SYDNEY GRAMMAR SCHOOL

2012 Half-Yearly Examination

FORM VI MATHEMATICS EXTENSION 1

Monday 27th February 2012

General Instructions

- Writing time 2 Hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

${ m Total}-70~{ m Marks}$

• All questions may be attempted.

Section I – 10 Marks

• Questions 1–10 are of equal value.

Section II – 60 Marks

- Questions 11–14 are of equal value.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Collection

Section I Questions 1–10

• Place your multiple choice answer sheet inside the answer booklet for Question Eleven.

Section II Questions 11–14

- Start each of these questions in a new booklet.
- Write your name, class and master clearly on each booklet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place the question paper inside your answer booklet for Question Eleven.

Checklist

- SGS booklets 4 per boy
- Candidature 128 boys

Examiner MLS

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

Question One

If
$$f(x) = \frac{x-1}{x}$$
, which of the following is equal to $f\left(\frac{1}{a}\right)$?
(A) $1-a$
(B) $\frac{a}{a-1}$
(C) $1+a$
(D) $\frac{a-1}{a}$

Question Two

Which of the following is the solution to the inequation $\frac{x-3}{x} \leq 0$?

(A) $x \le 3$ (B) $x < 0 \text{ or } x \ge 3$ (C) $0 < x \le 3$ (D) $0 \le x \le 3$

Question Three

Which of the following is the derivative of $2\sin^{-1} 5x$?

(A)
$$\frac{10}{\sqrt{1-25x^2}}$$

(B) $\frac{1}{\sqrt{1-25x^2}}$
(C) $\frac{5}{\sqrt{1-25x^2}}$
(D) $\frac{10}{\sqrt{25-x^2}}$

Exam continues next page ...

1

Question Four

The area under the curve $y = \frac{1}{x}$ between x = 1 and x = a is 1 square unit. What is the value of a?

(A) e
(B) 0
(C) ln 2
(D) 1

Question Five

The acute angle between the lines y = 2x - 5 and y = 5x + 3 is α . What is the value of $\tan \alpha$?

> (A) $\frac{3}{11}$ (B) $-\frac{3}{11}$ (C) $\frac{7}{9}$ (D) $-\frac{7}{9}$

Question Six

Suppose A is the point (1, -2) and B is the point (5, 6). The point P(9, 14) divides the **1** interval AB externally in what ratio?

(A) 1:2
(B) 1:1
(C) 3:1
(D) 2:1

Exam continues overleaf ...

1

Question Seven

What is the domain of $y = \sin^{-1} 2x$?

(A) $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$ (B) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ (C) $-2 \le x \le 2$ (D) $-\frac{1}{2} \le x \le \frac{1}{2}$

Question Eight

What is an expression for $\int \frac{dx}{16+x^2}$?

(A) $\frac{1}{4} \tan^{-1} 4x + c$ (B) $4 \tan^{-1} \frac{x}{4} + c$ (C) $4 \tan^{-1} 4x + c$ (D) $\frac{1}{4} \tan^{-1} \frac{x}{4} + c$

Question Nine

What is the Cartesian equation of the curve $x = 2\sin\theta$, $y = 2\cos\theta$?

- $(A) \quad x^2 + y^2 = \sqrt{2}$
- (B) $x^2 + y^2 = 4$
- (C) $x^2 = 4y$

(D)
$$y^2 = 4x$$

1

1

Question Ten

Which of the following functions is a primitive of $\sin^2 x$?

- (A) $\frac{1}{2}x \frac{1}{4}\sin x$
- $(B) \quad \frac{1}{2}x \frac{1}{4}\sin 2x$
- $(C) \quad \frac{1}{2}x \frac{1}{4}\cos x$
- (D) $\frac{1}{2}x \frac{1}{4}\cos 2x$

End of Section I

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

Question Eleven (15 marks) Use a separate writing booklet.

(a) Find
$$\lim_{x \to 0} \frac{\sin 3x}{x}$$
.

(b) Find the exact value of $\sin\left(\cos^{-1}\left(-\frac{3}{5}\right)\right)$.

(c) Evaluate
$$\int_0^1 \frac{-1}{\sqrt{2-x^2}} dx.$$

(d) Solve the equation $2\sin^2 \theta = \sin \theta$ for $0 \le \theta \le 2\pi$.

(e) (i) Expand
$$\sin(A - B)$$
.

(ii) Prove that
$$\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta} = 2$$

- (f) Find the volume of the solid formed when the region bounded by the parabola $y = 4 x^2$ and the x-axis is rotated about the y-axis.
- (g) The volume of a sphere is increasing at a constant rate of $200 \text{ cm}^3/\text{s}$. You are given that the volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$. Find the rate of change of the radius, $\frac{dr}{dt}$, when r = 10 cm. Leave your answer in exact form.

Exam continues next page ...

1

 $\mathbf{2}$

Marks

1

3

 $\mathbf{2}$

Question Twelve (15 marks) Use a separate writing booklet.

- (a) (i) Express $\sqrt{3}\cos x \sin x$ in the form $A\cos(x+\alpha)$, where A > 0 and $0 \le \alpha < 2\pi$.
 - (ii) Write down the maximum value of $\sqrt{3}\cos x \sin x$.
 - (iii) Solve the equation $\sqrt{3}\cos x \sin x = 1$, for $0 \le x \le 2\pi$.

(b)

The angle of elevation of a mobile phone tower AB of height h metres from a point P due east of the tower is 12° . From another point Q, the bearing of the mobile phone tower is 051° and the angle of elevation is 11° . The points P and Q are 1000 metres apart and on the same level as the base B of the tower.

- (i) Show that $\angle PBQ = 141^{\circ}$.
- (ii) Show that $PB = h \tan 78^{\circ}$, and write a similar expression for QB.
- (iii) Use the cosine rule in $\triangle PBQ$ to calculate h correct to the nearest metre.

Marks

1

 $\mathbf{2}$

(c)

In the diagram above ABC is a triangle with a right angle at B. The point D lies on AB so that AD is 5 units and DB is 1 unit. Let CB be x units. The angle at C is divided into two angles marked θ and α as shown in the diagram.

(i) Show that
$$\theta = \tan^{-1} \frac{6}{x} - \tan^{-1} \frac{1}{x}$$
.

- (ii) Show that θ is a maximum when $x = \sqrt{6}$.
- (iii) Deduce that the maximum size of $\angle ACD$ is $\theta = \tan^{-1} \frac{5\sqrt{6}}{12}$.

3

 $\mathbf{2}$

Question Thirteen (15 marks) Use a separate writing booklet.

- (a) Consider the function $f(x) = 2 \tan^{-1} x$.
 - (i) Evaluate $f(\sqrt{3})$.
 - (ii) Draw the graph of y = f(x), labelling any key features.

(b) Consider the function
$$f(x) = \frac{e^x}{5 + e^x}$$
.

- (i) Show that f(x) has no stationary points.
- (ii) Show that $(\ln 5, \frac{1}{2})$ is a point of inflexion.
- (iii) Find the domain and range of f(x).
- (iv) Sketch the curve $f(x) = \frac{e^x}{5 + e^x}$, showing any intercepts, asymptotes and points of inflexion.
- (v) Explain why f(x) has an inverse function.
- (vi) Find the equation of the inverse function $y = f^{-1}(x)$.
- (vii) State the domain and range of $y = f^{-1}(x)$.

1	
2	

Marks

4	2
•	3
1	1

[1	
	1	
[1	

Question Fourteen (15 marks) Use a separate writing booklet.

- (a) Find the general solution of $\cos 2x + 3\sin x = 2$.
- (b) (i) By considering the sum of an arithmetic series, show that

$$(1+2+3+\ldots+n)^2 = \frac{1}{4}n^2(n+1)^2.$$

(ii) By using the Principle of Mathematical Induction prove that

$$1^{3} + 2^{3} + 3^{3} + \ldots + n^{3} = (1 + 2 + 3 + \ldots + n)^{2}$$

for all integers $n \ge 1$.

- (c) Two distinct points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$. You are given p > q > 0.
 - (i) Show that the equation of the tangent to the parabola at P is $y = px ap^2$.
 - (ii) The tangents to the parabola at P and Q meet at T. Find the co-ordinates of T.
 - (iii) The tangents at P and Q intersect at an angle of 45° . Show that p-q=1+pq.
 - (iv) Find the equation of the locus of T given that the tangents at P and Q intersect at an angle of 45° .

End of Section II

END OF EXAMINATION

1	
1	
1	
3	

Ma	arks
1	4

1

BLANK PAGE

The following list of standard integrals may be used:

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE :
$$\ln x = \log_e x, x > 0$$

SYDNEY GRAMMAR SCHOOL

2012 Half-Yearly Examination FORM VI MATHEMATICS EXTENSION 1 Monday 27th February 2012

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

NAME:	
CLASS:	Master:

Question	One		
А ()	В ()	СО	D ()
Question '	Γwo		
A 🔿	В ()	С ()	D ()
Question '	Three		
A 🔾	В ()	С ()	D ()
Question 1	Four		
A 🔾	В ()	С ()	D ()
Question 1	Five		
A 🔾	В ()	С ()	D ()
Question 8	Six		
A 🔾	В ()	С ()	D ()
Question 8	Seven		
A 🔾	В ()	С ()	D ()
Question 1	Eight		
A 🔾	В ()	С ()	D ()
Question 1	Nine		
A 🔿	В ()	$C \bigcirc$	D ()
Question '	Гen		
А ()	В ()	С ()	D ()

Lutions	
mul Ext 1	Q2,
$\frac{1-\alpha}{\beta} \qquad \qquad$	-15225 [-25252
$x(x-z) \leq 0$	DS. a = 4, D,
	29. 2-41-= 451M-9 + 4 605-10 P
<u> </u>	
$y = 2 \sin^{-1} \sin$	Qro B.
$\int \frac{d^2}{dx} = l_{nx} \int_{a}^{a} = l_{nx} = l_{nx}$	
tond = 2-5 1+10	
D ·	
((72)	

QII. = SIN (30-A) SIND UND = <u>3 lim</u> 2.20 <u>lim sin 3x</u> (a) SIHZX 20-20 32 = SIM20 2 (unt need 3 SIND Cest -----= 25IMB(IDB V ebi let cos-'(-3=)=~ OSXST SIND LOD $\frac{SIN \propto = 4}{5}$ ~ = 2 F -= RHS (a)1/2-22 (f) \leq V =П = cost 1/2 Cesto ںر =:-# 4 = 1 - 5 must be an 4y-2y2 radians 2 2511°0 = 5140 25110 - 5110 = 0 1 (16-8)-(0) SING(2SING-1) = 00 SURO = 2 0 $= 8\pi/\sqrt{3}$ SIND =0 a relangle is t $\Theta = T_{0} - 5T_{0}$ Q=0,T 2TT 6 $\frac{V}{dr} = \frac{4\pi r^2}{4\pi r^2}$ $\frac{dt}{dt} = \frac{dt}{dv}$ "how Creed all for $\Theta = O, D, 2TT, T \sim STT$ 2nd mk) 11 (200 dt SIN(A-B) = SINALESB - LESASINB Witt ce) (1) 6 (jj) LHS = SIN30 <u>(1030</u> 411 100 × 200 SINO UNA cms-1 = 51130(110 - 60305110 SING UNB There are other ways to do this

A Q12 h 13 wax - SINX = A was (2+2) ar i) = Aus x end - Asinxsind De So U3 = Acesar and 1 = Asinon Voing A ABP, Jon 78° = BP A=1+3 =4 $\dot{A} = 2$ مر BP = b tan 28° ţ----50 =) dan a = to Similarly B = h ton 79° a = ザ 1ter he matter they will have to een D = 2005/2+75 S. 13 UD X -SINDL ail (i')QP² = QB² + PB² - 2 × QB × PB × CO B D² = h-ton²79° + h² ton²78 - 2× h² ton 79 ton 78 (III) $\sqrt{3}\cos x - \sin x = 2\cos(x + \overline{E}) = 1$ 1000 cos (2+3) = 5 × ces/4/0 related angle to F X N 51 h~ = $x + \overline{x} =$ Ţ 50 しかわ 10 IT. 200 ton 29°+ tan 38 - 2 ton 29° ton 78° 000 141 X = IF or ZII 1 10002 N (h)്ഗ 11598 ----just here 1000 -PBQ = 51°+90° to show S h = 107.69 = 108 v 51'+20' = 1410 m 6 (ii) ne

(e) (1) (m) $x = U_{0}$ LACD = LACB - LOCB $\Theta = \frac{1}{6}$ ten tout the - tout the 0 = we need them to cleantify CALB as don't & and CDCB as ton 12 in some way. - 16 ton 0 = $0 = \frac{1}{3c} - \frac{1}{3c} - \frac{1}{3c}$ $\frac{do}{ds} = \frac{1}{1+\frac{2c}{3c}} \times \left(\frac{-6}{3c}\right) - \frac{1}{1+\frac{5}{3c}} \left(\frac{-5}{3c}\right) = 0 \text{ at stat pt}$ (ii) 56 Ξ. 1+1 =0 27+36 + 1+22 G -----21/6 6 22+36 1+200 5-16 $6 + 6x^{2} = x^{2} + 36$ 52~ = 30 O= den sub $\frac{x^2}{2L} = \frac{6}{5\sqrt{6}}$ 30 2 = VE, 220 sure it is a large T alech for maximum 03 16 15 Ø dau 0.02 tue -001 ave nox @ for 2=06 So we .

at = pp $5e^{2}(5-e^{2}) = 0$ $e^{2} = 5$ x = lm5 $y = e^{lm5}$ $5 + e^{lm5}$ = 5f'(2) = 0 at a possible pt of infliction Q13. (a) (j) (13) = 2-tan-1/3 = 21 Ti SIT 5 2.7 -13 $= \frac{1}{2}$ 53 for concainty change. -77 Ins land. eny 2 anymptots $\overline{P''(x)}$ 30,11. (-1) 20.9.1 \mathcal{O} 92 shape. the -00 $f(x) = e^{-5}$ ch) (i) have concavity change We So, (ln5, 2) is a point of inflation $f'(\omega) = (5\pi e^{2})e^{2} - e^{2}e^{2}$ (5+e2)2- $= \frac{5e^{2}}{(5+e^{2})^{2}} \pm 0$ purce $5e^{2} \pm 0$, (iii) need both for math D: all 2 R: a < MKI So no stationary points -4 (IV) $f''(x) = (5 + e^{x})^{-} 5 e^{x} - 5 e^{x} 2 (5 + e^{x}) e^{x}$ (ii) 4=1 (5+e2)0+ = se* (5+e2) 5+e² - 2e² Uns 2 + 5+ex) 4 5ex (5+ex) (5-ex) 1 shope 5+e-14-3

 $Q_{l4_{L}}$ (1) far an inverse because a prince only CED 27 = CED X - 5/2 3 $(a) \quad (b) 2x + 3s / n) = 2$ = 1-2510 X (or any good reason) e.g. the function is increasing for all a 1-25112 +3511X =2 251132 - 351n32 +1 = 0. (VA y = c(251112 - 1)(SIML - 1) = 0 $\chi = C$ $s \neq e^{\gamma}$ $\frac{SINDL = 5}{2} \quad SV \quad SINDL = 1$ related anyle is $\frac{T}{2} \cdot \frac{1}{2}$ $x = 2\pi T + \frac{T}{2}$ 5×+2e = e $x = \overline{DTT} + (=)^n = n \text{ an integer}$ e"(1-20) = 5-2 e = 52 Note there are were other correct usings to express there answers. Accept answers in degrees. y = ln(52) (0) (1) $1+2+3+...n = \frac{n}{2}(1+n)$ (VII) D: OCZEL $50 \quad (1+2+3+\cdots h)^{T} = \frac{h^{-}(1+h)^{2}}{4}$ R: ally. (11) $\frac{A}{A} : Consider n = 1$ $2HS = 1^{2} = 1$ I y an congrando with (iii) _____ RH5=1=1 So the statement is true for non. B' Suppose the statement is true for some integer & R>1 is suppose 13+2+...+ b² = (1+2+...+ b)² and show that 13+2+ ... +2 + (2+1) = (1+2+ ... +2+(2+1))

Nou 13+2+3+...-2 + (2+1) (\mathcal{C}) f pap, ap (1+2+3+....) + (k+13, using the interdoors Ô 2°=4ay 2091,091 = 4 h~ (k+1) + (k+1) using z <u>(b+1)</u> (b~+4b+4) (i)y= tax 2 b $= \frac{1}{4} (\frac{1}{4} + 1)^{2} (\frac{1}{4} + 2)^{2}$ $\frac{dy}{dt} = \frac{x}{2a}$ m = 2ap = p2= 2ap, = + (B+1) ((B+1)+1) y-ep= p(x-2ap) So tangt is $= (1+2+3+\cdots(k+))$ using (1) C: So, by Stop A&B and Mathemala (ii) y=p2c-ap2 y=qx-eqv Sewen statement in true Indention x - agi = px -apt need the last statement for feeld px-qp = ap - aq 2 marks x(p-q) = a(pro)(p-q)) p×q; 26 = a (ptg) $\frac{y = ap(p+q) - ap^2}{= apq_1}$ 76 (a(ptg), apg)

(11) for 45-0 = Mi-M 1+ M. M. P=91-1+p91. -Ocycq- $1+pq_1=p-q_1$ (W) at T, x=a(p+y) y = apq 1/2 = P91 $\frac{2}{a} = p + y$ now (P-9) = (p+9) - +pq1. $\frac{1}{a^{-}} = \frac{\chi^{-}}{a} - \frac{\psi_{y}}{a} \quad (using iii) L$ 50 (1+pq) 1+ 2 = 22 - 44 a - a) = x2 - 4ay (a+y a" + ray +y" = 2" - 4 aug locus is a" +bay +y' = 2" = 0