Sydney Grammar School

2015 Half-Yearly Examination

FORM VI

MATHEMATICS EXTENSION 1

Tuesday 24th February 2015

General Instructions

- Writing time - 1 hour and 30 minutes
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 55 Marks

- All questions may be attempted.

Section I-7 Marks

- Questions 1-7 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 48 Marks

- Questions 8-11 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Staple your answers in a single bundle.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eight.
- Write your candidate number on this question paper and hand it in with your answers.

Checklist

- SGS booklets - 4 per boy
- Multiple choice answer sheet

Examiner

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

A parabola has a vertex at $(0,4)$, focal length 2 units and its axis is parallel to one of the coordinate axes. Which equation fits the given conditions?
(A) $(y+4)^{2}=-4 x$
(B) $(y-4)^{2}=4 x$
(C) $\quad x^{2}=-8(y-4)$
(D) $x^{2}=8(y+4)$

QUESTION TWO

What is the period of $y=-3 \sin \frac{1}{2} x$?
(A) $\frac{\pi}{2}$
(B) 2π
(C) π
(D) 4π

QUESTION THREE

If θ is the acute angle between the lines $y=-\frac{1}{3} x-3$ and $y=2 x+3$, then the value of $\tan \theta$ is:
(A) 7
(B) 1
(C) $\quad-7$
(D) -1

QUESTION FOUR

What is the Cartesian equation of the curve $x=a t^{2}, y=2 a t ?$
(A) $y^{2}=4 a x$
(B) $y^{2}=2 a x$
(C) $x^{2}=4 a y$
(D) $x^{2}=2 a y$

QUESTION FIVE

The angle θ satisfies $\cos \theta=\frac{4}{5}$ and $-\frac{\pi}{2}<\theta<0$. What is the value of $\sin 2 \theta$?
(A) $\frac{24}{25}$
(B) $-\frac{24}{25}$
(C) $\frac{7}{25}$
(D) $-\frac{7}{25}$

QUESTION SIX

What is the derivative of $\tan ^{-1} \frac{1}{x}$?
(A) $\frac{1}{1+x^{2}}$
(B) $-\frac{1}{x^{2}+1}$
(C) $-\frac{x^{2}}{x^{2}+1}$
(D) $\frac{x^{2}}{x^{2}+1}$

QUESTION SEVEN

What is the domain and range of $y=4 \cos ^{-1} 3 x$?
(A) The domain is $-\frac{1}{3} \leq x \leq \frac{1}{3}$ and the range is $-2 \pi \leq y \leq 2 \pi$.
(B) The domain is $-3 \leq x \leq 3$ and the range is $-2 \pi \leq y \leq 2 \pi$.
(C) The domain is $-\frac{1}{3} \leq x \leq \frac{1}{3}$ and the range is $0 \leq y \leq 4 \pi$.
(D) The domain is $-3 \leq x \leq 3$ and the range is $-2 \pi \leq y \leq 2 \pi$.

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION EIGHT (12 marks) Use a separate writing booklet. Marks
(a) A sector has arc length 6 units and radius 4 units. Find the exact area of the sector.
(b) Write down the exact value of:
(i) $\cos ^{-1}\left(\frac{1}{2}\right)$
(ii) $\tan \frac{5 \pi}{3}$
(c) Differentiate the following:
(i) $\tan \frac{x}{3}$
(ii) $e^{x} \sin x$
(iii) $\cos ^{3} x$
(d) Find:
(i) $\int \sec ^{2} \frac{x}{3} d x$
(ii) $\int \frac{4}{25+x^{2}} d x$
(e) Find the exact value of $\cos \left(\sin ^{-1} \frac{1}{3}\right)$.

SGS Half-Yearly 2015 Form VI Mathematics Extension 1 Page 6
QUESTION NINE (12 marks) Use a separate writing booklet. Marks
(a) The radius r of a circle is increasing such that the rate of increase of the area of the circle is $\pi^{2} r \mathrm{~cm}^{2} / \mathrm{s}$. Calculate the rate of increase of the radius.
(b) Consider the function defined by $f(x)=x^{2}-4$, for $x \leq 0$.
(i) Draw a neat sketch of the function $y=f(x)$, for $x \leq 0$, clearly showing any intercepts with the axes.
(ii) Sketch the graph of the inverse function $y=f^{-1}(x)$.
(iii) State the domain of the inverse function $y=f^{-1}(x)$.
(c) Write down the general solution of $\cos x=\frac{\sqrt{3}}{2}$. Leave your answer in radians.
(d) Evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$.
(e) Use mathematical induction to prove $13^{n}-1$ is divisible by 3 for all positive integers n.
(a) Evaluate $\lim _{x \rightarrow 0} \frac{x}{\tan 3 x}$. You must show working.
(b) Find the equation of the normal to $x^{2}=12 y$ at the point $\left(6 p, 3 p^{2}\right)$. Leave your answer in general form.
(c) Evaluate $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{d x}{\sqrt{1-2 x^{2}}}$.
(d) Solve the equation $3 \tan 2 \theta=2 \tan \theta$, for $0 \leq \theta \leq 2 \pi$.
(e)

In diagram above $T X$ represents a vertical tower of height h metres standing on the horizontal plane $A X B$. Two men 800 metres apart on the same plane observe the top of the tower. One man at point A is on a bearing of $260^{\circ} \mathrm{T}$ from the tower and the angle of elevation to the top of the tower is 12°. The second man at point B is on a bearing of $152^{\circ} \mathrm{T}$ from the tower and the angle of elevation to the top of the tower is 10°.
(i) Using a diagram, or otherwise, explain why $\angle A X B=108^{\circ}$.
(ii) Express $A X$ in terms of h.
(iii) Find the height of the tower to the nearest metre.
(a) Express $8 \cos x+15 \sin x$ in the form $R \cos (x-\phi)$ where $R>0$ and $0^{\circ}<\phi<360^{\circ}$.

In your answer, give the angle ϕ correct to the nearest degree.
(b) Prove the identity below using the substitution $t=\tan \frac{\theta}{2}$.

$$
\frac{\sin \theta-1+\cos \theta}{\sin \theta+1-\cos \theta}=\frac{1-\tan \frac{\theta}{2}}{1+\tan \frac{\theta}{2}}
$$

(c)

In the diagram above the tangent to the parabola $x^{2}=4 a y$ at the point $P\left(2 a p, a p^{2}\right)$ meets the tangent to the vertex at the point A. The equation of the tangent at P is $y=p x-a p^{2}$. (Do not prove this.)
(i) If S is the focus, prove that $S A$ is perpendicular to $P A$.
(ii) It is given that R is the centre of a circle which passes through P, S and A.

Determine the equation of the locus of R as P varies.
(d) Consider the curves $y=\sin x$ and $y=\sin ^{2} x$, where $0 \leq x \leq \frac{\pi}{2}$.
(i) Explain why $\sin ^{2} x \leq \sin x$, for $0 \leq x \leq \frac{\pi}{2}$.
(ii) Find the volume of revolution generated when the area between the two curves is rotated about the x-axis.

END OF EXAMINATION

SGS Half-Yearly 2015 Form VI Mathematics Extension 1 Page 9

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Sydney Grammar School

2015
 Half-Yearly Examination
 FORM VI
 MATHEMATICS EXTENSION 1

Tuesday 24th February 2015

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One

A \bigcirc
B \qquad
C
D

Question Two

AB \qquad
C

D \bigcirc

Question Three

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Four

A
B
C \bigcirc
D \bigcirc

Question Five

$\mathrm{A} \bigcirc$
B
C

D

Question Six

A \bigcirc
B
C
D \bigcirc

Question Seven

A
B$\mathrm{C} \bigcirc$
D \bigcirc

FORM [J Extension I HY 2015
section $7 \quad Q 1 C, Q 2 D, Q 3 A, Q 4 A, Q S B, Q 6 B, Q 7 C$.
Section 2
Q 8
a)

$$
\begin{aligned}
l & =r \theta \\
\theta & =4 \theta \\
\theta & =\frac{3}{2} \text { radians } \\
A & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \times 4^{2} \times \frac{3}{2} \\
& =124^{2}
\end{aligned}
$$

b) i) Let $\alpha=\cos ^{-1} \frac{1}{2}$ where $u<\alpha \leqslant 1 T$

$$
\cos \alpha=\frac{1}{2}
$$

α in list quad

$$
\alpha=\frac{\pi}{3}
$$

ii) Let

$$
\begin{aligned}
\alpha & =\tan \frac{5 \pi}{3} \\
& =-\tan \frac{\pi}{3} \\
& =-\sqrt{3},
\end{aligned}
$$

c) i)

$$
\begin{aligned}
& y=\tan \frac{x}{3} \\
& y^{\prime}=\frac{1}{3} \sec ^{2}\left(\frac{x}{3}\right)
\end{aligned}
$$

ii)

$$
\begin{aligned}
y & =e^{x} \sin x \\
y & =u v^{\prime} \\
y^{\prime} & =\nu u^{\prime}+u \nu^{\prime} \\
& =e^{x} \sin x+e^{x} \cos x \\
& =e^{x}(\sin x+\cos x)
\end{aligned}
$$

iii) $y_{1}=\cos ^{3} x$
d) i) $\int \sec ^{2} \frac{x}{3} d x=3 \tan \frac{x}{3}+c$
ii) $\int \frac{4}{25+} x^{2} d x=\frac{4}{5} \tan ^{-1} \frac{x}{5}+c$
e) Let $\alpha=\sin ^{-1} \frac{1}{3}$

$$
\begin{aligned}
& -\frac{\pi}{2}<\alpha \leqslant \frac{\pi}{2} \\
& \left.\right|_{x} ^{3} x^{2} r^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sin \alpha=\frac{1}{3} \\
& \cos \alpha=\frac{2 \sqrt{2}}{3}
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+1^{2} & =3^{2} \\
x & =2 \sqrt{2}
\end{aligned}
$$

(12)

Q 9

$$
\begin{aligned}
& A=\pi r^{2} \\
& \frac{d A}{d r}=2 \pi r \quad \frac{d A}{d t}=\pi^{2} r \\
& \frac{d A}{d t}=\frac{d A}{d r} \times \frac{d r}{d t} \\
& \pi^{2}=2 \pi r \times \frac{d r}{d t} \\
& \frac{d r}{d t}=\frac{\pi^{x}}{2 \pi}
\end{aligned}
$$

$=\frac{\pi}{2} \mathrm{~cm} / \mathrm{s} \quad \checkmark$ units required.
b)

Domain of $y=f^{-1}(x) \quad x \geqslant-4$
C) $\quad \cos x=\frac{\sqrt{3}}{2}$

$$
x=\cos ^{-1} \frac{\sqrt{3}}{2}+2 n \pi \text { or }-\cos ^{-1} \frac{\sqrt{3}}{2}+2 n \pi n \in \mathbb{Z}
$$

$$
=2 n \pi \pm \frac{\pi}{6} \quad n \in \mathbb{Z}
$$

one mark for $\frac{\pi}{6}$
d)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x \\
& =\int_{0}^{\frac{\pi}{2}} \frac{1}{2}(1+\cos 2 x) d x \\
& =\frac{1}{2}\left[x+\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{1}{2}\left[\left(\frac{\pi}{2}+\frac{1}{2} \sin \pi\right)-(0+0)\right] \\
& =\frac{\pi}{4}
\end{aligned}
$$

Q9e) Prove $13^{n}-1$ div. by 3 for all positive integers
A: When $n=1$
$13-1=12$ which is div. by 3
\therefore Statemet true for $n=1$
B: Assume the statement holds true for $n=k$ where k is a positive integer.
ie. $13^{R}-1=3 M$ where M is a positive integer.
$13^{n}=3 M+1 * *$
Must prove true for $n=k+1$
ie. $13^{k+1}-1=3 \mathrm{~N}$ where N is a positive integer:

$$
\begin{aligned}
\text { LHS } & =13^{k+1}-1 \\
& =13^{k} \cdot 13^{\prime}-1 \\
& =(3 M+1) 13-1 \\
& =13 \times 3 M+13-1 \\
& =13 \times 3 M+12 \\
& =3(13 M+4)
\end{aligned}
$$

using the induction nypothesis
C. It follows from parts A and B by MI that the statemet holds true for all positive integers n.
$Q 10$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x}{\tan 3 x} & =\frac{1}{3} \lim _{x \rightarrow 0} \frac{3 x}{\tan 3 x} \\
& =\frac{1}{3} \times 1 \\
& =\frac{1}{3}
\end{aligned}
$$

b)

$$
\begin{array}{ccc}
x^{2}=12 y & \left(6 p, 3 p^{2}\right) & y=3 p^{2} \\
x=6 p & \frac{d y}{d p}=6 p \\
\frac{d x}{d p}=6 & \\
\frac{d y}{d x}=\frac{d y}{d p} \div \frac{d x}{d p} & \\
=6 p \times \frac{1}{6} &
\end{array}
$$

gradient of the normal $=-\frac{1}{p}$

$$
\begin{aligned}
& y-3 p^{2}=-\frac{1}{p}(x-6 p) \\
& -p y+3 p^{3}=x-6 p \\
& x+p y-6 p-3 p^{3}=0
\end{aligned}
$$

asked for geneal form
c) $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{d x}{\sqrt{1-2 x^{2}}}=\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{d x}{\sqrt{2} \sqrt{\frac{1}{2}-x^{2}}}$

$$
=\frac{1}{\sqrt{2}}\left[\sin ^{-1} \sqrt{2} x\right]_{-\frac{1}{2}}^{\frac{1}{2}}
$$

$$
=\frac{2}{\sqrt{2}}\left[\sin ^{-1} \sqrt{2} x\right]_{0}^{\frac{1}{2}}
$$

$$
=\frac{2}{\sqrt{2}} \times \frac{\pi}{4}
$$

$$
=\frac{\pi}{2 \sqrt{2}}
$$

$$
=\frac{\pi \sqrt{2}}{4}
$$

Q 10 d)

$$
\begin{aligned}
& 3 \tan 2 \theta=2 \tan \theta \quad 0 \leqslant \theta \leqslant 2 \pi \\
& \begin{array}{c}
\frac{3(\tan \theta+\tan \theta)}{1-\tan 2 \theta} \\
6 \tan \theta
\end{array}=2 \tan \theta \\
& 2 \tan ^{3} \theta+4 \tan \theta\left(1-\tan ^{2} \theta\right) \\
& 2 \tan \theta(\tan \theta-0 \\
& \tan \theta=0 \\
& \theta=0, \pi+2 \pi
\end{aligned}
$$

$$
\begin{aligned}
\angle A \times B & =260-152 \\
& =108^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\tan 12^{\circ} & =\frac{h}{A x} \\
A x & =\frac{h}{\tan 12^{\circ}} \\
& =h \cot 12^{\circ} \\
& =h \tan 78^{\circ}
\end{aligned}
$$

$$
A x=\frac{\eta}{\tan 12^{\circ}} \quad \checkmark \text { or similas }
$$

$$
\begin{aligned}
\tan 12^{\circ} & =\frac{h}{B x} \\
B X & =\frac{h}{\tan 10^{\circ}} \\
& =h \tan 80^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& A B^{2}= A x^{2}+B x^{2}-2 A x \times B x \times \cos 108 \\
& 800^{2}= h^{2} \tan ^{2} 78+h^{2} \tan ^{2} 80-2 h^{2} \tan 78 \tan 80 \cos 108 \\
& h^{2}= \frac{800^{2}}{\left(\tan ^{2} 78+\tan ^{2} 80-2 \tan 78 \tan 80 \cos 108\right)} \\
& h^{2} \div 9041.218
\end{aligned}
$$

$$
h \doteq 95 \mathrm{~m} \sqrt{ } \doteqdot \text { (nearest metre) }
$$

Qlla)

$$
\begin{aligned}
8 \cos x+15 \sin x & =R \cos (x-\phi) \\
8 \cos x+15 \sin x & =R \cos x \cos \phi+R \sin x \sin \phi \\
& =R \cos \phi \cos x+R \sin \phi \sin x
\end{aligned}
$$

equating coefficiects
b)

$$
\begin{aligned}
\text { LHS } & =\frac{\sin \theta-1+\cos \theta}{\sin \theta+1-\cos \theta} \\
& =\frac{\frac{2 t}{1+t^{2}}-1+\frac{1-t^{2}}{1+t^{2}}}{\frac{2 I-t^{2}}{}+1-\frac{\left(1-t^{2}\right)}{1+t^{2}}} \quad \checkmark \\
& =\frac{\frac{2 t-\left(1+t^{2}\right)+1-t^{2}}{1+t^{2}}}{2 t+\left(1+t^{2}\right)-1+t^{2}} \\
& =\frac{\left.2 t(-1)-t^{2} t^{2}+1\right)+t^{2}}{1+t^{2}} \div \frac{2 t(+1)+t^{2} \not+1+t^{2}}{1+t^{2}} \\
& =\frac{2 t-2 t^{2}}{1+t^{2}} \times \frac{1+t^{2}}{2 t+2 t^{2}} \\
& =\frac{2 t(1-t)}{1} \times \frac{1}{2 t(1+t)} \\
& =\frac{1-t}{1+t} \quad\left(t=\tan \frac{\theta}{2}\right)
\end{aligned}
$$

$$
=R H S \text { as required. }
$$

$$
\begin{aligned}
& R \cos \phi=8 \\
& R \sin \phi=15 \\
& R=\sqrt{8^{2}+15^{2}} \\
& =17 \\
& \cos \phi=\frac{8}{17} \\
& \sin \phi=\frac{15}{17} \\
& \begin{aligned}
\phi & =\sin ^{-1}\left(\frac{15}{17}\right) \\
& =61.978
\end{aligned} \\
& \doteqdot 61.970 \\
& \therefore 8 \cos x+15 \sin x=17 \cos (x-62)^{\prime}
\end{aligned}
$$

QIIc) i) Given $y=p x-a p^{2}$ eq'n of the gt. when $y=0$

$$
\begin{aligned}
p x-a p^{2} & =0 \\
p x & =a p^{2} \\
x & =a p
\end{aligned}
$$

Coordinates of $A(a p, 0)$

$$
\begin{aligned}
m_{P A} & =\frac{a p^{2}}{a p} \\
& =m_{S A} \\
m_{P A} \times m_{S A} & =p x-\frac{1}{p} \\
& =-1
\end{aligned}
$$

$$
m_{S A}=\frac{a-0}{0-a p}
$$

$$
=-\frac{1}{p}
$$

$$
\therefore P A \perp S A
$$

ii) Since $\angle P A S$ is a right angle PS is a diameter of a circle R is the midpoint of PS. which is the centre C.

$$
\begin{aligned}
& c\left(\frac{\left.0+2 a p, \frac{a+a \rho^{2}}{2}\right)}{2}\right) \\
& =c\left(a p, \frac{a\left(1+p^{2}\right)}{2}\right) \\
& x=a p \\
& p=\frac{x}{a} \\
& y=\frac{a\left(1+\frac{x^{2}}{a^{2}}\right)}{2} \\
& 2 y=a+\frac{x^{2}}{a} \\
& x^{2}=a(2 y-a)
\end{aligned}
$$

Qlld) i) At $x=0$ and $x=\frac{\pi}{2} \quad \sin ^{2} x=\sin x$
For $0<x<\frac{\pi}{2}$. $0<\sin x<1$
so $\sin ^{2} x$ will always have a sinaller valve than $\sin x$.
$\ddot{\mu})$

$$
\begin{aligned}
V & \left.=\pi \int_{0}^{\frac{\pi}{2}} y_{1}^{2}-y_{2}^{2}\right) d x \quad y_{1}=\sin x \\
& \left.=\pi \int_{0}^{\frac{\pi}{2}} \sin ^{2} x-\sin ^{4} x\right) d x \quad y_{2}=\sin ^{2} x \\
& =\pi \int_{0}^{\frac{\pi}{2}} \sin ^{2} x\left(1-\sin ^{2} x\right) d x \\
& =\pi \int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{2} x d x \\
& =\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}}(2 \sin x \cos x)^{2} d x \\
& =\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \sin { }^{2} 2 x d x \\
& =\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}}\left(\frac{1}{2}-\frac{1}{2} \cos 4 x\right) d x \\
& =\frac{\pi}{8}(1-\cos 4 x) d x \\
& =\frac{\pi}{8}\left[x-\frac{1}{4} \sin 4 x\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{\pi}{8}\left(\left(\frac{\pi}{2}-\frac{1}{4} \sin 2 \pi\right)-(0-0)\right) \\
& =\frac{\pi^{2}}{16} u^{3} \sqrt{1}
\end{aligned}
$$

