

FORM VI

MATHEMATICS EXTENSION 1

Tuesday 26th February 2013

General Instructions

- Writing time - 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 70 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 60 Marks

- Questions 11-14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets - 4 per boy
- Multiple choice answer sheet

Examiner

BR/DNW

- Candidature - 116 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The diagram above shows a shaded segment which subtends an angle of 120° at the centre of a circle with radius 6 cm . The area of the segment correct to one decimal place is:
(A) $22 \cdot 1 \mathrm{~cm}^{2}$
(B) $37.7 \mathrm{~cm}^{2}$
(C) $2144 \cdot 4 \mathrm{~cm}^{2}$
(D) $2160 \cdot 0 \mathrm{~cm}^{2}$

QUESTION TWO

Which of the following graphs best represents $y=1-e^{x}$?
(A)

(B)

(C)

(D)

QUESTION THREE

The derivative of $\log \left(1+x^{2}\right)$ is:
(A) $\frac{2}{1+x}$
(B) $\frac{1}{1+x^{2}}$
(C) $\frac{2 x}{1+x^{2}}$
(D) $\frac{x}{1+x^{2}}$

QUESTION FOUR

The expression $\cos ^{2} x$ is equivalent to:
(A) $1+\cos 2 x$
(B) $1-\cos 2 x$
(C) $\frac{1}{2}(1+\cos 2 x)$
(D) $\frac{1}{2}(1-\cos 2 x)$

QUESTION FIVE

The focal length of the parabola with equation $y=2 x^{2}$ is:
(A) 8
(B) 2
(C) $\frac{1}{2}$
(D) $\frac{1}{8}$

QUESTION SIX

The volume V cubic centimetres of a sphere with radius r centimetres is $V=\frac{4}{3} \pi r^{3}$.
The radius is increasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. At what rate is V increasing?
(A) $\frac{4}{3} \pi r^{3}$
(B) $4 \pi r^{3}$
(C) $4 \pi r^{2}$
(D) $12 \pi r^{2}$

QUESTION SEVEN

The derivative of $\tan ^{-1} 2 x$ is:
(A) $\frac{2}{4+x^{2}}$
(B) $\frac{2}{1+4 x^{2}}$
(C) $\frac{1}{4+x^{2}}$
(D) $\frac{1}{1+4 x^{2}}$

QUESTION EIGHT

The expression $\cos x+\sin x$ is equivalent to:
(A) $\sqrt{2} \cos \left(x+\frac{\pi}{4}\right)$
(B) $\sqrt{2} \cos \left(x-\frac{\pi}{4}\right)$
(C) $\sqrt{2} \cos \left(x+\frac{3 \pi}{4}\right)$
(D) $\sqrt{2} \cos \left(x-\frac{3 \pi}{4}\right)$

QUESTION NINE

The directrix of the parabola with equation $(y-1)^{2}=12(x+1)$ is given by:
(A) $x=-4$
(B) $x=-2$
(C) $x=2$
(D) $x=4$

SGS Half-Yearly 2013

QUESTION TEN

Which of the following graphs best represents $y=2 \sin ^{-1}(x+1)$?
(A)

(B)

(C)

(D)

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Simplify:
(i) $\ln \left(e^{3}\right)$
(ii) $\tan \left(\frac{5 \pi}{6}\right)$
(iii) $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
(b) Differentiate:
(i) $\tan 3 x$
(ii) $x \sin ^{-1} x$
(c) Evaluate $\lim _{x \rightarrow 0} \frac{\tan x}{2 x}$.
(d) Prove that $\frac{\sin 2 A}{\cos 2 A-1}=-\cot A$.
(e) An equilateral triangle has sides of length ℓ.
(i) Show that the area A of the triangle is given by $A=\frac{\sqrt{3}}{4} \ell^{2}$.
(ii) The area of the triangle is increasing at the rate of $9 \mathrm{~cm}^{2} / \mathrm{min}$. Determine the rate at which ℓ is increasing when the sides are 6 cm .
(f) Write down the general solution of $\sin x=\frac{1}{2}$.
(a) (i) Differentiate $y=\cos 2 x$.
(ii) Hence, or otherwise, evaluate $\int_{0}^{\frac{\pi}{2}} \sin x \cos x d x$.
(b) Evaluate $\int_{0}^{4} \frac{x}{\sqrt{9+x^{2}}} d x$.
(c) Use the substitution $t=\tan \frac{1}{2} \theta$ to show that

$$
\frac{1+\sin \theta}{1+\cos \theta}=\frac{1}{2}\left(1+\tan \frac{1}{2} \theta\right)^{2} .
$$

(d) The acute angle between the line $4 x+3 y=8$ and the line $a x+b y=8$ is 45°.

Find the possible values of the fraction $\frac{a}{b}$.
(e) (i) Sketch $y=\cos x+1$ for $-\pi \leq x \leq \pi$.
(ii) The region bounded by $y=\cos x+1$ and the x-axis, where $-\pi \leq x \leq \pi$, is rotated about the x-axis to generate a solid. Find the volume of this solid.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.
(a) Determine $\int \frac{1}{\sqrt{3-4 x^{2}}} d x$.
(b) The point $P\left(6 t, 3 t^{2}\right)$ lies on the parabola $x^{2}=12 y$.
(i) Show that the equation of the normal at P is $x+t y=6 t+3 t^{3}$.
(ii) The normal at P cuts the y-axis at A.
(α) The mid-point of $P A$ is R. Find the coordinates of R in terms of t.
(β) The locus of R is another parabola. Find its vertex and focal length.
(c) Solve $2 \cos ^{2} x+\sqrt{3} \sin 2 x=0$ for $0 \leq x \leq 2 \pi$.
(d) (i) Express $\sqrt{3} \sin \theta-\cos \theta$ in the form $R \sin (\theta-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(ii) Hence solve $\sqrt{3} \sin \theta-\cos \theta \geq 1$ for $0 \leq \theta \leq 2 \pi$.

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.
(a)

From a point X on a straight canal bank a surveyor measures the angle of elevation to T, the top of a 50 m tower with base S on the same bank. This angle is 56°. Directly opposite X on the other side of the canal, another surveyor at Y finds the angle of elevation to T is 39°. The points X, Y and S are on level ground.
Find c, the width of the canal, correct to three significant figures.
(b) (i) Prove by mathematical induction that for all integers $n \geq 1$

$$
\frac{1}{1 \times 5}+\frac{1}{5 \times 9}+\frac{1}{9 \times 13}+\ldots+\frac{1}{(4 n-3)(4 n+1)}=\frac{n}{4 n+1} .
$$

(ii) Hence evaluate

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{1 \times 5}+\frac{1}{5 \times 9}+\frac{1}{9 \times 13}+\ldots+\frac{1}{(4 n-3)(4 n+1)}\right)
$$

(c) The function $\sin ^{-1} x$ is odd. By finding x as a function of y or otherwise, show algebraically that

$$
y=4 \cos ^{-1} x-2 \pi
$$

is also odd.
(d) Suppose that

$$
\begin{equation*}
\int_{-2 h}^{2 h} f(x) d x=A \times f(-h)+B \times f(0)+C \times f(h) \tag{**}
\end{equation*}
$$

for $f(x)=1, f(x)=x$ and $f(x)=x^{2}$.
(i) Determine the values of A, B and C in terms of h.
(ii) Show that equation $(* *)$ is also valid when $f(x)=x^{3}$.
(iii) Equation $(* *)$ may be used to approximate the integrals of other functions. Use it to show that

$$
\int_{-1}^{1} 2^{x} d x \doteqdot \frac{2}{3}(3 \sqrt{2}-1)
$$

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Sydney Grammar School

2013
Half-Yearly Examination
FORM VI
MATHEMATICS EXTENSION 1
Tuesday 26th February 2013

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Candidate number:

Question One

A
B
C

D \bigcirc

Question Two

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Three
AB
$\mathrm{C} \bigcirc$
D

Question Four

A

B

D

Question Five

AB \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Six
A \bigcirc
B$\mathrm{C} \bigcirc$
D \bigcirc

Question Seven

A
B

D \bigcirc

Question Eight

A \bigcirc
B
C
D \bigcirc

Question Nine

A \bigcirc
B
\bigcirc
C
D

Question Ten

AB$\mathrm{C} \bigcirc$
D \bigcirc

Form vi Mathematics Extension 1
Q1 $\quad A \quad \downarrow$
Q2f D J
Q3/ C J
Q4/ C J
Q5/ D J
Q6/ D
Q7/ B
Q8/ $B \quad J$
Q9/A $\quad \mathrm{J}$
Q10/C $\quad \checkmark$

Q11/
a) i) 3
ii) $\frac{-1}{\sqrt{3}}$
iii) $\frac{5 \pi}{6}$
b) i) $3 \sec ^{2} 3 x$
ii) $\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}$
c) $\frac{1}{2}$
d)

$$
\begin{aligned}
\text { LHS } & =\frac{2 \sin A \cos A}{1-2 \sin ^{2} A-1} \\
& =\frac{\frac{2 \sin A \cos A}{-2 \sin ^{2} A}}{-\frac{\cos A}{\sin A}} \\
& =\frac{-\cos }{} \\
& =-\operatorname{RitS}
\end{aligned}
$$

e) i)

$$
\begin{aligned}
& A=\frac{1}{2} l^{2} \sin \frac{\pi}{3} \\
& =\frac{\sqrt{3}}{4} l^{2} \\
& O R \quad l / h \quad h^{2}=l^{2}-\left(\frac{l}{2}\right)^{2} \\
& h^{2}=\frac{3 l^{2}}{4} \\
& h=l \sqrt{3} \\
& \begin{aligned}
& h=\frac{l \sqrt{3}}{2} \\
& \therefore A=1 \cdot l \sqrt{3} \\
&= \sqrt{3} l^{2}
\end{aligned}
\end{aligned}
$$

ii) $\quad \frac{d A}{d t}=9, \frac{d A}{d l}=\frac{\sqrt{3}}{2} f, \frac{d l}{d t}=$?

$$
\begin{aligned}
\frac{d A}{d t} & =\frac{d A}{d l} \cdot \frac{d l}{d t} \\
\therefore=\frac{d l}{2} & =\frac{\sqrt{3}}{d t} \\
l=6, \quad 9 & =\frac{\sqrt{3}}{2} \cdot \frac{d l}{d t} \\
\frac{d l}{d t} & =\frac{9}{3 \sqrt{3}} \\
& =\frac{3}{\sqrt{3}} \\
& =\frac{\sqrt{3}}{\mathrm{~cm}} / \mathrm{min}
\end{aligned}
$$

f) $\sin x=\frac{1}{2}$

$$
x=\frac{\pi}{6}+2 n \pi \text { for } \frac{5 \pi}{6}+2 n \pi
$$

for integers n
$O R$

$$
x=(-1)^{n} \cdot \frac{\pi}{6}+n \pi
$$

tor integers n

Q12
a) i)

$$
\begin{aligned}
y & =\cos 2 x \\
\frac{d y}{d y} & =-2 \sin 2 x \\
& =-4 \sin x \cos x
\end{aligned}
$$

ii)

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin x \cos x d x & =\frac{-1}{4} \int_{0}^{\frac{\pi}{2}}-4 \sin x \cos x d x \\
& =\frac{-1}{4}[\cos 2 x]_{0}^{\pi / 2} \int \\
& =-\frac{1}{4}(\cos \pi-\cos 0) \\
& =\frac{-1}{4}(-1-1) \\
& =\frac{1}{2} \quad .
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{d}{d x}\left(9+x^{2}\right)^{1 / 2} & =\frac{1}{z}\left(9+x^{2}\right)^{-1 / 2} \cdot 2 x \\
& =\frac{x}{\sqrt{9+x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad \int_{0}^{4} \frac{x}{\sqrt{9+x^{2}}} d x & =\left[\left(9+x^{2}\right)^{\prime / 2}\right]_{0}^{4} \\
& =\sqrt{25}-\sqrt{9} \\
& =2
\end{aligned}
$$

$c) \quad t=\tan \frac{\theta}{2}$
so, $\sin \theta=\frac{2 t}{1+t^{2}}, \cos \theta=\frac{1-t^{2}}{1+t^{2}}$

$$
\begin{aligned}
L H S & =\frac{1+\frac{2 t}{1+t^{2}}}{1+\frac{1-t^{2}}{1+t^{2}}} \\
& =\frac{1+t^{2}+2 t}{1+t^{2}+1-t^{2}} \\
& =\frac{(1+t)^{2}}{2} \\
& =\frac{1}{2}\left(1+\tan \frac{\theta}{2}\right)^{2} \\
& =R S
\end{aligned}
$$

d) $m_{1}=\frac{-4}{3} \rightarrow m_{2}=-\frac{9}{b}$

$$
\begin{aligned}
& \therefore \tan 45^{\circ}=\left|\frac{-4}{3}+\frac{a}{b}\right| \\
& 1=\left|\frac{-4 b+3 a}{3 b+4 a}\right| \\
& \begin{aligned}
-4 b+3 a & =1 & \frac{-4 b+3 a}{3 b+4 a} & =-1 \\
-4 b+3 a & =3 b+4 a & -4 b+3 a & =-3 b-4 a \\
-a & =7 b & & \frac{-4 b}{7 a}
\end{aligned} \\
& \begin{aligned}
-4 b+3 a & =1 & \frac{-4 b+3 a}{3 b+4 a} & =-1 \\
-4 b+3 a & =3 b+4 a & -4 b+3 a & =-3 b-4 a \\
-a & =7 b & & -\frac{3 a}{7 a}
\end{aligned} \\
& \frac{a}{b}=-7 / 0 k \quad \frac{a}{b}=\frac{1}{7} \\
& \frac{a}{b}=-7 \quad 0 R \quad \frac{a}{b}=\frac{1}{7}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

Q13
a)

$$
\begin{aligned}
\int \frac{1}{\sqrt{3-4 x^{2}}} d x & =\frac{1}{2} \int \frac{1}{\sqrt{\left(\frac{\sqrt{3}}{2}\right)^{2}-x^{2}}} d x \int \\
& =\frac{1}{2} \sin ^{-1}\left(\frac{2 x}{\sqrt{3}}\right)+c \int
\end{aligned}
$$

b) 1$) \quad y=\frac{x^{2}}{12}$

$$
\frac{d y}{d x}=\frac{x}{6}
$$

$x=6 t, \frac{d y}{d x}=t$
\therefore gradie t of normal is $\frac{-1}{t} \int$

$$
\begin{aligned}
& m= \frac{-1}{t} \quad P\left(6 t, 3 t^{2}\right) \\
& \therefore y-3 t^{2}=-\frac{1}{t}(x-6 t) \\
& t y-3 t^{3}=-x+6 t \\
& x+t y=6 t+3 t^{3}
\end{aligned}
$$

ii) $\alpha) \quad A\left(0,6+3 t^{2}\right) \quad P\left(6 t, 3 t^{2}\right)$

$$
\therefore R\left(3 t, 3+3 t^{2}\right)
$$

β)

$$
\begin{aligned}
& x= 3 t=3+3 t^{2} \\
& 3 y=9+9 t^{2} \\
& 3 y=9+x^{2} \\
& x^{2}=3(y-3) \\
& \therefore \quad V(0,3), a=\frac{3}{4} \sqrt{\text { for }}
\end{aligned}
$$

c)

$$
\begin{aligned}
& 2 \cos ^{2} x+\sqrt{3} \sin 2 x=0 \text { for } 0 \leqslant p \leqslant 2 \pi \\
& 2 \cos ^{2} x+2 \sqrt{3} \sin x \cos x=0 \\
& 2 \cos x(\cos x+\sqrt{3} \sin x)=0 \\
& \cos x=0 \text { or } \cos x+\sqrt{3} \sin x=0 \\
& x=\frac{\pi}{2}, \frac{3 \pi}{2} \\
& \sqrt{3} \sin x=-\cos x \\
& \tan x=\frac{-1}{\sqrt{3}} \\
& \text { Quad II, } \frac{\pi}{2} \\
& {[x=\pi / 6]} \\
& x=\frac{5 \pi}{6}, \frac{11 \pi}{6} \\
& \text { i. } x=\frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6} \text { for } 0 \leqslant x \leqslant 2 \pi
\end{aligned}
$$

d) i) $\sqrt{3} \sin \theta-\cos \theta \equiv R \sin (\theta-\alpha)$

$$
=R \sin \theta \cos \alpha-R \sin \alpha \cos \theta
$$

By equtiry crest;

$$
R \cos \alpha=\sqrt{3}, \quad \operatorname{sod} R \sin \alpha=1
$$

$$
\sqrt{3} \sin \theta-\cos \theta \equiv 2 \sin (\theta-\pi / 6)
$$

ii) $\sqrt{3} \sin \theta-\cos \theta \geqslant 1$

$$
2 \sin \left(\theta-\frac{\pi}{6}\right) \geqslant 1
$$

for equality, $\theta-\frac{\pi}{6}=\frac{\pi}{6} \quad \geqslant \frac{\pi}{6}$

$$
\therefore \theta=\frac{\pi}{3} \text { or } \pi
$$

Q14/
a) $x s=\frac{50}{\tan 56^{\circ}} \quad y s=\frac{50}{\tan 39^{\circ}}$

$$
\begin{aligned}
c^{2} & =\left(\frac{50}{\tan 39^{\circ}}\right)^{2}-\left(\frac{50}{\tan 56^{\circ}}\right)^{2} \\
& =2675 \cdot 023 \ldots \\
c & =51.7 \quad(1.1 . p)
\end{aligned}
$$

b) i) (1) aten $n=1$

$$
\begin{aligned}
\text { CHS } & =\frac{1}{1 \times 5} \\
& =\frac{1}{5} \\
\text { RUS } & =\frac{1}{4 \times 1+1} \\
& =\frac{1}{5} \\
& =\text { LOS }
\end{aligned}
$$

(2) Assume true for $n=k$

$$
\text { ie. } \frac{1}{1 \times 5}+\frac{1}{5 \times 9}+\quad+\frac{1}{(4 k-3)(4 k+1)}=\frac{k}{4 k+1}
$$

(3) Prove true for $n=k+1$

$$
\text { R.T.P. } \begin{aligned}
& \frac{1}{1 \times 5}+\frac{1}{5 \times 9}+\cdots+\frac{1}{(4 k-3)(4 k+1)}+\frac{1}{(4 k+1)(4 k+5)} \\
&=\frac{k+1}{4 k+5}
\end{aligned}
$$

$$
\begin{aligned}
L H S & =\left(\frac{1}{1 \times 5}+\frac{1}{5 \times 9}+\cdots+\frac{1}{(4 k-3)(4 k+1)}\right)+\frac{1}{(4 k+1)(4 k+5)} \\
& =\frac{k}{4 k+1}+\frac{1}{(4 k+1)(4 k+5)} \\
& =\frac{4 k^{2}+5 k+1}{(4 k+1)(4 k+5)} \\
& =\frac{(4 k+1)(k+1)}{(4 k+1)(4 k+5)} \\
& =\frac{k+1}{4 k+5} \\
& =k+5
\end{aligned}
$$

As true for $n=k+1$ and true $f o r n=1$ it follows n, t it is true for $n=2,3,4$... and all integers of n great or or' equal to 1
ii)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n}{4 n+1} & =\lim _{n \rightarrow \infty} \frac{1}{4+\frac{1}{n}} \\
& =\frac{1}{4}
\end{aligned}
$$

c)

$$
\begin{aligned}
& y=4 \cos ^{-1} x-2 \pi \\
& 4 \cos ^{-1} x=y+2 \pi \\
& \cos ^{-1} x=\frac{y}{4}+\frac{\pi}{2} \\
& x=\cos \left(\frac{y}{4}+\frac{\pi}{2}\right) \\
&=-\sin \left(\frac{y}{4}\right) \\
& 50 \sin \left(\frac{y}{4}\right)=-x \\
& y=4 \sin ^{-1}(-x) \\
&=-4 \sin ^{-1} x
\end{aligned}
$$

Here y is odd as $\sin ^{-1} x$ is odd
d) i) $* f(x)=1$ sines

$$
\int_{-2 h}^{2-h} 1 d x=A+B+C
$$

$$
\therefore \quad A+B+C=4 h
$$

* $f(x)=x$ sires

$$
\begin{gathered}
\int_{-2 h}^{2 h} x d x=-A h+C h \\
-A h+C h=\left[\frac{x^{2}}{2}\right]_{-2 h}^{2 h} \\
A=C
\end{gathered}
$$

$$
\text { * } f(x)=x^{2} \text { sines }
$$

$$
\begin{array}{r}
\int_{-2 h}^{2 h} x^{2} d x=A h^{2}+C h^{2} \\
{\left[\frac{x^{3}}{3}\right]_{-2 h}^{2 h}=A h^{2}+C h^{2}} \\
\frac{16 h^{3}}{3}=A h^{2}+C h^{2}
\end{array}
$$

$U \operatorname{sing} A=C, \quad 2 A h^{2}=\frac{16 h^{3}}{3}$

$$
A=\frac{8 h}{3}
$$

$$
C=\frac{8 h}{3}
$$

$$
\begin{aligned}
B+\frac{16 h}{3} & =4 h \\
B & =-4 h
\end{aligned}
$$

$$
A=\frac{8 h}{3}, B=-\frac{-4 h}{3}, C=\frac{8 h}{3}
$$

ii)

$$
\begin{aligned}
f(x) & =x^{3} \\
L H S & =\int_{-2 h}^{2 h} x^{3} d x \\
& =\left[\frac{x^{4}}{4}\right]_{-2 h}^{2 h} \\
& =0 \\
R H S & =-A h^{3}+C h^{3} \\
& =h^{3}(-A+C) \\
& =L H S
\end{aligned}
$$

iii)

$$
\begin{aligned}
& h=\frac{1}{2}, f(x)=2^{x} \\
& \therefore \quad \int^{1} z^{x} d x \neq A z^{-1 / 2}+B \cdot z^{0}+C 2^{1 / 2} \\
&=\frac{4}{3} \frac{1}{\sqrt{2}}-\frac{2}{3}+\frac{4}{3} \sqrt{2} \\
&=\frac{2}{3}\left(\frac{2}{\sqrt{2}}-1+2 \sqrt{2}\right) \\
&=\frac{2}{3}(3 \sqrt{2}-1)
\end{aligned}
$$

