FORM VI

MATHEMATICS EXTENSION 1

Tuesday 4th March 2014

General Instructions

- Writing time - 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 70 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 60 Marks

- Questions 11-14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets - 4 per boy
- Multiple choice answer sheet

Examiner

- Candidature - 130 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

What is the period of the function $f(x)=3 \tan 2 x$?
(A) 4π
(B) 2π
(C) π
(D) $\frac{\pi}{2}$

QUESTION TWO

Which of the following is the derivative of $\sin ^{-1} 2 x$?
(A) $\frac{2}{\sqrt{1-4 x^{2}}}$
(B) $\frac{-2}{\sqrt{1-4 x^{2}}}$
(C) $\frac{1}{2 \sqrt{1-4 x^{2}}}$
(D) $\frac{-1}{2 \sqrt{1-4 x^{2}}}$

QUESTION THREE

What is the general solution of $2 \cos x+1=0$?
(A) $\quad x=2 n \pi \pm \frac{\pi}{3}, n$ is an integer
(B) $\quad x=2 n \pi \pm \frac{2 \pi}{3}, n$ is an integer
(C) $\quad x=2 n \pi \pm \frac{\pi}{6}, n$ is an integer
(D) $x=2 n \pi \pm \frac{5 \pi}{6}, n$ is an integer

SGS Half-Yearly 2014 Form VI Mathematics Extension 1 Page 3

QUESTION FOUR

What is the range of the function $y=2 \cos ^{-1} 3 x$?
(A) $\quad-2 \leq y \leq 2$
(B) $0 \leq y \leq \frac{\pi}{3}$
(C) $\quad-\pi \leq y \leq \pi$
(D) $0 \leq y \leq 2 \pi$

QUESTION FIVE

Which function does the graph below represent?

(A) $\quad y=\cos ^{-1} x-\pi$
(B) $y=\cos ^{-1}(-x)$
(C) $y=\sin ^{-1} x-\frac{\pi}{2}$
(D) $y=\sin ^{-1} x-\pi$

QUESTION SIX

The angle θ satisfies $\cos \theta=\frac{4}{5}$ and $-\frac{\pi}{2}<\theta<0$. What is the value of $\sin 2 \theta$?
(A) $\frac{24}{25}$
(B) $-\frac{24}{25}$
(C) $\frac{7}{25}$
(D) $-\frac{7}{25}$

QUESTION SEVEN

Which of the following represents the inverse function of $f(x)=\frac{2}{x-3}-6$?
(A) $\quad f^{-1}(x)=6-\frac{2}{x-3}$
(B) $\quad f^{-1}(x)=\frac{2}{x+6}-3$
(C) $\quad f^{-1}(x)=\frac{2}{x}-3$
(D) $\quad f^{-1}(x)=\frac{2}{x+6}+3$

QUESTION EIGHT

How many solutions are there to the equation $\sin 3 x=0$, where $0 \leq x \leq 2 \pi$?
(A) 1
(B) 5
(C) 7
(D) 9

QUESTION NINE

The volume, $V \mathrm{~cm}^{3}$, of water in a container is given by $V=\frac{1}{3} \pi h^{3}$, where $h \mathrm{~cm}$ is the depth of water in the container at time t minutes. Water is draining from the container at a constant rate of $100 \mathrm{~cm}^{3} / \mathrm{min}$. What is the rate of decrease of h, in $\mathrm{cm} / \mathrm{min}$, when $h=5$?
(A) $\frac{\pi}{4}$
(B) $\frac{4}{\pi}$
(C) 25π
(D) 2500π

QUESTION TEN

A trigonometric function has the properties $f(\pi-x)=-f(x)$ and $f(\pi-x)=-f(-x)$ for all real values of x. Which of the following is a possible equation of this function?
(A) $f(x)=\sin x$
(B) $f(x)=\cos x$
(C) $f(x)=\tan x$
(D) $\quad f(x)=\operatorname{cosec} x$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet.
(a) Find the acute angle between the lines $y=2 x+3$ and $y=-3 x+1$.
(b) Write down the exact value of:
(i) $\sin \frac{5 \pi}{3}$
(ii) $\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)$
(c) Differentiate:
(i) $\sin \frac{x}{2}$
(ii) $\left(\cos ^{-1} x\right)^{2}$
(iii) $x \tan 2 x$
(d) Find:
(i) $\int \cos (2 x+1) d x$
(ii) $\int \frac{3}{9+x^{2}} d x$
(e) (i) Show that $\tan x=\frac{\sin 2 x}{1+\cos 2 x}$.
(ii) Hence evaluate $\tan \frac{\pi}{8}$ in simplest exact form.
(a) Find the exact value of $\tan \left(2 \cos ^{-1} \frac{3}{4}\right)$.
(b) The two points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are on the parabola $x^{2}=4 a y$.

The equation of the tangent to $x^{2}=4 a y$ at an arbitrary point $\left(2 a t, a t^{2}\right)$ is $y=t x-a t^{2}$. (Do NOT prove this.)
(i) Show that the tangents at the points P and Q meet at $R(a(p+q)$, apq).
(ii) Show that R lies on the directrix if the tangents at P and Q are perpendicular.
(c) Solve $\cos 2 \theta+3 \sin \theta-2=0$ for $0 \leq \theta \leq 2 \pi$.
(d)

O

The diagram above shows a sector $O A B$ and an arc $C D$, both with centre O. The figure is formed by pieces of wire. The area of sector $O A B$ is four times the area of sector $O C D$.

The length of $O C$ is $r \mathrm{~cm}$ and $\angle A O B$ is θ.
(i) Show that $A C=r$.
(ii) If the total length of wire forming the figure is 48 cm , show that $\theta=\frac{48-4 r}{3 r}$.
(iii) Hence find the value of r that maximises the area of sector $O C D$.
(a) Use the substitution $t=\tan \frac{\theta}{2}$ to show that $\operatorname{cosec} \theta+\cot \theta=\cot \frac{\theta}{2}$.
(b) (i) Express $2 \sin x+4 \cos x$ in the form $R \sin (x+\alpha)$, where $R>0$ and $0 \leq \alpha<360^{\circ}$.

Give α correct to the nearest minute.
(ii) Hence, or otherwise, solve the equation $2 \sin x+4 \cos x=3$, for $0 \leq x \leq 360^{\circ}$.

Give your solutions correct to the nearest minute.
(c) Use mathematical induction to prove that for all integers $n \geq 1$,

$$
\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}=2-\frac{n+2}{2^{n}} .
$$

(d)

In the diagram above, $A B C D$ is a triangular pyramid with base $A B C$ and perpendicular height $A D=h$.

It is given that $\angle A B C=30^{\circ}, \angle A C D=45^{\circ}$ and $\angle A B D=60^{\circ}$. Let $B C$ be x.
(i) Show that $A B=\frac{h}{\sqrt{3}}$ and $A C=h$.
(ii) Use the cosine rule to show that $2 h^{2}+3 x h-3 x^{2}=0$.
(iii) Hence show that $\frac{h}{x}=\frac{\sqrt{33}-3}{4}$.
(a) Consider the function $y=3 \cos ^{-1}(x-1)$.
(i) Draw a neat sketch of $y=3 \cos ^{-1}(x-1)$, showing the intercepts with the axes.
(ii) Find the exact area enclosed by $y=3 \cos ^{-1}(x-1)$ and the coordinate axes.
(b) A function is defined by $f(x)=\sin \left(x-\frac{\pi}{6}\right)$, where $-a \leq x \leq a$.

If the inverse of $f(x)$ is a function, what is the maximum possible value of a ?
(c)

The point $T\left(2 a t,-a t^{2}\right)$ is a point on the parabola $x^{2}=-4 a y$. The normal at T meets the line $x=-a t$ at point U. Point V lies on the normal and divides $T U$ externally in the ratio 2:3.
(i) Show that the equation of the normal to the parabola at T is $x-t y=2 a t+a t^{3}$.
(ii) Find the coordinates of U in terms of a and t.
(iii) Find the coordinates of V in terms of a and t.
(iv) The locus of V is another parabola. Find the coordinates of its focus.

SGS Half-Yearly 2014 Form VI Mathematics Extension 1 Page 10

BLANK PAGE

SGS Half-Yearly 2014 Form VI Mathematics Extension 1 Page 11

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Sydney Grammar School

2014
Half-Yearly Examination
FORM VI
MATHEMATICS EXTENSION 1
Tuesday 4th March 2014

Candidate number

Question One

$\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Two

A \bigcirc
B

C \bigcirc
D \bigcirc

Question Three
AB

$\mathrm{C} \bigcirc$
D \bigcirc

Question Four

A

B \bigcirc
C

D \bigcirc

Question Five

A \bigcirc
B
C \bigcirc
D \bigcirc

Question Six
A
BC

D

Question Seven

A

B

C

D

Question Eight

$\mathrm{A} \bigcirc$
BC
D \bigcirc

Question Nine

$\mathrm{A} \bigcirc$
B \square C

D \square

Question Ten

ABC
D \bigcirc

2014 HALF - YEARLY \rightarrow SOLUTIONS
Form VI - Mathematics Extension I

$Q 1$	D
$Q 2$	A
$Q 3$	B
$Q 4$	D
$Q 5$	C
$Q 6$	B
$Q 7$	D
$Q 8$	C
$Q 9$	B
$Q 10$	B

Multiple Choice Working
QI.

$$
\begin{aligned}
& f(x)=3 \tan 2 x \\
& \text { Period }=\frac{\pi}{2}
\end{aligned}
$$

Q2.

$$
\begin{aligned}
\frac{d}{d x}\left(\sin ^{-1} 2 x\right) & =\frac{1}{\sqrt{1-(2 x)^{2}}} \times 2 \\
& =\frac{2}{\sqrt{1-4 x^{2}}}
\end{aligned}
$$

QB. $\cos x=-\frac{1}{2}$

$$
\begin{aligned}
\therefore x & =2 n \pi \pm \cos ^{-1}\left(-\frac{1}{2}\right) \\
& =2 n \pi \pm \frac{2 \pi}{3}
\end{aligned}
$$

$$
\begin{aligned}
\alpha & =\pi-\frac{\pi}{3} \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

Q4.

$$
\begin{aligned}
y & =2 \cos ^{-1} 3 x \\
0 & \leqslant \cos ^{-1} 3 x \leqslant \pi \\
2 \times 0 & \leqslant 2 \cos ^{-1} 3 x \leqslant 2 \pi \\
\therefore 0 & \leqslant y \leqslant 2 \pi
\end{aligned}
$$

Q5.

Q6. $\sin 2 \theta$

$$
\begin{aligned}
& =2 \sin \theta \cos \theta \\
& =2 \times-\frac{3}{5} \times \frac{4}{5} \\
& =-\frac{24}{25}
\end{aligned}
$$

Q7. $\quad x=\frac{2}{y-3}-6$

$$
\begin{aligned}
& y-3=\frac{2}{x+6} \\
& \therefore y=3+\frac{2}{x+6}
\end{aligned}
$$

Q8.

$$
\text { Pcricd }=\frac{2 \pi}{3}
$$

QQ.

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{d v}{d h} \times \frac{d h}{d t} \\
100 & =\pi h^{2} \times \frac{d h}{d t} \\
\therefore \frac{d h}{d t} & =\frac{100}{\pi h^{2}} \\
\text { when } h=5, \quad \frac{d h}{d t} & =\frac{100}{\pi \times 25} \\
& =\frac{4}{\pi} \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

Q10. $f(x)=\cos x$ is positive in the $1^{\text {st }} \neq 4^{\text {th }}$ quadrants and negative in the $2^{\text {nd }}$ quadrant

$$
\begin{aligned}
& \therefore f(\pi-\theta)=-f(\theta) \\
& \forall f(\pi-\theta)=-f(-\theta)
\end{aligned}
$$

also $f(x)=f(-x) \rightarrow$ even function
$\therefore f(x)=\cos x$ is the only option.

QUESTION II:
a)

$$
\begin{aligned}
m_{1}=2 \\
m_{2}=-3
\end{aligned} \quad \alpha=\tan ^{-1}\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

b) i)

$$
\begin{align*}
\sin \frac{5 \pi}{3} & =-\sin \frac{\pi}{3} \\
& =-\frac{\sqrt{3}}{2}
\end{align*}
$$

ii)

$$
\begin{array}{r}
\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)=-\frac{\pi}{6} \\
\left(0 .-30^{\circ}\right)
\end{array}
$$

C) i)

$$
\begin{aligned}
\frac{d}{d x}\left(\sin \frac{x}{2}\right) & =\cos \frac{x}{2} \times \frac{1}{2} \\
& =\frac{1}{2} \cos \frac{x}{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{d}{d x}\left(\left(\cos ^{-1} x\right)^{2}\right) & =2 \cos ^{-1} x \times-\frac{1}{\sqrt{1-x^{2}}} \\
& =-\frac{2 \cos ^{-1} x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

iii) $\frac{d}{d x}(x \tan 2 x)$

$$
\text { Let } \begin{array}{rlrl}
u & =x & v & =\tan 2 x \\
u^{\prime} & =1 & v^{\prime} & =2 \sec ^{2} 2 x
\end{array}
$$

$$
\begin{aligned}
& =\tan 2 x \times 1+x \times 2 \sec ^{2} 2 x \\
& =\tan 2 x+2 x \sec ^{2} 2 x
\end{aligned}
$$

d) i) $\int \cos (2 x+1) d x=\frac{1}{2} \sin (2 x+1)+c$
ii)

$$
\begin{aligned}
\int \frac{3}{9+x^{2}} d x & =\int \frac{3}{3^{2}+x^{2}} d x \\
& =\frac{3}{3} \tan ^{-1} \frac{x}{3}+c \\
& =\tan ^{-1} \frac{x}{3}+c
\end{aligned}
$$

e) i)

$$
\left.\begin{array}{rl}
\text { RHS } & =\frac{\sin 2 x}{1+\cos 2 x} \\
& \left.=\frac{2 \sin x \cos x}{2 \cos ^{2} x} \quad \quad \text { (foretherone }\right) \\
& =\frac{\sin x}{\cos x} \\
& =\tan x \\
& =\text { LHS as required. }
\end{array}\right\}
$$

ii)

$$
\begin{aligned}
\tan \frac{\pi}{8} & =\frac{\sin \left(2 \times \frac{\pi}{8}\right)}{1+\cos \left(2 \times \frac{\pi}{8}\right)} \\
& =\frac{\sin \frac{\pi}{4}}{1+\cos \frac{\pi}{4}} \\
& =\frac{\frac{1}{\sqrt{2}}}{1+\frac{1}{\sqrt{2}}}\left(\times \frac{\sqrt{2}}{\sqrt{2}}\right) \\
& =\frac{1}{\sqrt{2}+1} \quad(\text { or } \sqrt{2}-1) \quad \text { (cither) }
\end{aligned}
$$

QUESTION 12:
a) $\tan \left(2 \cos ^{-1} \frac{3}{4}\right)$

Let $\cos ^{-1} \frac{3}{4}=\alpha$

$$
\begin{aligned}
\therefore \cos \alpha & =\frac{3}{4} \quad 0 \leqslant \alpha \leqslant \pi \\
\tan \alpha & =\frac{\sqrt{7}}{3} \\
\tan 2 \alpha & =\frac{2 \tan \alpha}{1-\tan ^{2} \alpha} \\
& =\frac{2 \times \frac{\sqrt{7}}{3}}{1-\frac{7}{9}} \\
& =3 \sqrt{7}
\end{aligned}
$$

b) i) Tangent at P :

$$
\begin{equation*}
y=p x-a p^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { Q: } \quad y=q x-a q^{2} \tag{2}
\end{equation*}
$$

(1) -(2):

$$
\begin{aligned}
(p-q) x-a\left(p^{2}-q^{2}\right) & =0 \\
x & =\frac{a(p+q)(p-q)}{(p-q)} \quad[p \neq q \text { assuming } P, Q \text { distinct }] \\
& =a(p+q)
\end{aligned}
$$

Sub into (1):

$$
\begin{aligned}
y & =p(a p+a q)-a p^{2} \\
& =a p q \\
\therefore R(a(p & +q), a p q)
\end{aligned}
$$

ii) Gradient of tangent at $P: m_{p}=p$

$$
Q: m_{Q}=q
$$

If perpendicular then $m_{P} \times m_{Q}=-1$

$$
\therefore p q=-1
$$

$$
\begin{aligned}
y \text {-cooed of } R & =a p q \\
& =a \times-1 \\
& =-a
\end{aligned}
$$

$\therefore R$ lies on the directrix $y=-a$
c)

$$
\begin{gathered}
\cos 2 \theta+3 \sin \theta-2=0 \\
1-2 \sin ^{2} \theta+3 \sin \theta-2=0 \\
2 \sin ^{2} \theta-3 \sin \theta+1=0 \\
(2 \sin \theta-1)(\sin \theta-1)=0 \\
\therefore \sin \theta=\frac{1}{2} \quad \text { or } \quad \sin \theta=1 \\
\therefore \frac{A^{2}}{}+A^{*} \operatorname{Retated}^{2}=\frac{\pi}{6} \\
\therefore \theta=\frac{\pi}{6}, \frac{5 \pi}{6} \\
\therefore \theta=\frac{\pi}{6}, \frac{\pi}{2} \text { or } \frac{5 \pi}{6}
\end{gathered}
$$

$$
0 \leqslant \theta \leqslant 2 \pi
$$

d) i)

$$
\left.\begin{array}{rl}
\frac{1}{2} \times O A^{2} \times \theta & =4 \times \frac{1}{2} \times O C^{2} \times \theta \\
O A^{2} & =4 r^{2} \\
\therefore O A & =2 r \quad(\text { since } O A>O) \\
A C & =O A-O C \\
& =2 r-r \\
& =r
\end{array}\right\}
$$

ii)

$$
\left.\begin{array}{rl}
48 & =2 r+2 r+2 r \theta+r \theta \\
& =4 r+3 r \theta \\
\therefore \theta & =\frac{48-4 r}{3 r} \text { as required }
\end{array}\right\}
$$

iii)

$$
\begin{aligned}
A_{O C D} & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \times r^{2} \times \frac{48-4 r}{3 r} \\
& =\frac{48 r}{6}-\frac{4 r^{2}}{6} \\
& =8 r-\frac{2}{3} r^{2} \\
\frac{d A}{d r} & =8-\frac{4}{3} r \quad \\
& =0 \text { when } r=6 \\
\frac{d^{2} A}{d r^{2}} & =-\frac{4}{3} \\
& <O \text { D max occurs when } r=6 \quad V \quad \text { (in mustifymax) }
\end{aligned}
$$

QUESTION B:
a)

$$
\left.\begin{array}{rl}
L H S & =\operatorname{cosec} \theta+\cot \theta \\
& =\frac{1}{\sin \theta}+\frac{1}{\tan \theta} \\
& =\frac{1+t^{2}}{2 t}+\frac{1-t^{2}}{2 t} \quad(\text { for either }) \\
& =\frac{2}{2 t} \\
& =\frac{1}{t} \\
& =\frac{1}{\tan \frac{\theta}{2}} \\
& =\cot \frac{\theta}{2} \text { as required. } \\
& =\operatorname{RHS}^{2} \text { as }
\end{array}\right\}
$$

b) i)

$$
\begin{align*}
& 2 \sin x+4 \cos x=R \sin (x+\alpha) \\
& =R \sin x \cos \alpha+R \underline{\cos x \sin \alpha} \\
& R \cos \alpha=2 \\
& R \sin \alpha=4 \tag{2}
\end{align*}
$$

squaring \neq adding:

$$
\begin{aligned}
& R^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=2^{2}+4^{2} \\
& =20 \\
& \therefore R=2 \sqrt{5} \quad(R>0) \\
& \therefore \cos \alpha=\frac{2}{2 \sqrt{5}} \\
& =\frac{1}{\sqrt{5}} \\
& \sin \alpha=\frac{4}{2 \sqrt{5}} \\
& =\frac{2}{\sqrt{5}} \\
& \begin{array}{l|l}
s & A^{*} \\
T & c
\end{array} \alpha=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right) \\
& =63.4349 \ldots \\
& =63^{\circ} 26^{\prime} \text { (tonearestmin) } \\
& \therefore 2 \sin x+4 \cos x=2 \sqrt{5} \sin \left(x+63^{\circ} 26^{\prime}\right)
\end{aligned}
$$

ii)

$$
0^{\circ} \leqslant x \leqslant 360^{\circ}
$$

$$
\begin{gathered}
0 \leqslant x \leqslant 360^{\circ} \\
63^{\circ} 26^{\prime} \leqslant x+63^{\circ} 26^{\prime} \leqslant+23^{\circ} 26^{\prime}
\end{gathered}
$$

OR $360^{\circ}+42.1304 \ldots$

$$
=402.1304 \ldots 0
$$

c) Test first case:

When $n=1$:

$$
\begin{aligned}
\text { LHS } & =\frac{1}{2} \\
\text { DHS } & =2-\frac{1+2}{2} \\
& =\frac{1}{2} \\
& =\text { LHS } \quad \therefore \text { true for } n=1
\end{aligned}
$$

Assume true for $n=k$:

$$
\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots+\frac{k}{2^{k}}=2-\frac{k+2}{2^{k}}
$$

Prove true for $n=k+1$:
TRequired to prove $\Sigma=2-\frac{k+3}{2^{k+1}}$

$$
\left.\begin{array}{rl}
\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots+\frac{k}{2^{k}}+\frac{k+1}{2^{k+1}} & =2-\frac{k+2}{2^{k}}+\frac{k+1}{2^{k+1}} \\
& =2-\frac{2(k+2)}{2\left(2^{k}\right)}+\frac{k+1}{2^{k+1}} \\
& =2-\left(\frac{2 k+4}{2^{k+1}}-\frac{k+1}{2^{k+1}}\right) \\
& =2-\frac{k+3}{2^{k+1}} \text { as required. }
\end{array}\right\}
$$

The result now follows for all integers $\geqslant 1$ by the Principle $=$ of M athematical Induction.

$$
\begin{aligned}
& 2 \sqrt{5} \sin \left(x+63^{\circ} 26^{\prime}\right)=3 \\
& \sin \left(x+63^{\circ} 26^{\prime}\right)=\frac{3}{2 \sqrt{5}} \\
& \text { Related } C=\sin ^{-1}\left(\frac{3}{2 \sqrt{5}}\right) \\
& =42.1304 \ldots \\
& x+63^{\circ} 26^{\prime}=180^{\circ}-42 \cdot 1304 \ldots{ }^{\circ} \\
& =137.8695 \ldots^{\circ} \\
& \therefore x=74^{\circ} 26^{\prime} \text { ar } 338^{\circ} 42^{\prime}
\end{aligned}
$$

$$
\text { d) i) } \begin{aligned}
\tan 60^{\circ} & =\frac{h}{A B} \\
\therefore A B & =\frac{h}{\tan 60^{\circ}} \\
& =\frac{h}{\sqrt{3}} \\
\tan 45^{\circ} & =\frac{h}{A C} \\
\therefore A C & =\frac{h}{\tan 45^{\circ}} \\
& =\frac{h}{1} \\
& =h
\end{aligned}
$$

ii)

$$
\begin{aligned}
h^{2} & =x^{2}+\left(\frac{h}{\sqrt{3}}\right)^{2}-2 \times x \times \frac{h}{\sqrt{3}} \times \cos 30 \\
& =x^{2}+\frac{h^{2}}{3}-\frac{2 x h}{\sqrt{3}} \times \frac{\sqrt{3}}{2} \\
3 h^{2} & =3 x^{2}+h^{2}-3 x h \\
\therefore 2 h^{2} & +3 x h-3 x^{2}=0 \text { as required. }
\end{aligned}
$$

iii) METHOD 1:

$$
\begin{aligned}
& 2 h^{2}+3 x h-3 x^{2}=0 \\
& a=2 \\
& b=3 x \\
& c=-3 x^{2} \\
& h=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-3 x \pm \sqrt{(3 x)^{2}-4 \times 2 \times-3 x^{2}}}{4 \times 2} \\
&=\frac{-3 x \pm \sqrt{33 x^{2}}}{4}=\left(-\frac{3 \pm \sqrt{33}) x}{4}=\frac{-3+\sqrt{33}}{4}\right. \\
&=\left(\frac{-3+\sqrt{33}}{4}\right) x \\
& B U T
\end{aligned}
$$

(must justify positive answer only)

METHOD 2:
divide throughout by x^{2} :

$$
\begin{gathered}
2 \frac{h^{2}}{x^{2}}+\frac{3 x h}{x^{2}}-\frac{3 x^{2}}{x^{2}}=0 \quad\left(\text { since } x^{2} \neq 0\right) \\
2\left(\frac{h}{x}\right)^{2}+3\left(\frac{h}{x}\right)-3=0 \\
\therefore \frac{h}{x}=\frac{-3 \pm \sqrt{3^{2}-4 \times 2 \times-3}}{2 \times 2} \\
\frac{B U T}{S} \frac{h}{x}>0
\end{gathered}
$$

QUESTION 14:
a) $y=3 \cos ^{-1}(x-1)$
i)

$$
\begin{aligned}
& \text { Shape } \\
& \text { /intercepts }
\end{aligned}
$$

ii) METHOD 1:

$$
\begin{aligned}
A & =\int_{0}^{3 \pi} \cos \frac{y}{3}+1 d y \\
& =\left[3 \sin \frac{y}{3}+y\right]_{0}^{3 \pi} \\
& =3 \sin \frac{3 \pi}{3}+3 \pi-(3 \sin 0+0) \\
& =3 \pi \text { unit }^{2}
\end{aligned}
$$

METHOD 2:
From symmetry about $\left(1, \frac{3 \pi}{2}\right)$:

$$
\begin{aligned}
A & =\frac{3 \pi}{2} \times 2 \\
& =3 \pi \text { unit }^{2}
\end{aligned}
$$

b) $f(x)=\sin \left(x-\frac{\pi}{6}\right)$
 will fail the horizontal line test outside of

$$
-\frac{\pi}{3} \leqslant x \leqslant \frac{2 \pi}{3}
$$

beyond this point, the
inverse will no longer

$$
-\frac{\pi}{2}+\frac{\pi}{6}=-\frac{\pi}{3}
$$

be a function
\therefore max possible value of $a=\frac{\pi}{3}$.
c)
i)

$$
\begin{aligned}
& \frac{d x}{d t}=2 a \\
& \frac{d y}{d t}=-2 a t \\
& \frac{d y}{d x}=\frac{d y}{d t} \div \frac{d x}{d t} \\
&=-2 a t \times \frac{1}{2 a} \\
&=-t \\
& \therefore m_{\perp}=\frac{1}{t} \quad \\
& y-\left(-a t^{2}\right)=\frac{1}{t}(x-2 a t) \\
& \text { some working } \\
& \text { reaur ed. } \\
& t y+a t^{3}=x-2 a t \\
& \therefore x-t y=2 a t-a t^{3} \text { as required. }
\end{aligned}
$$

ii)

$$
\begin{align*}
x-t y & =2 a t+a t^{3} \tag{1}\\
x & =-a t \tag{2}
\end{align*}
$$

Sub (2) into (1):

$$
\begin{aligned}
-a t-b y & =2 a t+a t^{3} \\
\therefore y & =-3 a-a t^{2} \\
\therefore & \cup\left(-a t,-3 a-a t^{2}\right)
\end{aligned}
$$

iii) METHOD 1:

(showing $\Delta x \neq \Delta y$)

$$
V\left(2 a t+2 \times 3 a t,-a t^{2}+2 \times 3 a\right)
$$

$$
\rightarrow V\left(8 a t, 6 a-a t^{2}\right)
$$

METHOD 2:

$$
\begin{aligned}
& x=\frac{3 \times 2 a t+(-2) \times(-a t)}{-2+3} \\
&=\frac{6 a t+2 a t}{1} \\
&=8 a t \\
& y=\frac{3 \times\left(-a t^{2}\right)+(-2) \times\left(-3 a-a t^{2}\right)}{3+(-2)} \\
&=-3 a t^{2}+6 a+2 a t^{2} \\
&=6 a-a t^{2} \\
& \therefore V\left(8 a t, 6 a-a t^{2}\right)
\end{aligned}
$$

iv)

$$
\begin{align*}
& x=8 a t \longrightarrow t=\frac{x}{8 a} \tag{1}\\
& y=6 a-a t^{2} \tag{2}
\end{align*}
$$

Sub (1) into (2):

$$
\begin{aligned}
y & =6 a-a\left(\frac{x}{8 a}\right)^{2} \\
& =6 a-\frac{x^{2}}{64 a} \\
x^{2} & =(6 a-y) \times 64 a \\
& =-64 a(y-6 a)
\end{aligned}
$$

$$
4 A=64 a
$$

$$
A=\frac{64 a}{4}
$$

$$
=16 a
$$

\therefore The focus is $(0,-10 a)$

