SYDNEY GRAMMAR SCHOOL

2011 Half-Yearly Examination

FORM VI MATHEMATICS EXTENSION 1

Thursday 3rd March 2011

General Instructions

- Writing time 2 Hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Structure of the paper

- Total marks 84
- All seven questions may be attempted.
- All seven questions are of equal value.

Collection

- Write your candidate number clearly on each booklet.
- Hand in the seven questions in a single well-ordered pile.
- Hand in a booklet for each question, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place the question paper inside your answer booklet for Question One.

Checklist

- SGS booklets 7 per boy
- Candidature 128 boys

Examiner LYL

<u>QUESTION ONE</u> (12 marks) Use a separate writing booklet.

- (a) Write down the exact value of:
 - (i) $\cos \frac{7\pi}{6}$ (ii) $\tan^{-1}(\sqrt{3})$
- (b) Simplify $2\sin 2x \cos 2x$.
- (c) Differentiate with respect to x:
 - (i) $x^2 \cos x$ $\mathbf{2}$ (ii) e^{4x} 1 1
 - (iii) $\ln(5x+3)$

(d) Evaluate
$$\lim_{x \to 0} \left(\frac{\sin 7x}{x} \right)$$
. You must show working.

(e) Find:

(i)
$$\int (1-x)^5 dx$$

(ii) $\int (\cos x - \sin x) dx$
(iii) $\int \sin 2x dx$
(iv) $\int e^{2-3x} dx$
1

Marks

1

1

1

QUESTION TWO (12 marks) Use a separate writing booklet.

- (a) What is the amplitude and period of the function $f(x) = 3 \sin 2x$?
- (b) Find the acute angle between the lines 2x + y 2 = 0 and y = x + 9. Give your answer to the nearest degree.

(c) Solve
$$\frac{1}{x+5} \ge 1$$
.

- (d) Consider the function $f(x) = x^2 9$, for $x \ge 0$.
 - (i) Sketch and clearly label y = f(x), for $x \ge 0$.
 - (ii) Find the equation of the inverse function.
 - (iii) State the domain of $y = f^{-1}(x)$.
 - (iv) Sketch the inverse function $y = f^{-1}(x)$.

QUESTION THREE (12 marks) Use a separate writing booklet.

- (a) The point A is (12, -10) and the point B is (-3, -5). The point P divides the interval AB internally in the ratio 2:3. Find the coordinates of P.
- (b) Consider the parabola with parametric equations

$$x = 4t,$$
$$y = t^2 - 1$$

- (i) Find the Cartesian equation of this parabola.
- (ii) State the coordinates of the vertex.
- (iii) State the coordinates of the focus.
- (c) Solve $\cos 2\theta \sin \theta = 0$, for $0 \le \theta \le 2\pi$.
- (d) Find the exact value of $\tan\left(\cos^{-1}\left(-\frac{5}{7}\right)\right)$.

Marks

 $\mathbf{2}$

 $\mathbf{2}$

2	
1	
1	

Marks

 $\mathbf{2}$

 $\mathbf{2}$

1

 $\mathbf{2}$

3

 $\mathbf{2}$

QUESTION FOUR (12 marks) Use a separate writing booklet.

- $\mathbf{2}$ (a) Prove the identity $\frac{1}{1-\cos\theta} + \frac{1}{1+\cos\theta} = 2\csc^2\theta.$ (b) Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan^2 x \, dx$.
- (c) A computer animation shows the sides of a cube increasing at a rate of 3 mm/s. Find the rate at which the volume V is increasing when the cube has a side length of 5 mm.

The diagram above shows an offshore oil rig PO. A viewing platform at P is 40 metres above its base O which is at sea level. A boat B and a yacht Y are observed from Pwith angles of depression of 15° and 26° respectively. From O, boat B is on a bearing of 150° and yacht Y is on a bearing of 225° .

- (i) Explain why $\angle YOB = 75^{\circ}$.
- (ii) Find the distance between the vessels, YB, to the nearest metre.

Marks

3

<u>QUESTION FIVE</u> (12 marks) Use a separate writing booklet.

In the diagram above, two points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$. The tangents at P and Q intersect at the point T. The equation of the tangent at P is $y = px - ap^2$.

- (i) Show that the coordinates of the point T are (a(p+q), apq).
- (ii) Given that pq = -2, find the equation of the locus of T.
- (b) (i) Express $\sqrt{3}\cos x \sin x$ in the form $R\cos(x+\alpha)$, where R > 0 and $0 \le \alpha \le \frac{\pi}{2}$. 2
 - (ii) Hence, or otherwise, solve the equation $\sqrt{3}\cos x \sin x = 1$, for $-\pi \le x \le \pi$. 2 Give your solutions as exact values.
- (c) Use mathematical induction to prove that $7^{2n+1} + 11^{2n+1}$ is divisible by 3, for $n = 0, 1, 2, 3, \ldots$

3

1

<u>QUESTION SIX</u> (12 marks) Use a separate writing booklet.

The diagram above shows the region bounded by the curve $y = 2 + 3 \sin x$ and the x-axis from x = 0 to $x = \frac{\pi}{6}$. Find the exact volume of the solid generated when the region is rotated about the x-axis.

(b) Consider the curve whose equation is $f(x) = \frac{x(x-1)}{(x+1)(x-2)}$.

- (i) Find the coordinates of any intercepts with the axes.
- (ii) Find the equations of the vertical asymptotes of the curve.
- (iii) Find the equation of the horizontal asymptote of the curve.
- (iv) Find f'(x).
- (v) Find the stationary point and determine its nature.
- (vi) Sketch the curve.

3

 $\mathbf{2}$

1

1

2

QUESTION SEVEN (12 marks) Use a separate writing booklet.

- (a) Consider the functions $y = 2 \sin x$ and $y = \tan x$, for $-\pi \le x \le \pi$.
 - (i) On the same axes, sketch the graphs of the functions $y = 2 \sin x$ and $y = \tan x$, for $-\pi \leq x \leq \pi$.
 - (ii) Find all the solutions of $2\sin x = \tan x$, for $-\frac{\pi}{2} < x < \frac{\pi}{2}$.
 - (iii) Hence solve $2\sin x \le \tan x$, for $-\frac{\pi}{2} < x < \frac{\pi}{2}$.

In the diagram above, the points A(-1,0), B(1,0), and C all lie on the circle with centre O and radius 1. Let $\angle COA = \alpha$ and $\angle CBO = \beta$.

- (i) Given that the line BC has gradient m, find its equation.
- (ii) Show that the x-coordinates of B and C are solutions of the equation

$$(1+m^2)x^2 - 2m^2x + m^2 - 1 = 0.$$

(iii) Using this equation, find the coordinates of C in terms of m.

(iv) Hence deduce that
$$\tan 2\beta = \frac{2\tan\beta}{1-\tan^2\beta}$$
.

END OF EXAMINATION

1	
0	
	1

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

Marks

BLANK PAGE

BLANK PAGE

The following list of standard integrals may be used:

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE :
$$\ln x = \log_e x, x > 0$$

Half Vecrly Ext 1 2011 Half Vecrly Ext 1 2011 Half i) is $\Xi = -\cos \Xi$ $= -\overline{B}$ Amplitude =3 Q2 a) period $T = 2\pi$ = π \ddot{u}) $\tan^{-1}(\sqrt{3}) = \frac{2}{5}$ b) 2x+y-2=0 b) sin 4>c $\sqrt{}$ c) i) $\frac{d}{dx} x^2 \cos x = 2x \cos(-x) \sin x$ = -2x+2 =-2 $m_{2} = 1$ \vec{u}) $d e^{4x} = 4e^{4x} \sqrt{2}$ tan 0 = $M_1 - M_2$ $1 + m_1 m_2$ $\frac{d}{dx}\left(ln\left(5x+3\right)\right) = \frac{5}{5x+3}$ -2-1 $\frac{1}{x-70}\left(\frac{\sin 7x}{x}\right) = 7 \lim_{x \to 0} \frac{\sin 7x}{x}$ 1-2×1 $= \frac{-1}{2}$ $= \frac{-1}{2}$ $= \frac{-1}{2} + \frac{1}{2}$ 0 = 3 / $0 = 72^{\circ}$ (nearest degree) tan \overline{u}) $\int (\cos x - \sin x) dx$ 1/2 21 = siw x + cos x + c<u>c)</u> $\tilde{u} \int \sin 2\pi c = -\frac{1}{2}\cos 2x + c$ (x+5) > x+5) (or SIM2)C+C $(x+5)^2 - (x+5) \leq 0$ $iV) \int e^{2-3x} dx = -\frac{e^{2-3x}}{2} + c^{1/2}$ (x+5) (x+5) -1 50 × $(7+5)(7(+4)^{-1} \le 0)$ 5< X 5-4 $(x\neq -5)$

X2 42 B(-3,-5) $(0.3 \ a) A(12, -10)$ Y > 02d) 2:3 p:e $\begin{array}{l} \chi = l\chi_{1} + k\chi_{2} \\ k + l \end{array}$ -3 $y = ly_1 + ky_2,$ ktl 7X $= 3 \times 12 + 2 \times -3$ =+3x-10+2x-5 5 = <u>36-6</u> 5 = -30-10 = 6 = -8 1i) y=x2-9 P(x,y) = (6, -8)Swap variables $x = y^2 - 9$ $y^2 = \chi + 9$ $y = \sqrt{\chi + 9}$ b(x) = 4t + t = 2t $y = t^2 - 1$ $-\frac{y}{(\frac{x}{4})^2} = \frac{1}{(\frac{x}{4})^2}$ $y = \frac{1}{16} - 1$ or i = 16(y+1) -1 <u> ィブ -</u> ii) Verlex(0,-1)/ mi) 4a=16 iv) on same dragram as i) $a = 4 \sqrt{F_{BCUS}(0)}$ c) cos 20 - Sino =0 USOS2TI $1 - 2 \sin^2 \theta - \sin \theta = 0$ 251120 + 51n0 - 1=0 $(2\sin\theta - 1)(\sin\theta + 1) = 0$ SIND= 2 or SIND=-1 $O = \overline{II} + \overline{JI} + \frac{3\overline{II}}{5} + \frac{3\overline{II}}{2}$ d) tan (cos-1(-5)) let $x = \cos^{-1}(-\Xi)$

LHS = 04a) d) 1 LPY0=260 1-cos0 + 1+cos0 alternate L LPB()=150 on Il lines $= (1 + \cos \theta) + (1 - \cos \theta)$ Plan vien (1-ros0)(1+cos0) 1-0520 1500 2_ Sin20 = 2 cosec = 0 = RHS L YOB = Bearing of Y - Bearing of 1 = 225° - 150° / = 75° (adjacent Ls 3 tan2 x dr 3 (sec 2 x -1) dx - × 5 v tan 26° = tanx Ü 40 (tan = -=) - (tan = -== YO = = 40 cot26 or 40tan 64°, τ $\sqrt{3} - \frac{41}{12} - 1 + \frac{31}{12}$ - $\frac{1}{15}$ = $\frac{40}{B0}$ 40 √3 -1-开 $\overline{}$ BO = 40 (= 4000trs BO av 40ton 75° c) let I be the side length $\frac{dl}{dt} = 3$ $V = l^3$ IN AYOB cosine rule $YB^{2} = BO^{2} + YO^{2} - 2 \times BO \times 40 \cos 75$ $\frac{dV}{dt} = \frac{dV}{d\ell} \times \frac{d\ell}{d\ell}$ = \$0(tan75 + tan 64 - 2x tan75 tan64 cos 7 $= 3\ell^2 \times 3$ $= 9\ell^2$ - 22674 YB = 151 m $\frac{dV}{dF}\left(at \ l=5\right) = 9x25$ $= 225 mm^{3}/s$

(45i)Equation of P X-晋=晋 χ+晋=퍜 $y = p = c - a p^2$ x ====== X=IE Equation of Q $y = q x + aq^2$ c) A. For n=0 $7^{2n+1} + 11^{2n+1} = 7 + 11$ $\bigcirc = \bigcirc \checkmark$ \checkmark $p_{\chi} - ap^2 = q_{\chi} - aq^2$ =18 div by 3 $p_{1}^{2} - q_{1}^{2} = \alpha p^{2} - \alpha q^{2}$ Suppose k is such that 7² + 11² + 11² is cliv by 3 $\mathcal{H}(p=q) = \alpha (p=q)(p+q)$ $2(2 - \alpha (p+q))$ for some integer value Sub 3 into 0 $y = pa(p+q) - ap^2$ of k>0 ie. $7^{2k+1} + 11^{2k+1} = 3m$ $= ap^{2} + apq - ap^{2}$ = apqsome inleger m. C. The statement must be proved for N = k+1 $7^{2k+3} + 11^{2k+3}$ 05 (jii) pg =-2. y = -2a is the $= \frac{7}{7^{2k+1}} \times \frac{7^{2}}{7^{2}} + \frac{12k+3}{12k+3} = \frac{3m-11^{2k+1}}{7^{2}} + \frac{12k+3}{7^{2}} \times \frac{12k+3}{11} \times \frac{12k+3}{11}$ locus of T as a is constant. $b(\lambda)$ $\sqrt{3}\cos \lambda - \sin x = R\cos(x+\alpha)$ $= 3m \times 7^{2} + 11^{2k+1} (11^{2} - 7^{2})$ J 3 cos x - sin x = Rcos x cosa = 3m x 7 2 + 112k+1 x 72 -RSIN >C Sing $= 3(7^{2}m + 24 \times 11^{2k+1})$ = Ros a cosx - Rsin a sin x which is divisible by 3, $-ksin\alpha = -1$ RCOS X = J3 R2=4 So by steps A, B and R=2 R>0 / mathematical induction, 2005 x = 53 -2sin x = -1 the statement is the $\cos \alpha = \frac{13}{2}$, $\sin \alpha = \frac{1}{2}$ $for n = 0, 1, 2, 3, \ldots$ So J3cosx-sinx=2cos(X+=) A) 2cos (x+音)=1 -TS XSTT let u=x+= -== -=== $2\cos u = 1$ cosu = = ひ=玉 みひ=玉

(96 a) $y = 2 + 3 \sin x$ $y^2 = (2 + 3 \sin x)^2$ $= 4 + 12 \sin x + 9 \sin^2 x$ $V = \pi \int (4 + 12 \sin \chi + 9 \sin^2 \chi) d\chi$ $= \pi \int 4x - 12\cos x \int 4 + 9\pi \int (\frac{1}{2} - \frac{1}{2}\cos^2 x) dx$ = TT (2 - 12 × 3 + 12) + 9TT sin Zz $= \pi \left(\frac{2\pi}{3} - 6\sqrt{3} + 12 \right) + 9\pi \left(\frac{\pi}{12} - \frac{1}{4} \right)$ 21 -6 3 +12 + 31 三刀 $= \pi \left(\frac{17\pi}{12} - \frac{57\sqrt{3}}{5} + 12 \right) u^{3}$ $b) \lambda) (0,0), (1,0)$ asymptotes Vertical x=2 V In) $\frac{1}{(x+i)(x-2)}$ 4 V $= \frac{(x+1)(x-2)(2x-1) - x(x-1)(2x-1)}{(2x+1)^{2}(2x-2)^{2}}$ $(2\chi - 1) \int \chi^2 - \chi - 2 - (\chi^2 - \chi)$ (X+1)2(x-2)2 $\frac{-2(2,\chi-1)}{(\chi+1)^{2}(\chi-2)^{2}}v$ 2 v) f'(x) = 0when x = Ц P'(Ο is a maximum . $\begin{pmatrix} 1\\ 2 \end{pmatrix}$

Given the x-coordinate of Bist ii) + let x-coordinate of C be B Q7 (x + p = -b)a) j y=25inx(-) $\frac{1+\beta}{1+m^2} = \frac{2m^2}{1+m^2}$ $\frac{\beta}{l+m^2} = \frac{2m^2}{l+m^2} = \frac{2m^2}{l+m^2}$ y=tanz $2m^2 - 1(1+m^2)$ 1+m2 = m²-1 - M 2sin x= tan x - T<x < I y-coordinate of C is given by 2 sinx = Sinx COSX $y = m \left(\frac{m^2 - 1}{m^2 + 1} - 1 \right)$ 2 SIAX COSX - SIAX =D $= m \left(\frac{m^2 - 1 - m^2 - 1}{m^2 + 1} \right)$ $\frac{Sinx(2\cos x - 1) = 0}{\sin x(2\cos x - 1)} = 0$ = -2m $\frac{1}{m^2 + 1}$ $\chi = 0$ or $\chi = \pm \frac{1}{4}$ $C\left(\frac{m^{2}-1}{m^{2}+1}, -\frac{2m}{m^{2}+1}\right)$ iii) 0< x< 5 ar = x< 5/ , IV) LOBC is isosceles (radii))i) $B(1_{10}) \quad y = 0 = m(x-1)$ x = 2B (exterior angle of 4) y=m>~-m tan & = tan 2B (x is acck ii) B+C are the But $\tan(\pi - \beta) = m$ so $\tan \beta = -m$ solutions of the simultaneous equations $\tan(\pi - \alpha) = , qradient of \alpha$ $\begin{array}{c} y = m_{2}(-m) \\ \chi^{2} + y^{2} = 1 \end{array}$ $= \frac{1}{1+m^2} - \frac{m^2}{m^2+1}$ -tan x Svb () into O $\chi^2 + (m\chi - m)^2 = 1$ $= -\frac{2M}{M^2 - 1}$ So $tan 2\beta = 2m$ m^{2} $\chi^2 + m^2 \chi^2 - 2m^2 \chi + m^2 = 1$ 2(2 (1+m2) -2m2)C +(m2-1)=0 = -2tarb tar B-1 as required. $=\frac{2\tan\beta}{1-\tan^2\beta}$ as required.