frac{1}{p}(x-2 a p) \\
& -y p-a p^{3}=-x+2 a p \\
& -y p+x=a p^{3}+2 a p(1)
\end{aligned}
$$

Similarly the Normal at Q has equation

$$
\begin{aligned}
& y q+x=a q^{3}+2 a q-(2) \\
& \Rightarrow y(2)=y(p-q)=a\left(p^{3}-q^{3}\right)+2 a(p-q) \\
& y(p-q)=a(p-q)\left(p^{2}+p q+q^{2}\right)+2 a(p-q) \\
& \Rightarrow y=a\left(p^{2}+p q+q^{2}\right)+2 a \text { sincppq} \\
& \Rightarrow y= \\
& \Rightarrow y=a\left[(p+q)^{2}-p q+2\right] \quad
\end{aligned}
$$

Also $q \times(1) \Rightarrow y p q+q x=a q p^{3}+2 a p q$ (3)
and $p x(2) \Rightarrow y_{p} q+p^{x}=a p q-2 a p q$ (4)
(4)

$$
\begin{aligned}
-(3) \Rightarrow(-p-q) x & =a p q\left(q^{2}-p^{2}\right) \\
(p-q) x & =-a p q\left(p^{2}-q^{2}\right) \\
x & =-a p q(-p+q)
\end{aligned}
$$

8 (d)
(iiv)

$$
\frac{b t^{2}-2 b \cdot p^{t}+a p^{2}}{-t^{2}-2 b y} y^{t}=0 \text { (1) }
$$

$$
\begin{gather*}
p \times(2) \Rightarrow b p^{2}-2 b p q t+a p q^{2}=0(3) \\
q \times(1) \Rightarrow-b q t^{2}-2 b p t+d q p^{2}=0(4) \\
(3)-(4) \Rightarrow b t^{2}(p-q)+a p q(q-p)=0 \\
b t^{2}(p-q)=a p q(p-q) \\
\Rightarrow b t^{2}=a p q \\
\left(p q=\frac{b t^{2}}{a}(5)\right.
\end{gather*}
$$

Also

$$
\text { (1)-(2) } \Rightarrow-2 b p t+2 b q t+a\left(p^{2}-q^{2}\right)=0
$$

$$
\left.-2 b t(-p-q)=-a\left(-p^{2}-q^{2}\right)\right]
$$

$$
2 b_{t}=a(p+q)
$$

(v)

$$
\begin{aligned}
& \left.\Rightarrow N=(-a p q(p+q)) a\left[(p+q)^{2}-p q+2\right]\right) \\
& \left.\Rightarrow x=-a p q(p+q)(7) \text { and } y=a(p+q)^{2}-p q+2\right]
\end{aligned}
$$

sabs (5) (6) into (9) from preterev)

$$
\begin{aligned}
& \Rightarrow-x=-a\left(\frac{b t^{2}}{a}\right)\left(\frac{2 b t}{a}\right) \\
& \Rightarrow x=\frac{-2 b^{2} t^{3}}{a} \\
& \Rightarrow t^{3}=\frac{-a x}{2 b^{2}} \\
& \Rightarrow t=\frac{a^{3} x^{2}}{\frac{1}{1 / 2} h^{2 / 3}}
\end{aligned}
$$

$8(d)(v)($ continued $)$
8. (a) (vo) (continued)
$\operatorname{sub}(5),(6)$ in (8)

$$
\begin{aligned}
& y=a\left[\frac{-4 b^{2} t^{2}}{a^{2}}-\frac{b t^{2}}{a}+2\right] \\
& y=\frac{4 b^{2} t^{2}}{a}-b t^{2}+2 a \\
& y-2 a=t^{2}\left(\frac{4 b^{2}}{a}-b\right)
\end{aligned}
$$

Subin $t=\frac{a^{\frac{1}{3}-x^{1 / 3}}}{2^{1 / 3} b^{2 / 3}}$

$$
\begin{aligned}
& \text { Subin } t=\frac{u}{2^{1 / 3} b^{2 / 3}} \\
& \Rightarrow y-2 a=\frac{a^{2 / 3} x^{2 / 3}}{2^{2 / 3} b^{4 / 3}}\left(\frac{4 b^{2}}{a}-b\right)
\end{aligned}
$$

Cube both sides:

$$
\begin{aligned}
& (y-2 a)^{3}=\frac{a^{2}-x^{2}}{4 b^{4}}\left(\frac{4 b^{2}}{a}-b\right)^{3} \\
& (y-2 a)^{3}=\frac{a^{2} x^{2}}{4 b^{4}}\left[\frac{b}{a}(4 b-a)\right]^{3} \\
& (y-2 a)^{3}=\frac{a^{2} x^{2}}{4 b^{4}} b^{3}(4 b-a)^{3} \\
& (y-2 a)^{3}=-\frac{x^{2}}{4 a b}(4 b-a)^{3} \\
& 4 a b(y-2 a)^{3}=x^{2}(4 b-a)^{3}
\end{aligned}
$$

At ternate Method

$$
\begin{equation*}
\text { From } t^{3}=\frac{-a x}{2 b^{2}} \Rightarrow t^{6}=\frac{x^{2} \cdot a^{2}}{4 b^{4}} \tag{1}
\end{equation*}
$$

Also from $y-2 a=t^{2}\left(\frac{4 b^{2}}{-a}-b\right)$

$$
\begin{align*}
& y-2 a=t^{2}\left(\frac{4 b^{2}-a b}{a}\right) \\
\Rightarrow & t^{2}=\left(\frac{(y-2 a) a}{4 b^{2}-a b}\right. \\
& t^{2}=\frac{(y-2 a) a}{b-(4 b-a)} \\
\Rightarrow & t^{-6}=\frac{(y-2 a)^{3} a^{3}}{b^{3}(4 b-a)^{3}} \tag{2}
\end{align*}
$$

Then (1) $=(2) \Rightarrow \frac{x^{2} a^{2}}{4 b^{4}}=\frac{(y-2 a)^{3} a^{3}}{b^{3}(4 b-a)^{3}}$

$$
\Rightarrow x^{2}(4 b-a)^{3}=4 a b(y-2 a)^{3} \#
$$

Only a few students got this question out correctly. 1 mark weas assigned if students correctly expressed x and y in terms of a, b and t

Question 9
a) i)

ii) In Δ^{\prime} s cor \ddagger cow

CO is common
$O V=O W$ (equal radii)
$\hat{C V O}=C \hat{\omega} O=90^{\circ}$ (radius 1 tangent)
$\triangle C O V \equiv \triangle$ Cow (RHS)
$\hat{V C O}=W \hat{C O}$ (corresponding angles, $\Delta C O v \equiv \Delta C O W$)
arc $D H=\operatorname{arcHE}$ (arcs that subtend equal angles are equal)
$\therefore H$ is the midpoint of arc $D E$.
iii) In Δ 's DVO $\& D Y O$

DO is common

$$
\begin{aligned}
O V & =O Y \quad \text { (equal radii) } \\
D V O & =D Y_{O}=90^{\circ}(\text { radius } 1 \text { tangent) } \\
\triangle D V O & \equiv \triangle D Y O \quad(R H S)
\end{aligned}
$$

iv) let $\hat{V C_{O}}=W \hat{C} O=x$ (proven in (ii))
let $V \hat{D}_{O}=Y \hat{D O}_{O}=y$ (corresponding angles, $\triangle D V O \equiv \triangle D Y O$)
$\hat{H D E}=x=H \hat{C E}$ (angles in the same segment)
$D_{\mathrm{DOH}}=x+y$ (exterior angle of $\triangle D O C$)

$$
H \hat{D O}_{O}=x+y
$$

$$
\therefore O D^{A}+1=D O H
$$

r) $H D=H O$ (sides opposite equal angles, $\triangle O D H$)

COMMENTS:

- Part (v) should have been an easy nark for all students regardless of their success with the other questions.
- Part (iii) could be proven using the congruency tests SSS, SAS, RHS. and was generally well attempted.
- Very few students made any progress with part (iv).

There were students imho oversimplified the diagram by making -y the point where $C 0$ meets $D E$.
b) i)

$$
\begin{aligned}
& \cos (A-B)-\cos (A+B) \\
= & \cos A \cos B+\sin A \sin \beta-(\cos A \cos B-\sin A \sin \beta) \\
= & 2 \sin A \sin \beta
\end{aligned}
$$

ii) Prove true for $n=1$

$$
\begin{aligned}
\text { CHS } & =\sin \omega \\
\text { RHS } & =\frac{1-\cos 2 \omega}{2 \sin \omega} \\
& =\frac{1-\left(1-2 \sin ^{2} \omega\right)}{2 \sin \omega} \\
& =\sin \omega \\
\text { HS } & =\text { RHS }
\end{aligned}
$$

\therefore true for $n=1$
Assume true for $n=k$ where $k \in \mathbb{N}$

$$
\sin \omega+\sin 3 \omega+\ldots+\sin (2 k-1) \omega=\frac{1-\cos 2 k \omega}{2 \sin \omega}
$$

Prove true for $n=k+1$

$$
\begin{aligned}
& \text { ie } \sin \omega+\sin 3 \omega+\cdots+\sin (2 k-1) \omega+\sin (2 k+1) \omega=\frac{1-\cos 2(k+1) \omega}{2 \sin \omega} \\
& \angle H S=\sin \omega+\sin 3 \omega+\ldots+\sin (2 k-1) \omega+\sin (2 k+1) \omega \\
& =\frac{1-\cos 2 k \omega}{2 \sin \omega}+\sin (2 k+1) \omega \\
& =\frac{1-\cos 2 k \omega+2 \sin (2 k+1) \omega \sin \omega .}{2 \sin \omega} \\
& =\frac{1-\cos 2 k \omega+\cos 2 k \omega-\cos (2 k+2) \omega}{2 \sin \omega} \\
& =\frac{1-\cos 2(k+1) \omega}{2 \sin \omega} \\
& =\mathrm{RHS}
\end{aligned}
$$

\therefore true for $n=k+1$
\therefore true by induction for integers $n \geq 1$.

COMMENT:

* students should look to use part (i)
- Students should not assume what they are required to prove.
c)

i)

$$
\begin{align*}
& y=m x+b \tag{I}\\
& y=\frac{x^{2}}{4} \tag{2}
\end{align*}
$$

Sub (1) into (2)

$$
\begin{aligned}
& \frac{x^{2}}{4}=m x+b \\
& x^{2}-4 m x-4 b=0 \quad \text { has roots } x_{1} d x_{2} \\
& x_{1}+x_{2}=-\frac{B}{A} \\
&=\frac{-(-4 m)}{1} \\
&=4 m
\end{aligned}
$$

x coordhate of M is $\frac{x_{1}+x_{2}}{2}=\frac{4 \mathrm{~m}}{2}$

$$
=2 \mathrm{~m}
$$

M lies on $y=m x+b$
y coordinate of m is $y=m(2 m)+b$

$$
y=2 m^{2}+b
$$

$\therefore M$ has coordinates $\left(2 m, 2 m^{2}+b\right)$
ii)

$$
\begin{aligned}
& x=2 m \\
& y=2 m^{2}+(-2) \quad \text { when } b=-2 \\
& y=2\left(\frac{x}{2}\right)^{2}-2
\end{aligned}
$$

$y=\frac{x^{2}}{2}-2 \quad$ which is a parabola.
iii)

M is the midpoint of a chord $\$$ so must lie within the parabola $x^{2}=4 y$.

$$
\begin{align*}
& y=\frac{x^{2}}{4} \tag{1}\\
& y=\frac{x^{2}}{2}-2 \tag{2}
\end{align*}
$$

sub (1) into (2)

$$
\begin{aligned}
& \frac{x^{2}}{4}=\frac{x^{2}}{2}-2 \\
&-\frac{x^{2}}{4}=-2 \\
& x^{2}=8 \\
& x= \pm \sqrt{8} \\
& x= \pm 2 \sqrt{2} \\
& \therefore x>2 \sqrt{2}, x<-2 \sqrt{2}
\end{aligned}
$$

COMMENTS:

- students who first found the coordinates of $L \notin N$ tended to get bogged down in the algebra.
- The discriminant could have been used for part (iii). However, it would take a little longer since we were asked for the restriction on the domain of M not m.

