SYDNEY GRAMMAR SCHOOL

2013 Half-Yearly Examination

FORM VI MATHEMATICS EXTENSION 1

Tuesday 26th February 2013

General Instructions

- Writing time 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total — 70 Marks

• All questions may be attempted.

Section I – 10 Marks

- Questions 1–10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II – 60 Marks

- Questions 11–14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets 4 per boy
- Multiple choice answer sheet
- Candidature 116 boys

Examiner BR/DNW

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The diagram above shows a shaded segment which subtends an angle of 120° at the centre of a circle with radius 6 cm. The area of the segment correct to one decimal place is:

(A) $22 \cdot 1 \text{ cm}^2$ (B) $37 \cdot 7 \text{ cm}^2$ (C) $2144 \cdot 4 \text{ cm}^2$ (D) $2160 \cdot 0 \text{ cm}^2$

QUESTION TWO

1

SGS Half-Yearly 2013 Form VI Mathematics Extension 1 Page 3

QUESTION THREE

The derivative of $\log(1 + x^2)$ is:

(A)
$$\frac{2}{1+x}$$
 (B) $\frac{1}{1+x^2}$ (C) $\frac{2x}{1+x^2}$ (D) $\frac{x}{1+x^2}$

QUESTION FOUR

The expression $\cos^2 x$ is equivalent to:

(A) $1 + \cos 2x$ (B) $1 - \cos 2x$ (C) $\frac{1}{2}(1 + \cos 2x)$ (D) $\frac{1}{2}(1 - \cos 2x)$

QUESTION FIVE

The focal length of the parabola with equation $y = 2x^2$ is: (A) 8 (B) 2 (C) $\frac{1}{2}$ (D) $\frac{1}{8}$

QUESTION SIX

The volume V cubic centimetres of a sphere with radius r centimetres is $V = \frac{4}{3}\pi r^3$. The radius is increasing at a rate of 3 cm/s. At what rate is V increasing?

(A) $\frac{4}{3}\pi r^3$ (B) $4\pi r^3$ (C) $4\pi r^2$ (D) $12\pi r^2$

QUESTION SEVEN

The derivative of $\tan^{-1} 2x$ is:

(A) $\frac{2}{4+x^2}$ (B) $\frac{2}{1+4x^2}$ (C) $\frac{1}{4+x^2}$ (D) $\frac{1}{1+4x^2}$

QUESTION EIGHT

The expression $\cos x + \sin x$ is equivalent to:

(A) $\sqrt{2}\cos(x + \frac{\pi}{4})$ (B) $\sqrt{2}\cos(x - \frac{\pi}{4})$ (C) $\sqrt{2}\cos(x + \frac{3\pi}{4})$ (D) $\sqrt{2}\cos(x - \frac{3\pi}{4})$

QUESTION NINE

The directrix of the parabola with equation $(y-1)^2 = 12(x+1)$ is given by: (A) x = -4 (B) x = -2 (C) x = 2 (D) x = 4

Exam continues overleaf ...

1

1

1

1

1

1

SGS Half-Yearly 2013 Form VI Mathematics Extension 1 Page 4

QUESTION TEN

Which of the following graphs best represents $y = 2\sin^{-1}(x+1)$?

End of Section I

Exam continues next page

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet.

- (a) Simplify:
 - (i) $\ln(e^3)$
 - (ii) $\tan(\frac{5\pi}{6})$

(iii)
$$\cos^{-1}(-\frac{\sqrt{3}}{2})$$

- (b) Differentiate:
 - (i) $\tan 3x$
 - (ii) $x \sin^{-1} x$

(c) Evaluate
$$\lim_{x \to 0} \frac{\tan x}{2x}$$
.

(d) Prove that
$$\frac{\sin 2A}{\cos 2A - 1} = -\cot A$$
.

- (e) An equilateral triangle has sides of length ℓ .
 - (i) Show that the area A of the triangle is given by $A = \frac{\sqrt{3}}{4}\ell^2$.
 - (ii) The area of the triangle is increasing at the rate of $9 \text{ cm}^2/\text{min}$. Determine the rate at which ℓ is increasing when the sides are 6 cm.
- (f) Write down the general solution of $\sin x = \frac{1}{2}$.

Marks

1

1

1

1

 $\mathbf{2}$

1

3

1

 $\mathbf{2}$

 $\mathbf{2}$

SGS Half-Yearly 2013 Form VI Mathematics Extension 1 Page 6

QUESTION TWELVE (15 marks) Use a separate writing booklet.

(a) (i) Differentiate $y = \cos 2x$. 1 (ii) Hence, or otherwise, evaluate $\int_{0}^{\frac{\pi}{2}} \sin x \cos x \, dx$. 2

(b) Evaluate
$$\int_0^4 \frac{x}{\sqrt{9+x^2}} dx$$
.

(c) Use the substitution $t = \tan \frac{1}{2}\theta$ to show that

$$\frac{1+\sin\theta}{1+\cos\theta} = \frac{1}{2}(1+\tan\frac{1}{2}\theta)^2.$$

- (d) The acute angle between the line 4x + 3y = 8 and the line ax + by = 8 is 45° . Find the possible values of the fraction $\frac{a}{b}$.
- (e) (i) Sketch $y = \cos x + 1$ for $-\pi \le x \le \pi$.
 - (ii) The region bounded by $y = \cos x + 1$ and the x-axis, where $-\pi \le x \le \pi$, is rotated about the x-axis to generate a solid. Find the volume of this solid.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.

(a) Determine
$$\int \frac{1}{\sqrt{3-4x^2}} dx$$
.

(b) The point $P(6t, 3t^2)$ lies on the parabola $x^2 = 12y$.

- (i) Show that the equation of the normal at P is $x + ty = 6t + 3t^3$.
- (ii) The normal at P cuts the y-axis at A.
 - (α) The mid-point of *PA* is *R*. Find the coordinates of *R* in terms of *t*.
 - (β) The locus of R is another parabola. Find its vertex and focal length.
- (c) Solve $2\cos^2 x + \sqrt{3}\sin 2x = 0$ for $0 \le x \le 2\pi$.
- (d) (i) Express $\sqrt{3}\sin\theta \cos\theta$ in the form $R\sin(\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - (ii) Hence solve $\sqrt{3}\sin\theta \cos\theta \ge 1$ for $0 \le \theta \le 2\pi$.

Exam continues next page ...

Marks

 $\mathbf{2}$

3

1 4

Marks

 $\mathbf{2}$

2

1

 $\mathbf{2}$

3

2

QUESTION FOURTEEN (15 marks) Use a separate writing booklet. Marks (a) $T = 56^{\circ}$ 50 m $S = 56^{\circ}$ S = 50 m S = 50 m

From a point X on a straight canal bank a surveyor measures the angle of elevation to T, the top of a 50 m tower with base S on the same bank. This angle is 56°. Directly opposite X on the other side of the canal, another surveyor at Y finds the angle of elevation to T is 39°. The points X, Y and S are on level ground.

Find c, the width of the canal, correct to three significant figures.

(b) (i) Prove by mathematical induction that for all integers $n \ge 1$

$$\frac{1}{1\times 5} + \frac{1}{5\times 9} + \frac{1}{9\times 13} + \ldots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1}$$

(ii) Hence evaluate

$$\lim_{n \to \infty} \left(\frac{1}{1 \times 5} + \frac{1}{5 \times 9} + \frac{1}{9 \times 13} + \dots + \frac{1}{(4n-3)(4n+1)} \right)$$

(c) The function $\sin^{-1} x$ is odd. By finding x as a function of y or otherwise, show **2** algebraically that

$$y = 4\cos^{-1}x - 2\pi$$

is also odd.

(d) Suppose that

$$\int_{-2h}^{2h} f(x) \, dx = A \times f(-h) + B \times f(0) + C \times f(h) \tag{**}$$

for f(x) = 1, f(x) = x and $f(x) = x^2$.

- (i) Determine the values of A, B and C in terms of h.
- (ii) Show that equation (**) is also valid when $f(x) = x^3$.
- (iii) Equation (**) may be used to approximate the integrals of other functions. Use it to show that

$$\int_{-1}^{1} 2^x \, dx \doteq \frac{2}{3} (3\sqrt{2} - 1) \, .$$

End of Section II

4 1 1

The following list of standard integrals may be used:

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE :
$$\ln x = \log_e x, x > 0$$

SYDNEY GRAMMAR SCHOOL

2013 Half-Yearly Examination FORM VI MATHEMATICS EXTENSION 1 Tuesday 26th February 2013

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One				
A \bigcirc	В ()	С ()	D ()	
Question Two				
A ()	В ()	С ()	D ()	
Question Three				
A \bigcirc	В ()	С ()	D ()	
Question Four				
A 🔾	В ()	С ()	D ()	
Question Five				
A 🔾	В ()	С ()	D ()	
Question Six				
A ()	В ()	С ()	D ()	
Question Seven				
A 🔾	В ()	С ()	D ()	
Question Eight				
A \bigcirc	В ()	С ()	D ()	
Question Nine				
A \bigcirc	В ()	С ()	D ()	
Question Ten				
A 🔾	В ()	С ()	D ()	

CANDIDATE NUMBER:

FORM VI MATHEMATICS EXTENSION 1	Q_{11}
QV A /	$\frac{1}{\sqrt{2}}$
Q2/ D /	$\frac{1}{6}$
Q3/ C /	b) i) 3sec ² 3x
Q4/ C /	$\frac{11}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}{\sqrt{\frac{1-x^{2}}{\sqrt{\frac{1-x^{2}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}}{\sqrt{\frac{1-x^{2}}{\sqrt{1-x^{2}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
Q5/ D /	$\frac{c}{2} \int \frac{1}{2} \int \frac{1}$
Q6/ D /	d) LHS = $2 \sin A \cos A$ $1 - 2 \sin^2 A - 1$ = Zsignt cos A
Q7/B/	$\frac{-2\sin^2 A}{=-\cos A}$
Q8/ B /	$= - \cot A \qquad \checkmark$ = Rits
Q9/ A Í	e) i) $A = \frac{1}{2} l^2 \sin t t$ = $\sqrt{3} l^2$
$\overline{QIO/C}$	$\frac{\psi}{V} = \ell^2 - /\ell^2$
	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$

 $\begin{array}{c} \text{ii)} \quad \frac{dA}{dt} = 9 \quad \frac{dA}{dt} = \frac{\sqrt{3}}{2} \ \end{array}$ Q12/ , <u>dl = ?</u> a) i) $y = \cos 2x$ $\frac{dA}{dt} = \frac{dA}{dt} \cdot \frac{dl}{dt}$ $q = \frac{\sqrt{3}}{2} \cdot \frac{l}{dt} \cdot \frac{dl}{dt}$ dy = -2 sin 2x = - 4 sinx cosx $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin x \cos x \, dx = -\frac{1}{4} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} -4\sin x \cos x \, dx$ $\frac{dl}{dE} = \frac{1}{3\sqrt{3}}$ = - [cos22 ₩<u>_</u> $= \sqrt{3} \, cm/min$ ____<u>= -|</u> 4 (-cost-sinx = 1= -1 (-1 - 1) $\frac{1}{6} - 2u = \frac{11}{6} + 2nT + 2nT + 2nT + 2nT$ for integers n $\frac{(9+x^2)^{1/2}}{z} = \frac{1}{z} \frac{(9+x^2)^{1/2}}{-2x}$ ь) OR $\frac{1}{2} = (-1)^{n} \frac{1}{1} + nT$ for integers n $= \int_{0}^{q} \frac{3c}{\sqrt{q+x^{2}}} dx = \int_{0}^{z} \frac{(q+x^{2})^{2}}{\sqrt{q+x^{2}}} dx$ $= \sqrt{25} - \sqrt{9}$ = 2

3 t = tan 2 \dot{c} е. so, $sin \theta = \frac{2t}{1+t^2}$, $cos \theta = \frac{1-t^2}{1+t^2}$ -11 LHS = + 25 1+t1 1+1-+2 $V = \pi$ $(\cos x + 1)^{2} dx$ 1+12 ٦i +++++2+ = 2# dec $= (1+t)^{2}$ $+ 2\pi$ $= \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{2} \right)^2$ = 11 sinzz + 2tt sigx = RHS + 2++ TT + O $O \pm \pi$ = 17 $m_{1} = -4$ -9 6 --------== $\frac{\pi^2 + 2\pi^2}{3\pi^2}$ units³ tan 450 1 = 3 -4-3 <u>49</u> 36 -46+39 = 36+49 -46+3a = --46+39 -5-0 36 + 4a 36+4a -46+39 = -36-49-4b + 3a = 3b + 4a-a = 7b7a = ba = -7<u>е</u> Ь OK

c) 2 cos2x + J3 sin2x = O for O spc 52T Q13_ $\frac{2\cos^{2}x + 2\sqrt{3}\sin(\cos x) = 0}{2\cos(\cos x) + \sqrt{3}\sin(x)} = 0$ $\frac{1}{2}$ $\sqrt{\left(\frac{5}{2}\right)^2 - \chi^2}$ cosx = 0 or cosx + V3sinx = 0 $= \frac{1}{2} \sin^{-1}\left(\frac{2x}{\sqrt{3}}\right) + c$ $x = \frac{\pi}{2}, \frac{3\pi}{2}$ $\sqrt{3}sinze = -cosze$ $\frac{1}{1000}$ Qued I, TV [x = Tr] <u>b) 1) $y = \frac{x^2}{12}$ </u> 2L = STT, 11TTSTT, 3TT, 11TT Bar OSXS2TT x = 6t, dy = tgradient of normal is -1 V3 sin Q - cos Q = R sin (Q-d) $m = -1 P(6t, 3t^2)$ = RSINOCOSA - KSINACOSO my weft; By equation -'. y - 3t = -1 (x - 6t). $\frac{R\cos d}{r} = \sqrt{3}$ and Rsinh = $ty - 3t^3 = -x + 6t$ $y - 3t^3 = -x + 6t$ $y - 2t + 5t^3$ ノムミザ $\sqrt{3}\sin\theta - \cos\theta \equiv 2\sin(\theta - \pi)$ (i) d) $A(0, 6+3t^2) P(6t, 3t^2)$ $R(3t, 3+3t^{2})$ Sind - coso 21 2 sin (Q - I) 2 $\frac{\beta}{2} = 3t + 3t^{2}$ $\frac{\beta}{3} = 9 + 9t^{2}$ $\frac{\beta}{3} = 9 + 2t^{2}$ $\frac{\sin(0-\pi_{c}) \ge \frac{1}{2}}{\frac{1}{6} - \frac{\pi}{6}} = \frac{\pi}{6} - \frac{5\pi}{6}$ $\frac{\theta}{3} = \frac{1}{3} \frac{$ $\pi^2 = 3(y-3)$, <u>a = 3</u> V(0,3)for both

Q141 LHS = (4++1)(4++5) 5×9 185 $\gamma S = SO$ ± 33 $\chi S = 50$ $\overline{ten56^{\circ}}$ + (7K+1)(4K+5) 46+1 4K2+5E+ $\left(\frac{50}{tan 31^{p}}\right)^{2}$ 50 $c^{2} =$ (4K+1X4K+5 (4KFD(L+1 ----= 2675.023 (4kti)(4kts (| . d. c = 51.7ĿŦ ---4Kt5 <u>b);</u>) $(\mathbf{0})$ uten n=1 = RHS LHS =185 true for n= As true for n=k+1 true for n=2 =) 1- 15 it follows 5 intege 0+ RHS = Car 4×1+1 lim \sim im 4+1 n-200 4n+ ->~0 = LAS true when n for n=k (\mathcal{D}) Assume true 4 cos x - 2TT Ę. ie. ⊃u = (4K-3X4E+1) 5×9 125 41 + <u>costic =</u> (3) Prove true for n=kt ₹ ┍᠊᠊᠊᠋ᡛ R.T.P. (4K-3)(4K+1) (4K+1)(4K+5) - 512 =<u>So sin</u> $y = 4 \sin^{-1}(-x)$ = - 4 sin⁻¹x as sin'x is odd here y is odd

 $\overline{11} \quad f(x) = 2c^3$ d) 1) * f(x) = 1 gres $LHS = \int x^3 dx$ (Hdac = A + B + C $= \left[\frac{x^{4}}{4} \right]^{2h}$: A+B+C=4h = 0 $RHS = -Ah^{3} + ch^{3}$ $= h^{3} (-A+c)$ = 0 = LHS.* f (x) = x gives $\int_{-\infty}^{2h} \frac{1}{2} dx = -Ah + Ch$ $\frac{1}{2} - Ah + Ch = \begin{bmatrix} x^2 \end{bmatrix}^{2h}$ $h = 1, f(x) = 2^{x}$ = 0 :. A = C (' 2×dx = 7 + R 7 % (* f(x) = >22 gives 2+ 1 4 1 1 × VS $\sqrt{2}$ $zi^2 dx = Ah^2 + Ch^2$ $= \frac{2}{3} \left(\frac{2}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)$ $\begin{bmatrix} 23 \\ 2h \\ 3 \end{bmatrix} = Ah^2 + Ch^2 .$ $\begin{bmatrix} 23 \\ 3 \end{bmatrix} = 2h$ $\frac{16h^3}{2h} = Ah^2 + Ch^2$ $=\frac{2}{3}(3\sqrt{2}-1)$ Using A = C, $2Ah^2 = 16h^3$ A = 8h(= 85)18 B+16h = 4h B = -4h C = 8h A = 8hB = - 45,