FORM VI

MATHEMATICS EXTENSION 1

Monday 27th February 2012

General Instructions

- Writing time - 2 Hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 70 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.

Section II - 60 Marks

- Questions 11-14 are of equal value.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Collection

Section I Questions 1-10

- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.

Section II Questions 11-14

- Start each of these questions in a new booklet.
- Write your name, class and master clearly on each booklet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place the question paper inside your answer booklet for Question Eleven.

Checklist

- SGS booklets - 4 per boy

Examiner

- Candidature - 128 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

Question One

If $f(x)=\frac{x-1}{x}$, which of the following is equal to $f\left(\frac{1}{a}\right)$?
(A) $1-a$
(B) $\frac{a}{a-1}$
(C) $1+a$
(D) $\frac{a-1}{a}$

Question Two

Which of the following is the solution to the inequation $\frac{x-3}{x} \leq 0$?
(A) $x \leq 3$
(B) $\quad x<0$ or $x \geq 3$
(C) $0<x \leq 3$
(D) $0 \leq x \leq 3$

Question Three

Which of the following is the derivative of $2 \sin ^{-1} 5 x$?
(A) $\frac{10}{\sqrt{1-25 x^{2}}}$
(B) $\frac{1}{\sqrt{1-25 x^{2}}}$
(C) $\frac{5}{\sqrt{1-25 x^{2}}}$
(D) $\frac{10}{\sqrt{25-x^{2}}}$

Question Four

The area under the curve $y=\frac{1}{x}$ between $x=1$ and $x=a$ is 1 square unit.
What is the value of a ?
(A) e
(B) 0
(C) $\ln 2$
(D) 1

Question Five

The acute angle between the lines $y=2 x-5$ and $y=5 x+3$ is α.
What is the value of $\tan \alpha$?
(A) $\frac{3}{11}$
(B) $-\frac{3}{11}$
(C) $\frac{7}{9}$
(D) $-\frac{7}{9}$

Question Six

Suppose A is the point $(1,-2)$ and B is the point $(5,6)$. The point $P(9,14)$ divides the interval $A B$ externally in what ratio?
(A) $1: 2$
(B) $1: 1$
(C) $3: 1$
(D) $2: 1$

Question Seven

What is the domain of $y=\sin ^{-1} 2 x$?
(A) $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$
(B) $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
(C) $-2 \leq x \leq 2$
(D) $-\frac{1}{2} \leq x \leq \frac{1}{2}$

Question Eight

What is an expression for $\int \frac{d x}{16+x^{2}}$?
(A) $\frac{1}{4} \tan ^{-1} 4 x+c$
(B) $4 \tan ^{-1} \frac{x}{4}+c$
(C) $4 \tan ^{-1} 4 x+c$
(D) $\frac{1}{4} \tan ^{-1} \frac{x}{4}+c$

Question Nine

What is the Cartesian equation of the curve $x=2 \sin \theta, y=2 \cos \theta$?
(A) $x^{2}+y^{2}=\sqrt{2}$
(B) $x^{2}+y^{2}=4$
(C) $x^{2}=4 y$
(D) $y^{2}=4 x$

Question Ten

Which of the following functions is a primitive of $\sin ^{2} x$?
(A) $\frac{1}{2} x-\frac{1}{4} \sin x$
(B) $\frac{1}{2} x-\frac{1}{4} \sin 2 x$
(C) $\frac{1}{2} x-\frac{1}{4} \cos x$
(D) $\frac{1}{2} x-\frac{1}{4} \cos 2 x$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

Question Eleven (15 marks) Use a separate writing booklet.
(a) Find $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$.
(b) Find the exact value of $\sin \left(\cos ^{-1}\left(-\frac{3}{5}\right)\right)$.
(c) Evaluate $\int_{0}^{1} \frac{-1}{\sqrt{2-x^{2}}} d x$.
(d) Solve the equation $2 \sin ^{2} \theta=\sin \theta$ for $0 \leq \theta \leq 2 \pi$.
(e) (i) Expand $\sin (A-B)$.
(ii) Prove that $\frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta}=2$.
(f) Find the volume of the solid formed when the region bounded by the parabola $y=4-x^{2}$ and the x-axis is rotated about the y-axis.
(g) The volume of a sphere is increasing at a constant rate of $200 \mathrm{~cm}^{3} / \mathrm{s}$. You are given that the volume of a sphere of radius r is $V=\frac{4}{3} \pi r^{3}$. Find the rate of change of the radius, $\frac{d r}{d t}$, when $r=10 \mathrm{~cm}$. Leave your answer in exact form.

Question Twelve (15 marks) Use a separate writing booklet.
(a) (i) Express $\sqrt{3} \cos x-\sin x$ in the form $A \cos (x+\alpha)$, where $A>0$ and $0 \leq \alpha<2 \pi$.
(ii) Write down the maximum value of $\sqrt{3} \cos x-\sin x$.
(iii) Solve the equation $\sqrt{3} \cos x-\sin x=1$, for $0 \leq x \leq 2 \pi$.
(b)

The angle of elevation of a mobile phone tower $A B$ of height h metres from a point P due east of the tower is 12°. From another point Q, the bearing of the mobile phone tower is 051° and the angle of elevation is 11°. The points P and Q are 1000 metres apart and on the same level as the base B of the tower.
(i) Show that $\angle P B Q=141^{\circ}$.
(ii) Show that $P B=h \tan 78^{\circ}$, and write a similar expression for $Q B$.
(iii) Use the cosine rule in $\triangle P B Q$ to calculate h correct to the nearest metre.
(c)

In the diagram above $A B C$ is a triangle with a right angle at B. The point D lies on $A B$ so that $A D$ is 5 units and $D B$ is 1 unit. Let $C B$ be x units. The angle at C is divided into two angles marked θ and α as shown in the diagram.
(i) Show that $\theta=\tan ^{-1} \frac{6}{x}-\tan ^{-1} \frac{1}{x}$.
(ii) Show that θ is a maximum when $x=\sqrt{6}$.
(iii) Deduce that the maximum size of $\angle A C D$ is $\theta=\tan ^{-1} \frac{5 \sqrt{6}}{12}$.

SGS Half-Yearly 2012 Form VI Mathematics Extension 1 Page 9
Question Thirteen (15 marks) Use a separate writing booklet. Marks
(a) Consider the function $f(x)=2 \tan ^{-1} x$.
(i) Evaluate $f(\sqrt{3})$.
(ii) Draw the graph of $y=f(x)$, labelling any key features.
(b) Consider the function $f(x)=\frac{e^{x}}{5+e^{x}}$.
(i) Show that $f(x)$ has no stationary points.
(ii) Show that $\left(\ln 5, \frac{1}{2}\right)$ is a point of inflexion.
(iii) Find the domain and range of $f(x)$.
(iv) Sketch the curve $f(x)=\frac{e^{x}}{5+e^{x}}$, showing any intercepts, asymptotes and points of inflexion.
(v) Explain why $f(x)$ has an inverse function.
(vi) Find the equation of the inverse function $y=f^{-1}(x)$.
(vii) State the domain and range of $y=f^{-1}(x)$.

Question Fourteen (15 marks) Use a separate writing booklet.
(a) Find the general solution of $\cos 2 x+3 \sin x=2$.
(b) (i) By considering the sum of an arithmetic series, show that

$$
(1+2+3+\ldots+n)^{2}=\frac{1}{4} n^{2}(n+1)^{2}
$$

(ii) By using the Principle of Mathematical Induction prove that

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=(1+2+3+\ldots+n)^{2}
$$

for all integers $n \geq 1$.
(c) Two distinct points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$. You are given $p>q>0$.
(i) Show that the equation of the tangent to the parabola at P is $y=p x-a p^{2}$.
(ii) The tangents to the parabola at P and Q meet at T. Find the co-ordinates of T.
(iii) The tangents at P and Q intersect at an angle of 45°. Show that $p-q=1+p q$.
(iv) Find the equation of the locus of T given that the tangents at P and Q intersect at an angle of 45°.

SGS Half-Yearly 2012 Form VI Mathematics Extension 1 Page 11

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Sydney Grammar School

2012
Half-Yearly Examination
FORM VI
MATHEMATICS EXTENSION 1
Monday 27th February 2012

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Name:

Class:
MASTER:

Question One
A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Two

A
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Three

AB \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Four

A \bigcirc
B \bigcirc
C

D \bigcirc

Question Five

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Six

AB

C

D \bigcirc

Question Seven

A
B

D \bigcirc

Question Eight

AB \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Nine

A \bigcirc
B
\bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Ten

A
B$\mathrm{C} \bigcirc$
D \bigcirc

Solutoms
Form un Ext 1

Q4.

$$
\begin{gathered}
\left.\int_{1}^{\frac{1}{x} d x}=\ln x\right]^{a}=1 \\
=\ln a-e_{a}=1 \\
-\ln a-1 \\
a=e
\end{gathered}
$$

25

72

थ1. $\frac{\frac{1}{2}-1}{\frac{1}{2}}=\frac{1-a}{1}$

$$
x(x-3) \leqslant 0
$$

$$
x<0 \leq 3
$$

$$
\begin{align*}
& y=2 \sin ^{-1} 5 x \\
& y^{\prime}=2 \times \frac{5}{\sqrt{1-25 x^{2}}}
\end{align*}
$$

A
$22 \quad x(x-3) \leqslant 0$

$$
c
$$

$$
=4
$$

Q3

7.

Qro \qquad

$$
-\frac{1}{2} \leq x \leq \frac{2}{2}
$$

2s. $\quad a=4$,

29 $\quad x^{2}+y^{2}=4 \sin \theta+4 \cos ^{2} \theta$
\qquad

QII.
(a) $\quad \lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=3 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}$ $=3 \xrightarrow{2}$ (jeent reed 3)

Ch let $\cos ^{-1}\left(-\frac{3}{5}\right)=\alpha, \quad 0 \leqslant \alpha \leqslant \pi$

$$
\sin \alpha=\frac{4}{5}
$$

c) $\int_{0}^{1} \frac{-1}{\sqrt{2-x^{2}}} d x=\left[\cos ^{-1} \frac{x}{\sqrt{2}}\right]_{0}^{1}$

$$
\begin{aligned}
& =\cos ^{-1} \frac{1}{2}-\cos ^{-1} 0 \\
& =\frac{\pi}{4}-\frac{\pi}{2}=-\frac{\pi}{4}
\end{aligned}
$$

must becon.
dT

$$
\begin{gathered}
2 \sin \theta=\sin \theta \\
2 \sin \theta-\sin \theta=0 \\
\sin \theta(2 \sin \theta-1)=0 \\
\sin \theta=0 \\
\theta=0, \pi, 2 \pi \\
\theta=0, \pi-2 \pi,-\frac{\pi}{6}-\frac{\sin }{6}
\end{gathered}
$$

 $\theta=\frac{\pi}{6} \cdot \frac{5 \pi}{6}$ Cheed all for 2nd $m k$)
(e) (i) $\sin (A-B)=\sin A \cos B-\cos A \sin B$
(ii) $\angle H S=\frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta}$

$$
=\frac{\sin 3 \theta \cos \theta-\cos 3 \theta \sin \theta}{\operatorname{sen} \theta \cos \theta}
$$

$$
\begin{aligned}
& =\frac{\sin (3 \theta-\theta)}{\sin \theta \cos \theta} \\
& =\frac{\sin 2 \theta}{\sin \theta \cos \theta} \\
& =\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta} \\
& =2 \\
& =\text { RHFS }
\end{aligned}
$$

(f)

$$
=\pi\left[4 y-\frac{1}{2} y^{2}\right]_{0}^{4}
$$

$$
=\pi((t 6,8)-(0))
$$

$$
=8 \pi u^{3}
$$

(g) How:

$$
\begin{aligned}
\frac{d t}{d t} & =\frac{d t}{d v} \frac{d V}{d t} \square \left\lvert\, \begin{array}{l}
\frac{d V}{d t}=\frac{4}{3} \pi \pi r^{2} \\
4 \pi t^{2}
\end{array}\right. \\
& =\frac{1}{4 \pi r^{2}} \times 200 \\
& =\frac{1}{4 \pi}=\frac{1}{4 \pi} \times 200 \\
& =\frac{1}{2 \pi} \mathrm{cms}^{-1}
\end{aligned}
$$

Q12.
(a) (i) $\sqrt{3} \cos x-\sin x=A \cos (x+\alpha)$

$$
=A \cos x \cos \alpha-A \sin x \sin \alpha \text {. }
$$

So $\sqrt{3}=A \cos \alpha$ and $1=A \sin \alpha$.

$$
\begin{gathered}
\Rightarrow A^{2}=1+3=4 \\
A=2 \\
\Rightarrow \tan \alpha=\frac{1}{\sqrt{3}} \\
\alpha=\frac{\text { K }}{6}
\end{gathered}
$$

So $\sqrt{3} \cos x-\sin x=2 \cos \left(x+\frac{\pi}{6}\right)$.
(ii) 2
(iii) $\quad \sqrt{3} \cos x-\sin x \equiv 2 \cos \left(x+\frac{\pi}{6}\right)=1$

relested angle te $\frac{\text { Tr }}{5}$.
so $x+\frac{\pi}{6}=\frac{\pi}{3}$ or $\frac{5 \pi}{3}$ 104 $\frac{19}{6}$

$$
x=\frac{\pi}{6} \text { or } \frac{3 \pi}{2}
$$

(b)

(ii) over
(e)
(i)

$$
\begin{aligned}
\angle A C D & =\angle A C B-\angle O C B \\
\theta & =\tan ^{-1} \frac{6}{x}-\tan ^{-1} \frac{1}{x}
\end{aligned}
$$

we ned then to pelentrifis $\angle A C B$ as $\tan ^{-1} \frac{6}{x}$ and LDCB as $\tan ^{-1} \frac{1}{x}$ in some way
(ii)

$$
\begin{aligned}
& \theta=\tan ^{-1} \frac{4}{x}-\tan ^{-1} \frac{1}{x} \\
& \frac{d q}{d x}=\frac{1}{1+\frac{76}{x^{2}}} \times\left(\frac{-6}{x^{2}}\right)-\frac{1}{1+\frac{1}{2}}\left(-\frac{1}{x^{2}}\right)^{x}=0 \text { at } \operatorname{stat} p t \\
& \frac{-6}{x^{2}+36}+\frac{1}{1+x^{2}}=0 \\
& \frac{6}{x^{2}+36}=\frac{1}{1+x^{2}} \\
& 6+6 x^{2}=x^{2}+36 \\
& 5 x^{2}=30 \\
& \begin{array}{l}
x^{2}=6 \pm \sqrt{6} \\
x= \pm \sqrt{x}
\end{array} \\
& x=\sqrt{6}, \quad x>0 \text { ouse et is a length. }
\end{aligned}
$$

Chuck for maximum

So we have max θ for $x=\sqrt{6}$
(iII)

$$
\text { ii) } \begin{aligned}
x & =\sqrt{6} \\
\theta & =\tan ^{-1} \frac{6}{\sqrt{6}}-\tan ^{-1} \frac{1}{\sqrt{6}} \\
\tan \theta & =\frac{\frac{6}{6}-\frac{1}{\sqrt{6}}}{1+\frac{1}{6}} \\
& =\frac{\frac{5}{\sqrt{6}}}{1+1} \\
& =\frac{5}{2 \sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} \\
& =\frac{5-\sqrt{6}}{12} \\
\theta & =\tan ^{-1} \frac{5 \sqrt{6}}{12}
\end{aligned}
$$

Q13.
(a)
(i)

$$
\begin{aligned}
f(\sqrt{3}) & =2 \tan ^{-1} \sqrt{3} \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

\checkmark arympots
\checkmark shepe.
(b) (i)

$$
\begin{aligned}
f(x) & =\frac{e^{x}}{5+e^{x}} \\
f^{\prime}(x) & =\frac{\left(5+e^{x} e^{x}-e^{x} e^{x}\right.}{\left(5+e^{x}\right)^{2}} \\
& =\frac{5 e^{x}}{\left(5+e^{x}\right)^{2}} \neq 0 \text { ouree } s e^{x}>0 .
\end{aligned}
$$

So no stationveny panits
(ii)

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\left(5+e^{x}\right)^{2} 5 e^{x}-5 e^{x} 2\left(5+e^{x}\right) e^{x}}{\left(5+e^{x}\right) 4} \\
& =\frac{5 e^{x}\left(5+e^{x}\right)\left[5+e^{x}-2 e^{x}\right]}{\left(5+e^{x}\right)} \\
& =\frac{5 e^{x}\left(5+e^{x}\right)\left(5-e^{x}\right)}{\left(5+e^{2}\right)^{+3}}
\end{aligned}
$$

$f^{\prime}(x)=0$ at a poonble pt of unflesber.

$$
\begin{aligned}
\operatorname{se}^{x}\left(5-e^{x}\right) & =0 \\
e^{x} & =5 \\
x & =\ln 5 \\
y & =\frac{e^{\ln 5}}{5+e^{\ln 5}} \\
& =\frac{5}{10} \\
& =\frac{1}{2}
\end{aligned}
$$

chuh for concaunt, change

We have conearity change So, $\left(\ln 5, \frac{1}{2}\right)$ is a poent of infection
(iii) D : all x $R: a \leq y \leq 1$
nee bot for imork
(iv)

(a) $f(x)$ has an invese because a herigontal line aits it osece only. (ov amy good eewon) erg the fanstror 10 increaseing for all x
(vi)

$$
\begin{aligned}
& y=\frac{e^{x}}{5+e^{x}} \\
& x=\frac{e^{y}}{5+e^{y}} \\
& 5 x+x e^{y}=e^{y} \\
& e^{y}(1-x)=5 x \\
& e^{y}=\frac{5 x}{1-x} \\
& y=\ln \left(\frac{5 x}{1-x}\right)
\end{aligned}
$$

(Vii) $0: 0<x<1$

R: ally.
Lef (iin) comapono with (iii)

Q14.
(a) $\quad \cos 2 x+3 \sin x=2$

$$
1-2 \sin ^{2} x+3 \sin x=2
$$

$$
-2 \sin ^{2} x-3 \sin x+1=0
$$

$$
(2 \sin x-1)(\sin x-1)=0
$$

$$
\sin x=\frac{1}{2} \quad \text { or } \quad \sin x=1
$$

xelete α angles s. $\frac{1}{6} \quad \quad x=2 \pi \pi+\frac{\pi}{2}$
$x=n \pi+\left(E \lambda^{n} \frac{\pi}{6}\right.$, n an untoger
the there ore many othe cerrect waus to express these axawetr. dccept onstiess in degreas.
(b) (i) $1+2+3+\cdots n=\frac{n}{2}(1+n)$
so $(1+2+3+\cdots n)^{2}=\frac{n^{2}}{4}(1+n)^{2}$
(ii)

A: Coxseder $n=1$.

$$
\begin{aligned}
& \angle+5=1^{2}=1 \\
& R+5=1^{2}=1
\end{aligned}
$$

So the statementh in tiue for $n=1$.
B: Suppore the statement in true fol some inteo k, $k>1$ ef suppose $1^{3}+2^{3}+\cdots+b^{3}=(1+2+\cdots+b)^{2}$ and show thet $1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3}=(1+2+\cdots+k+(k+1))^{2}$
how

$$
\begin{aligned}
& 1^{3}+2^{3}+3^{3}+\cdots k^{3}+(b+1)^{2} \\
& =(1+2+3+\cdots k)^{2}+(k+1)^{2} \text {, using the urludion } \\
& \text { Leyporthases } \\
& =\frac{b}{2} k^{2}(k+1)^{2}+(k+1)^{3} \text {, using } \\
& =\frac{(k+1)^{2}}{4}\left(k^{2}+4 k+4\right) \\
& =\frac{1}{4}(k+1)^{2}(k+2)^{2} \\
& =\frac{1}{4}(k+1)^{2}((k+1)+1) \\
& =\left(1+2+3+\cdots(h+\lambda)^{-2} \quad\right. \text { using ii) }
\end{aligned}
$$

C: So, by stop APB and Malhanelar induction the seven stethemet is Ene
(reed the last statant for fall mono)
(c)

(i)

$$
\begin{aligned}
& y=\frac{1}{4 a c} x \\
& \frac{d y}{d x}=\frac{x}{2 a}
\end{aligned}
$$

$$
x=2 a p, \quad m=\frac{2 d}{2 t}=p .
$$

Sotangt is $\quad y-a p^{2} \equiv p(x-r a p)$

$$
y=p x-a p^{2}
$$

(ii)

$$
\begin{aligned}
& y=p x-a p^{2} \\
& y=q x-a q q^{2} \\
& q x-a q)^{2}=p x-a p^{2} \\
& p x-q^{x}=a p^{2}-a q^{2} \\
& x(p-q)=a(p+)^{2}\left(p^{2}\right) \\
& x=a(p+q) \\
& x=a p(p+q)-q p^{2} \\
& y=a \\
& =a p q \\
& T b(a(p+q), a p q)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\tan 4 s^{\circ} & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
1 & =\frac{p-q}{1+p}, \quad{ }_{p}, \\
1+p q & =p-q
\end{aligned}
$$

(iv)
$a t T, x=a(p+q), \quad y=a p q$

$$
\frac{x}{a}=p+y \quad \frac{y}{a}=p q
$$

now $(p-q)^{2}=(p+q)^{2}-4 p q$.
so $(1+p q)^{2}=\frac{x^{2}}{a^{2}}-\frac{4 y}{a}($ using iii)

$$
\begin{aligned}
& \left(1+\frac{y}{x}\right)^{2}=\frac{x^{2}}{a}-\frac{4 y}{a} \\
& (a+y)^{2}=x^{2}-4 a y \\
& a^{2}+2 a y+y^{2}=x^{2}-4 a y
\end{aligned}
$$

loran is $a^{2}+6 a y+y^{2}-x^{2}=0$

