FORM VI

MATHEMATICS EXTENSION 1

Thursday 3rd March 2011

General Instructions

- Writing time -2 Hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Structure of the paper

- Total marks - 84
- All seven questions may be attempted.
- All seven questions are of equal value.

Collection

- Write your candidate number clearly on each booklet.
- Hand in the seven questions in a single well-ordered pile.
- Hand in a booklet for each question, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place the question paper inside your answer booklet for Question One.

Checklist

- SGS booklets - 7 per boy

Examiner

- Candidature - 128 boys

QUESTION ONE (12 marks) Use a separate writing booklet.
(a) Write down the exact value of:
(i) $\cos \frac{7 \pi}{6}$
(ii) $\tan ^{-1}(\sqrt{3})$
(b) Simplify $2 \sin 2 x \cos 2 x$.
(c) Differentiate with respect to x :
(i) $x^{2} \cos x$
(ii) $e^{4 x}$
(iii) $\ln (5 x+3)$
(d) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\sin 7 x}{x}\right)$. You must show working.
(e) Find:
(i) $\int(1-x)^{5} d x$
(ii) $\int(\cos x-\sin x) d x$
(iii) $\int \sin 2 x d x$
(iv) $\int e^{2-3 x} d x$

QUESTION TWO (12 marks) Use a separate writing booklet.
(a) What is the amplitude and period of the function $f(x)=3 \sin 2 x$?
(b) Find the acute angle between the lines $2 x+y-2=0$ and $y=x+9$. Give your answer to the nearest degree.
(c) Solve $\frac{1}{x+5} \geq 1$.
(d) Consider the function $f(x)=x^{2}-9$, for $x \geq 0$.
(i) Sketch and clearly label $y=f(x)$, for $x \geq 0$.
(ii) Find the equation of the inverse function.
(iii) State the domain of $y=f^{-1}(x)$.
(iv) Sketch the inverse function $y=f^{-1}(x)$.

QUESTION THREE (12 marks) Use a separate writing booklet.
(a) The point A is $(12,-10)$ and the point B is $(-3,-5)$. The point P divides the interval $A B$ internally in the ratio $2: 3$. Find the coordinates of P.
(b) Consider the parabola with parametric equations

$$
\begin{aligned}
& x=4 t \\
& y=t^{2}-1
\end{aligned}
$$

(i) Find the Cartesian equation of this parabola.
(ii) State the coordinates of the vertex.
(iii) State the coordinates of the focus.
(c) Solve $\cos 2 \theta-\sin \theta=0$, for $0 \leq \theta \leq 2 \pi$.
(d) Find the exact value of $\tan \left(\cos ^{-1}\left(-\frac{5}{7}\right)\right)$.

QUESTION FOUR (12 marks) Use a separate writing booklet.
(a) Prove the identity

$$
\frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta}=2 \operatorname{cosec}^{2} \theta
$$

(b) Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan ^{2} x d x$.
(c) A computer animation shows the sides of a cube increasing at a rate of $3 \mathrm{~mm} / \mathrm{s}$. Find the rate at which the volume V is increasing when the cube has a side length of 5 mm .
(d)

The diagram above shows an offshore oil rig $P O$. A viewing platform at P is 40 metres above its base O which is at sea level. A boat B and a yacht Y are observed from P with angles of depression of 15° and 26° respectively. From O, boat B is on a bearing of 150° and yacht Y is on a bearing of 225°.
(i) Explain why $\angle Y O B=75^{\circ}$.
(ii) Find the distance between the vessels, $Y B$, to the nearest metre.

QUESTION FIVE (12 marks) Use a separate writing booklet.

In the diagram above, two points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$. The tangents at P and Q intersect at the point T.
The equation of the tangent at P is $y=p x-a p^{2}$.
(i) Show that the coordinates of the point T are $(a(p+q), a p q)$.
(ii) Given that $p q=-2$, find the equation of the locus of T.
(b) (i) Express $\sqrt{3} \cos x-\sin x$ in the form $R \cos (x+\alpha)$, where $R>0$ and $0 \leq \alpha \leq \frac{\pi}{2}$.
(ii) Hence, or otherwise, solve the equation $\sqrt{3} \cos x-\sin x=1$, for $-\pi \leq x \leq \pi$. Give your solutions as exact values.
(c) Use mathematical induction to prove that $7^{2 n+1}+11^{2 n+1}$ is divisible by 3 , for $n=0,1,2,3, \ldots$.

QUESTION SIX (12 marks) Use a separate writing booklet.
(a)

The diagram above shows the region bounded by the curve $y=2+3 \sin x$ and the x-axis from $x=0$ to $x=\frac{\pi}{6}$. Find the exact volume of the solid generated when the region is rotated about the x-axis.
(b) Consider the curve whose equation is $f(x)=\frac{x(x-1)}{(x+1)(x-2)}$.
(i) Find the coordinates of any intercepts with the axes.
(ii) Find the equations of the vertical asymptotes of the curve.
(iii) Find the equation of the horizontal asymptote of the curve.
(iv) Find $f^{\prime}(x)$.
(v) Find the stationary point and determine its nature.
(vi) Sketch the curve.

QUESTION SEVEN (12 marks) Use a separate writing booklet.
(a) Consider the functions $y=2 \sin x$ and $y=\tan x$, for $-\pi \leq x \leq \pi$.
(i) On the same axes, sketch the graphs of the functions $y=2 \sin x$ and $y=\tan x$, for $-\pi \leq x \leq \pi$.
(ii) Find all the solutions of $2 \sin x=\tan x$, for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
(iii) Hence solve $2 \sin x \leq \tan x$, for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
(b)

In the diagram above, the points $A(-1,0), B(1,0)$, and C all lie on the circle with centre O and radius 1. Let $\angle C O A=\alpha$ and $\angle C B O=\beta$.
(i) Given that the line $B C$ has gradient m, find its equation.
(ii) Show that the x-coordinates of B and C are solutions of the equation

$$
\left(1+m^{2}\right) x^{2}-2 m^{2} x+m^{2}-1=0
$$

(iii) Using this equation, find the coordinates of C in terms of m.
(iv) Hence deduce that $\tan 2 \beta=\frac{2 \tan \beta}{1-\tan ^{2} \beta}$.

SGS Half-Yearly 2011 Form VI Mathematics Extension 1 Page 8

BLANK PAGE

SGS Half-Yearly 2011 Form VI Mathematics Extension 1 Page 9

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Form
Half Yearly Ext 12011
21 a)
i) $\cos \frac{7 \pi}{6}=-\cos \frac{\pi}{6}$

$$
=-\frac{\sqrt{3}}{2}
$$

ii) $\tan ^{-1}(\sqrt{3})=\frac{\pi}{3}$
b) $\sin 4 x$
c) i) $\frac{d}{d x} x^{2} \cos x=2 x \cos x-x \sin x$
ii) $\frac{d}{d x} e^{4 x}=4 e^{4 x}$
iii) $\frac{d}{d x}(\ln (5 x+3))=\frac{5}{5 x+3}$
21) $\lim _{x \rightarrow 0}\left(\frac{\sin 7 x}{x}\right)=7 \lim _{x \rightarrow 0} \frac{\sin 7 x}{7 x}$

$$
=7
$$

e) i) $\int(1-x)^{5} d x=\frac{-(1-x)^{6}}{6}+c$
ur) $\int(\cos x-\sin x) d x$

$$
=\sin x+\cos x+c
$$

ii) $\int \sin 2 x=-\frac{1}{2} \cos 2 x+c$
(or $\sin ^{2} x+c$
or $-\cos ^{2} x+c$)
iv) $\int e^{2-3 x} d x=-\frac{e^{2-3 x}}{3}+c^{V}$

Q2 a) Amplitude $=3$
period $T=\frac{2 \pi}{2}$

$$
=\pi
$$

b)

$$
\begin{gathered}
2 x+y-2=0 \\
y=-2 x+2
\end{gathered}
$$

$$
m_{1}=-2 \quad m_{2}=1
$$

$$
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

$$
=\left|\frac{-2-1}{1-2 \times 1}\right|
$$

$$
=\left|\frac{-3}{7}\right|
$$

$\tan \theta=3$
$\theta \doteq 72^{\circ}$ (nearest degree)
c) $\frac{1}{x+5} \geqslant 1$

$$
\begin{gathered}
(x+5) \geqslant x+5)^{2} \\
(x+5)^{2}-(x+5) \leq 0 \\
(x+5)[x+5)-1] \leqslant 0 \\
(x+5)(x+4) \leqslant 0 \\
-5<x \leqslant-4 \\
(x \neq-5)
\end{gathered}
$$

ii) $y=x^{2}-9$

Surap variables

$$
\begin{aligned}
& x=y^{2}-9 \\
& y^{2}=x+9 \\
& y=\sqrt{x+9}
\end{aligned}
$$

iii) Domain $x \geqslant-9$
iv) on same diagram as i)
\qquad
d

$$
\text { b) } \left.\begin{array}{rl}
P(x, y)=(6,-8) \\
x & =4 t \\
t & =\frac{x}{4} \\
y & =\left(\frac{x}{4}\right)^{2}-1
\end{array}\right\} \begin{aligned}
& y=\frac{x^{2}}{16}-1 \\
& \left\{\begin{array}{l}
x^{2}
\end{array}=16(y+1)\right.
\end{aligned} \text { vertex }(0,-1) \text { ii) }
$$ iii) $4 a=16$

$$
a=4 \checkmark \text { Focus }(0,3)^{V}
$$

C) $\cos 2 \theta-\sin \theta=0 \quad 0<\theta \leqslant 2 \pi$

$$
\begin{gathered}
1-2 \sin ^{2} \theta-\sin \theta=0 \\
2 \sin ^{2} \theta+\sin \theta-1=0 \\
(2 \sin \theta-1)(\sin \theta+1)=0 \\
\sin \theta=\frac{1}{2} \text { or } \sin \theta=-1 \\
\theta=\frac{\pi}{6}+\frac{\pi \pi}{6}+\frac{3 \pi}{2}
\end{gathered}
$$

d) $\tan \left(\cos ^{-1}\left(-\frac{5}{7}\right)\right)$ let $\alpha=\cos ^{-1}\left(-\frac{5}{7}\right)$

$$
\cos x=-\frac{5}{7}
$$

$p, \alpha \leq \pi \quad \alpha$ in $2 n \theta$ quad
$\tan \alpha=\frac{-\sqrt{24}}{5}$

Qua)

$$
\begin{aligned}
\text { IHS } & =\frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta} \\
& =\left(\frac{1+\cos \theta)+(1-\cos \theta)}{(1-\cos \theta)(1+\cos \theta)}\right. \\
& =\frac{2}{1-\cos ^{2} \theta} \\
& =\frac{2}{\sin ^{2} \theta} \\
& =2 \operatorname{cosec}^{2} \theta \\
\text { II } & =\text { RUS }
\end{aligned}
$$

b) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan ^{2} x d x$
d) 1) $\angle P Y O=26^{\circ} \quad\left(\begin{array}{c}\text { alternate } \angle \\ \text { on } 11 \text { lives }\end{array}\right.$

Plan view

,

$$
\angle Y O B=\text { Bearing of } Y \text { - Bearing of }
$$

$$
\begin{align*}
& =\int^{\frac{\pi}{4}}\left(\sec ^{2} x-1\right) d x \\
& =[\tan x-x] \frac{\pi}{\frac{\pi}{4}} V \tag{y=20}\\
& =\left(\tan \frac{\pi}{3}-\frac{\pi}{3}\right)-\left(\tan \frac{\pi}{4}-\frac{\pi}{4}\right) \\
& =\sqrt{3}-\frac{4 \pi}{12}-1+\frac{3 \pi}{12} \\
& =\sqrt{3}-1-\frac{\pi}{12}
\end{align*}
$$

$$
=225^{\circ}-150^{\circ}
$$

$$
=75^{\circ} \text { (adjacent } \angle s^{\prime}
$$

c) let l be the side length

$$
\begin{aligned}
& \frac{d l}{d t}=3 \quad V=l^{3} \\
& \begin{aligned}
\frac{d V}{d t} & =\frac{d V}{d l} \times \frac{d l}{d t} \\
& =3 l^{2} \times 3 \\
& =9 l^{2}
\end{aligned} \\
& \begin{aligned}
\frac{d V}{d t}(\text { at } \quad l=5) & =9 \times 25 \\
& =225 \mathrm{~mm}^{3} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

$$
\tan 26^{\circ}=\frac{40}{70}
$$

$$
y 0=\frac{40}{\tan 26^{\circ}}
$$

$$
\begin{aligned}
& \left(\frac{40 \cot 20^{\circ}}{\text { or } 40 \tan 64^{\circ}}\right)
\end{aligned}
$$

$$
\tan 15^{\circ}=\frac{40}{B 0}
$$

In $\triangle Y O B$ cosine rue

$$
\begin{aligned}
& Y B^{2}=B O^{2}+Y O^{2}-2 \times B 0 \times 40 \cos 75^{\circ} \\
& =40^{\circ}\left(\tan ^{2} 75+\tan ^{2} 64-2 \times \tan 75 \tan 64\right. \\
& =22674 \\
& Y B^{\circ}=151 \mathrm{~m}
\end{aligned}
$$

QSi) Equation of p

$$
\begin{equation*}
y=p x-a p^{2} \tag{1}
\end{equation*}
$$

Equakir of Q

$$
\begin{aligned}
x+\frac{\pi}{6} & =\frac{\pi}{3} & x+\frac{\pi}{6} & =\frac{\pi}{3} \\
x & =\frac{\pi}{6} & x & =-\frac{\pi}{3}
\end{aligned}
$$

c) A. For $n=0$

$$
\begin{align*}
7^{2 n+1}+11^{2 n+1} & =7+11 \tag{1}\\
& =18 \text { div by } 3
\end{align*}
$$

B. Suppose k is such that $7^{2 k+1}+11^{2 k+1}$ is div by 3
for some integer vale of $k>0$
ie. $7^{2 k+1}+11^{2 k+1}=3 m$ some integer m
c. The statement must be proved for $n=k+1$

$$
7^{2 k+3}+11^{2 k+3}
$$

$$
=7^{2 k+1} \times 7^{2}+1^{2 k+3}
$$

$$
=\left(3 m-11^{2 k+1}\right) 7^{2}+11^{2 k+3} y
$$ using

$$
=3 m \times 7^{2}+11^{2 k+1}\left(11^{2}-7^{2}\right)
$$

$$
=3 m \times 7^{2}+11^{2 k+1} \times 72
$$

$$
=R \cos \alpha \cos x-R \sin \alpha \sin x
$$

$R \cos \alpha=\sqrt{3}$
$-R \sin \alpha=-1$

$$
R^{2}=4
$$

$$
R=2 \quad R>0
$$

$-2 \sin \alpha=-1$
$\cos \alpha=\frac{\sqrt{3}}{2}$
$\sin \alpha=\frac{1}{2}$

$$
\alpha=\frac{\pi}{6}
$$

So $\sqrt{3} \cos x-\sin x=2 \cos \left(x+\frac{\pi}{6}\right)$
i) $2 \cos \left(x+\frac{\pi}{6}\right)=1 \quad-\pi \leqslant x \leqslant \pi$
let $u=x+\frac{\pi}{6} \quad-\frac{5 \pi}{6}<u \leqslant \frac{7 \pi}{6}$ $2 \cos u=1$

$$
\begin{aligned}
& \cos u=\frac{1}{2} \\
& u=\frac{\pi}{3} \quad \text { or } u=-\frac{\pi}{3}
\end{aligned}
$$

06 a)

$$
\text { 6 a) } \begin{aligned}
& y=2+3 \sin x \\
& y=(2+3 \sin x)^{2} \\
&=4+12 \sin x+9 \sin ^{2} x
\end{aligned} \quad \begin{aligned}
v=\pi \int_{0}^{\frac{\pi}{6}}\left(4+12 \sin x+9 \sin ^{2} x\right) d x \\
=\pi[4 x-12 \cos x]_{0}^{\frac{\pi}{6}}+9 \pi \int_{0}^{\frac{\pi}{6}}\left(\frac{1}{2}-\frac{1}{2} \cos ^{2} x\right) d x \\
=\pi\left(\frac{2 \pi}{3}-12 \times \frac{\sqrt{3}}{2}+12\right)+9 \pi\left[\frac{x}{2}-\frac{1}{4} \sin 2 x\right]_{0}^{\frac{\pi}{6}} \\
=\pi\left(\frac{2 \pi}{3}-6 \sqrt{3}+12\right)+9 \pi\left(\frac{\pi}{12}-\frac{1}{4} \times \frac{\sqrt{3}}{2}\right) \\
=\pi\left(\frac{2 \pi}{3}-6 \sqrt{3}+12+\frac{3 \pi}{4}-\frac{9 \sqrt{3}}{8}\right) \\
=\pi\left(\frac{17 \pi}{12}-\frac{57 \sqrt{3}}{8}+12\right) u^{3}
\end{aligned}
$$

b) i) $(0,0),(1,0)$ Va
ii) vertical asymptotes

$$
\begin{aligned}
& \text { vertical asymptotes } x=2 \\
& \text { at } x=-1 \text { and }
\end{aligned}
$$

iii) $y=1$

$$
\text { iv) } \begin{aligned}
& f^{\prime}(x)=\frac{(x+1)(x-2)(2 x-1)-x(x-1)(2 x-1)}{(x+1-1)} \\
&(x+1)^{2}(x-2)^{2} \\
&=\frac{(2 x-1)\left[x^{2}-x-2-(x-x)\right]}{(x+1)^{2}(x-2)^{2}} \\
&=\frac{-2(2 x-1}{(x+1)^{2}(x-2)^{2}}
\end{aligned}
$$

v) $f^{\prime}(x)=0$ when $x=\frac{1}{2}$

$$
y=\frac{1}{9}
$$

x	0	$\frac{1}{2}$	$=$
$f^{\prime}(x)$	+0	-	

$\left(\frac{1}{2}, \frac{1}{9}\right)$ is a maximum truing point.

Given the x-coordinate of isl
 ii $)+$ let x-coordinate of c be β

$$
\begin{aligned}
(\alpha+\beta & \left.=\frac{-b}{a}\right) \\
1+\beta & =\frac{2 m^{2}}{1+m^{2}} \\
\beta & =\frac{2 m^{2}}{1+m^{2}}-1 \\
& =\frac{2 m^{2}-1\left(1+m^{2}\right)}{1+m^{2}}
\end{aligned}
$$

$$
=\frac{m^{2}-1}{m^{2}+1}
$$

$$
\begin{gathered}
2 \sin x=\frac{\sin x}{\cos x} \\
2 \sin x \cos x-\sin x=0 \\
\sin x(2 \cos x-1)=0 \\
\sin x=0 \quad \cos x=\frac{1}{2} \\
x=0 \quad \text { or } x= \pm \frac{\pi}{3}
\end{gathered}
$$

y-coordinate of C is given by

$$
\begin{aligned}
y & =m\left(\frac{m^{2}-1}{m^{2}+1}-1\right) \\
& =m\left(\frac{m^{2}-1-m^{2}-1}{m^{2}+1}\right) \\
& =\frac{-2 m}{m^{2}+1}
\end{aligned}
$$

iii) $0<x<\frac{\pi}{3}$ ar $-\frac{\pi}{2}<x<\frac{\pi}{3} \quad C\left(\frac{m^{2}-1}{m^{2}+1}, \frac{-2 m}{m^{2}+1}\right)$
b) i) $B(1,0) \quad y-0=m(x-1), N) \triangle O B C$ is isosceles (radii)
$y=m x-m$
ii) $B+C$ are the solutions of the
simultaneous equations

$$
\begin{align*}
& y=m x-m \tag{1}\\
& x^{2}+y^{2}=1 \tag{2}
\end{align*}
$$

SUb (1) int (2)

$$
\begin{aligned}
& x^{2}+(m x-m)^{2}=1 \\
& x^{2}+m^{2} x^{2}-2 m^{2} x+m^{2}=1 \\
& x^{2}\left(1+m^{2}\right)-2 m^{2} x+\left(m^{2}-1\right)=0
\end{aligned}
$$

as required.

