YEAR 122008 HALF YEARLY EXAMINATIONS

MATHEMATICS EXTENSION 1
 (3 UNIT COMPONENT)

ASSESSMENT TASK 3
 WEIGHTING 30\%

Examination Date:
Friday $2^{\text {nd }}$ May 2008

OUTCOMES REFERRED TO: HE1, HE2, HE3, HE4, HE6, HE7, PE1, PE2, PE3, PE4, PE6.

General Instructions

- Reading time $\mathbf{- 5}$ minutes.
- Working time $\mathbf{- 2}$ hours.
- Write using blue or black pen.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown in every question.
- Begin each question in a new booklet.
- Write your examination number and your teacher's name on the front of each answer booklet.

Total marks - 84

- Attempt Questions 1-7.
- All questions are of equal value.
- Mark values are shown at the side of each question part.

QUESTION 1 (12 marks) Use a SEPARATE writing booklet.
(a) Solve the inequation $\frac{4}{5-x} \leq 1$.

3
(b) Use the substitution $u=1+\tan x$ to evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{\sqrt{1+\tan x}} d x$.
(c) Find the following:
i) $\int \frac{3 x}{x^{2}+9} d x$.
ii) $\int \frac{3}{x^{2}+9} d x$.
iii) $\int \frac{x^{2}+9}{3 x} d x$.

QUESTION 2 (12 marks) Use a SEPARATE writing booklet.
(a) Solve $\frac{x+1}{x^{2}+1}>1$.
(b) Find $\int x\left(1-x^{2}\right)^{5} d x$, using the substitution $u=1-x^{2}$, or otherwise.
(c) Find the acute angle, correct to the nearest minute, between the lines $3 x+y=4$ and $x-y=1$.
(d) The point $P(19,-15)$ divides an interval $A B$ externally in the ratio $3: 2$. Find the coordinates of the point $B(x, y)$ given $A(-2,3)$.
(e) Prove by mathematical induction that if n is a positive integer, then:

$$
\frac{1}{1 \times 5}+\frac{1}{5 \times 9}+\frac{1}{9 \times 13}+\ldots \ldots \ldots+\frac{1}{(4 n-3)(4 n+1)}=\frac{n}{4 n+1}
$$

(a) i) If $f(x)=e^{x+2}$, find the inverse function $f^{-1}(x)$.
ii) On the same axes, sketch the graphs of $y=f(x)$ and $y=f^{-1}(x)$. 2
(b) Differentiate $x^{2} \cos ^{-1}(3 x)$.
(c) Find the exact value of $\cos ^{-1}\left(\sin \frac{4 \pi}{3}\right)$. 3
(d) Determine the domain and range of $y=2 \sin ^{-1}\left(\frac{x}{3}\right)$ and hence sketch the graph. 3
(a)

In the diagram, the points A, B and O are in the same horizontal plane.
A and B are 50 m apart and $\angle A O B=60^{\circ}$. OT is a vertical tower of height h metres. The angles of elevation of T from A and B respectively are 45° and α. (α is acute.)
i) Show $A O=h$.
ii) Show $O B=h \cot \alpha$.
iii) By using the cosine rule in triangle $A O B$, show that:

$$
h^{2} \cot ^{2} \alpha-h^{2} \cot \alpha+h^{2}=50^{2}
$$

iv) Given the tower is 30 high , find the angle α correct to the nearest degree.
(b) Write down the general solution, in terms of π, of the equation $\tan \theta=-\frac{1}{\sqrt{3}}$.
(c) α and β are acute angles such that $\cos \alpha=\frac{3}{5}$ and $\sin \beta=\frac{1}{\sqrt{5}}$.

Without finding the size of either angle, show that $\alpha=2 \beta$.
(d) Without using a calculator, find the exact value of $\sin \left(\cos ^{-1} \frac{2}{3}+\sin ^{-1} \frac{1}{4}\right)$.

QUESTION 5 (12 marks) Use a SEPARATE writing booklet.
(a) Newton's Law of Cooling states that when an object at temperature $T\left({ }^{\circ} \mathrm{C}\right)$ is placed in an environment at a temperature $R\left({ }^{\circ} \mathrm{C}\right)$, then the rate of temperature loss is given by the equation $\frac{d T}{d t}=k(T-R)$; where t is the time in seconds and k is a constant.

A packet of peas, initially at $24^{\circ} \mathrm{C}$ is placed in a snap-freeze refrigerator in which the internal temperature is maintained at $-40^{\circ} \mathrm{C}$. After 5 seconds the temperature of the packet is $19^{\circ} \mathrm{C}$. Suppose $T=R+A e^{k t}$, where A is a constant.
i) State the value of A.
ii) Show that $k=\frac{1}{5} \log _{e}\left(\frac{59}{64}\right)$.
iii) Hence show that it will take approximately 29 seconds for the packet's temperature to reduce to $0^{\circ} \mathrm{C}$.

Question 5 continues on page 7.

QUESTION 5 (continued)

(b) If $y=\frac{1}{200} t e^{-t}$, show that $\frac{d y}{d t}=\frac{1}{200}(1-t) e^{-t}$.
(c) Kiran has recently consumed three standard alcoholic drinks. Immediately after he has finished his last drink, his blood alcohol level is measured over a four-hour period.

Let his blood alcohol level at any time t be A, where t is the time in hours after his last drink.

It is found that the rate of change $\frac{d A}{d t}$ of his blood alcohol content is given by:
$\frac{d A}{d t}=\frac{1}{200}(1-t) e^{-t}$, where $0 \leq t \leq 4$.
i) Show that his blood alcohol content increases during the first hour and decreases after the first hour.
ii) Initially his blood alcohol content was $0 \cdot 0005$. Find A as a function of t. You will need to use part (b).
iii) Determine his maximum alcohol content during the four-hour period. Give your answer correct to four decimal places.

End of Question 5.

(a)

In the diagram above, two circles touch one another externally at the point A.
A straight line through A meets one of the circles at T and the other at S.
The tangents at T and S meet the common tangent at A at X and Y respectively.
Let $\theta=\angle X T A$.
i) Explain why $\angle X A T$ is θ.
ii) Prove that $T X \| Y S$.
(b)

NOT TO SCALE
$A B C D$ is a cyclic quadrilateral in which $A B=A C$, and $C D$ is produced to E.
Prove that $A D$ bisects $\angle B D E$. (Hint: let $\angle A D E=\theta$).

QUESTION 6 (continued)

(c)

In the diagram above, $A B P$ is a triangle inscribed in a circle.
The altitudes $B N$ and $A M$ of the triangle intersect at H.
The altitude $A M$ is produced to meet the circumference of the circle at F .
Copy the diagram into your examination booklet.
Let $\angle P B F=\alpha$.
i) Why is $\angle P A F=\alpha$?
ii) Why are points A, N, M and B concyclic?
iii) Why is $\angle N B M=\alpha$?
iv) Show that M bisects $H F$.

End of Question 6.

QUESTION 7 (12 marks) Use a SEPARATE writing booklet.
(a) Two points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y \quad(a>0)$.
i) By derivation, show that the equation of the chord is:

$$
y=\frac{1}{2}(p+q) x-a p q .
$$

ii) If the chord $P Q$ passes through the focus, S, show that $p q=-1$.
iii) Using the fact that $P Q=P S+S Q$, or otherwise, show that the chord $P Q$ has length $a\left(p+\frac{1}{p}\right)^{2}$.

QUESTION 7 (continued)

(b)

The tangent at $T\left(2 t, t^{2}\right), t \neq 0$, on the parabola $x^{2}=4 y$ meets the x-axis at A. $P(x, y)$ is the foot of the perpendicular from A to $O T$, where O is the origin. The equation of the tangent at T is $y=t x-t^{2}$.
i) Prove that the equation of $A P$ is $y=-\frac{2}{t}(x-t)$.
ii) Show that the equation of $O T$ is $t=\frac{2 y}{x}$.
iii) Hence, or otherwise, prove that the locus of $P(x, y)$ lies on a circle with centre $(0,1)$ and give its radius.

End of paper.

STANDARD INTEGRALS

$$
\text { NOTE: } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

SOLUTIONS

* MATHEMATICS EXTENSION 1 (3 Unit component) YEAR 12 - 2008 - HALF YEARLY EXAMINATION

Question 1

$$
\begin{align*}
& \text { a) } \left.\frac{4}{5-x} \leqslant 1 \rightarrow x \neq 5 \text { (cant } \div \text { by } 0\right) \\
& (5-x)^{x} \frac{4}{5-x} \leqslant(5-x)^{2} \tag{1}\\
& (5-x)[4-(5-x)] \leqslant 0 \\
& (5-x)(x-1) \leqslant 0 \tag{1}
\end{align*}
$$

b) $\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{\sqrt{1+\tan x}} d x$

Let $u=1+\tan x$

$$
\therefore \frac{d u}{d x}=\sec ^{2} x
$$

$$
\begin{align*}
& =\int_{1}^{2} \frac{1}{\sqrt{u}} d u \tag{1}\\
& =\left[2 u^{\frac{1}{2}}\right]_{1}^{2} \tag{1}\\
& =2 \sqrt{2}-2 \tag{1}
\end{align*}
$$

when $x=0 \rightarrow u=1$

$$
x=\frac{\pi}{4} \rightarrow u=2
$$

C) i) $\int \frac{3 x}{x^{2}+9} d x=\frac{3}{2} \int \frac{2 x}{x^{2}+9} d x$

$$
\begin{equation*}
=\frac{3}{2} \ln \left(x^{2}+9\right)+c \tag{1}
\end{equation*}
$$

c) ii)

$$
\begin{aligned}
\int \frac{3}{x^{2}+9} d x & =3 \int \frac{1}{9+x^{2}} d x \\
& =3 \times \frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)+c \\
& =\tan ^{-1}\left(\frac{x}{3}\right)+c
\end{aligned}
$$

Ffull maiks
(1) Joo $\Delta^{\text {to ainght }}$ to ansure also」
iii)

$$
\begin{align*}
\int \frac{x^{2}+9}{3 x} d x & =\int \frac{x^{2}}{3 x}+\frac{9}{3 x} d x \\
& =\int \frac{x}{3}+\frac{3}{x} d x \quad(x \neq 0) \tag{1}\\
& =\frac{x^{2}}{6}+3 \ln x+C \tag{1}
\end{align*}
$$

Question 2
a)

$$
\begin{align*}
& \quad \frac{x+1}{x^{2}+1}>1 \\
& x+1>x^{2}+1 \quad\left(\cos x^{2}+1>0\right) \\
& \\
& x^{2}-x<0 \\
& x(x-1)<0 \tag{1}\\
& \therefore 0<x<1 \tag{1}
\end{align*}
$$

$$
\text { b) } \begin{align*}
& \int x\left(1-x^{2}\right)^{5} d x \\
= & -\frac{1}{2} \int-2 x\left(1-x^{2}\right)^{5} d x \tag{1}\\
= & -\frac{1}{2} \int u^{5} d u \\
= & -\frac{u^{6}}{12}+c \\
= & -\frac{\left(1-x^{2}\right)^{6}}{12}+c \tag{1}
\end{align*}
$$

$c)$

$$
\begin{align*}
3 x+y & =4 \rightarrow m_{1}=-3 \\
x-y & =1 \\
\tan \theta & =\frac{m_{1}-m_{2}}{1+m_{1} m_{2}} \\
& =\frac{-3-1}{1+(-3)(+1)} \tag{1}\\
& =\frac{-4}{2} \\
& =2 \\
& =m_{2}=1 \\
\therefore \theta & =\tan ^{-1}(2) \\
& =63^{\prime} 2(\text { to nearest min. })
\end{align*}
$$

d) \qquad

OR
METHODI
x-direction:

$$
\begin{aligned}
x_{B} & =-2+\frac{1}{3}(19-(-2)) \\
& =5
\end{aligned}
$$

y-direction:

$$
\begin{align*}
& y_{B}=3-\frac{1}{3}(3-(-15)) \tag{1}\\
&=-3 \\
& \therefore B(5,-3)
\end{align*}
$$

$$
\begin{align*}
& x=\frac{m x_{2}+n x_{1}}{m+n} \\
& 19=\frac{-3(x)+2(-2)}{-3+2} \tag{1}\\
& -19=-3 x-4 \\
& \therefore x=5 \\
& y=m y_{2}+n y \\
& -15=\frac{-3 y+2(3)}{-3+2} \tag{1}\\
& 15=-3 y+6 \\
& \therefore y=-3 \\
& \therefore B(5,-3) \tag{1}
\end{align*}
$$

c) Step 1: Check first case (ie. $n=1$)

$$
\begin{aligned}
\text { CHS } & =\frac{1}{1 \times 5} \\
& =\frac{1}{5} \\
\text { RUS } & =\frac{1}{4 \times 1+1} \\
& =\frac{1}{5} \\
& =\text { LHS } \quad \therefore \text { true for } n=1
\end{aligned}
$$

Step 2: Assume true for $n=k$

$$
\therefore \frac{1}{1 \times 5}+\frac{1}{5 \times 9}+\frac{1}{9 \times 13}+\ldots+\frac{1}{(4 k-3)(4 k+1)}=\frac{k}{4 k+1}
$$

Step 3: Prove true for $n=t+1$
6. required to prove $\frac{k}{4 k+1}+\frac{1}{(4(k+1)-3)(4(k+1)+1)}=\frac{k+1}{4(k+1)+1}$

$$
\begin{align*}
\text { LHS } & =\frac{k}{4 k+1}+\frac{1}{(4(k+1)-3)(4(k+1)+1)} \tag{i}\\
& =\frac{k}{4 k+1}+\frac{1}{(4 k+1)(4 k+5)} \\
& =\frac{k(4 k+5)+1}{(4 k+1)(4 k+5)} \\
& =\frac{4 k^{2}+5 k+1}{(4 k+1)(4 k+5)} \\
& =\frac{(4 k+1)(k+1)}{(4 k+1)(4 k+5)} \quad(4 k+1 \neq 0) \\
& =\frac{k+1}{4(k+1)+1 \text { as reg } d .} \tag{1}
\end{align*}
$$

Step 4: If true for $n=k$, then true for $n=k+1$.
Since true for $n=1$, then true for $n=2, n=3$, $n=4$ and so on...
\therefore True for all positive integer values of n.
(1) all stages of induction completed correctly.

Question 3
a) i)

$$
\begin{align*}
f(x) & =e^{x+2} \\
x & =e^{y+2} \tag{1}\\
\ln x & =y+2 \\
y & =\ln x-2 \\
\therefore f^{-1}(x) & =\ln x-2 \tag{1}
\end{align*}
$$

ii)
(I) intercepts
(I) shape at symmetry.

$$
\text { b) } \begin{aligned}
\frac{d}{d x}\left(x^{2} \cos ^{-1}(3 x)\right) & =x^{2} \cdot \frac{-1}{\sqrt{1-9 x^{2}}} \cdot 3+\cos ^{-1}(3 x) \cdot 2 x \\
& =2 x \cos ^{-1}(3 x)-\frac{3 x^{2}}{\sqrt{1-9 x^{2}}}
\end{aligned}
$$

c) Let $\alpha=\cos ^{-1}\left(\sin \frac{4 \pi}{3}\right)$
(where $c \leqslant \alpha \leqslant \pi$)

$$
\therefore \cos \alpha=-\frac{\sqrt{3}}{2}
$$

Related $L=\frac{\pi}{6}$

$$
\begin{align*}
\therefore \alpha & =\pi-\frac{\pi}{6} \\
& =\frac{5 \pi}{6} \tag{1}
\end{align*}
$$

d) $y=2 \sin ^{-1}\left(\frac{x}{3}\right)$

* damain: $-1 \leqslant \frac{x}{3} \leqslant 1$

$$
\begin{equation*}
\therefore-3 \leqslant x \leqslant 3 \tag{1}
\end{equation*}
$$

* range: $-\frac{\pi}{2} \leqslant \sin ^{-1}\left(\frac{x}{3}\right) \leqslant \frac{\pi}{2}$

$$
\begin{align*}
& -\pi \leqslant 2 \sin ^{-1}\left(\frac{x}{3}\right) \leqslant \pi \\
& \therefore-\pi \leqslant y \leqslant \pi \tag{1}
\end{align*}
$$

Question 4
a) i) $\tan 45^{\circ}=\frac{h}{A C}$

$$
\begin{aligned}
\therefore A O & =\frac{h}{\tan 45^{\circ}} \\
& =h
\end{aligned}
$$

(1) (sos. Δ)
ii) $\tan \alpha=\frac{h}{O B}$

$$
\begin{align*}
\therefore O B & =\frac{h}{\tan \alpha} \\
& =h \cot \alpha \tag{1}
\end{align*}
$$

iii)

$$
\begin{align*}
A B^{2} & =A O^{2}+O B^{2}-2 \cdot A C \cdot O B \cdot \cos 60^{\circ} \\
5 O^{2} & =h^{2}+h^{2} \cot ^{2} \alpha-2 \cdot h \cdot h \cot \alpha \cdot \frac{1}{2} \tag{1}\\
& =h^{2}+h^{2} \cot ^{2} \alpha-h^{2} \cot \alpha
\end{align*}
$$

Rearranging:

$$
h^{2} \cot ^{2} \alpha-h^{2} \cot \alpha+h^{2}=5 o^{2} \text { as req'd }
$$

iv)

$$
\begin{gather*}
30^{2} \cot ^{2} \alpha-30^{2} \cot \alpha+30^{2}=50^{2} \\
900 \cot ^{2} \alpha-900 \cot \alpha+900=2500 \\
9 \cot ^{2} \alpha-9 \cot \alpha+16=0 \tag{1}\\
\therefore \cot \alpha=\frac{9 \pm \sqrt{81-4 \times 9 \times-16}}{18} \\
=\frac{9 \pm \sqrt{657}}{18}
\end{gather*}
$$

(as $\alpha>0$)

$$
\begin{equation*}
\therefore \alpha=27^{\circ} \text { (to nearest degree) } \tag{I}
\end{equation*}
$$

b) $\tan \theta=-\frac{1}{\sqrt{3}} \quad{ }^{*} s \left\lvert\, A \quad$| related $\angle=\frac{\pi}{6}$ |
| :--- |
| $7 \mid C_{*}$ |\right.

$\therefore \theta=n \pi-\frac{\pi}{6}$ where n w an integer
OP
$\theta=n \pi+\frac{5 \pi}{6}$ where n w oi integer
(1) expression stye
ie. $n \pi+$. ${ }^{\circ}{ }_{n \pi} \pi-\ldots$ (1) correct angle
c) $\cos \alpha=\frac{3}{5} \quad \sin \beta=\frac{1}{\sqrt{5}}$

$$
\sin \alpha=\frac{4}{5} \quad \square
$$

$$
\begin{align*}
\sin 2 \beta & =2 \sin \beta \cos \beta \\
& =2 \times \frac{1}{\sqrt{5}} \times \frac{2}{\sqrt{5}} \\
& =\frac{4}{5} \tag{1}\\
& =\sin \alpha
\end{align*}
$$

$$
\therefore \alpha=2 \beta
$$

d) $\sin \left(\cos ^{-1} \frac{2}{3}+\sin ^{-1} \frac{1}{4}\right)$

Let $\alpha=\cos ^{-1} \frac{2}{3}$
\& $L C+\beta=\sin ^{-1} \frac{1}{4}$ ($0<\alpha<\pi$)

$$
\left(-\frac{\pi}{2}<\beta<\frac{\pi}{2}\right)
$$

$\therefore \cos \alpha=\frac{2}{3} \quad \therefore$ ist quad.

$$
\therefore \sin \beta=\frac{1}{4}
$$

$\frac{s A^{*}}{1+}$

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& =\frac{\sqrt{5}}{3} \cdot \frac{\sqrt{15}}{4}+\frac{2}{3} \cdot \frac{1}{4} \\
& =\frac{\sqrt{75}+2}{12} \\
& =\frac{5 \sqrt{3}+2}{12}
\end{aligned}
$$

Question 5
a) i) when $t=0, T=24^{\circ} \mathrm{C}, R=-40^{\circ} \mathrm{C}$

$$
\begin{aligned}
\therefore 24 & =-40+A e^{\circ} \\
\therefore A & =64
\end{aligned}
$$

ii)

$$
\begin{gather*}
t=5, T=19^{\circ} \mathrm{C} \\
\therefore 19=-40+64 e^{5 t} \tag{1}\\
\therefore e^{5 k}=\frac{59}{64} \\
\ln \frac{59}{64}=5 k \tag{1}\\
\therefore k=\frac{1}{5} \ln \frac{59}{64}
\end{gather*}
$$

iii) $t=$? when $T=0^{\circ} \mathrm{C}$:

$$
\begin{align*}
& 0=-40+64 e^{k t} \tag{1}\\
& e^{k t}=\frac{40}{64} \\
& \ln \left(\frac{5}{8}\right)=k t \\
& \therefore t=\frac{\ln \left(\frac{5}{8}\right)}{\frac{1}{5} \ln \left(\frac{59}{64}\right)} \tag{1}\\
& \\
& =28.88929 \ldots \\
& \\
& \vdots 29 \text { seconds. }
\end{align*}
$$

b) $y=\frac{1}{200} t e^{-t}$

$$
\begin{align*}
\frac{d y}{d t} & =\frac{1}{200}\left(t \cdot-e^{-t}+e^{-t} \cdot 1\right) \\
& =\frac{1}{200}(1-t) e^{-t} \tag{1}
\end{align*}
$$

c) i) when $t<1 \quad \frac{d A}{d t}>0$ (since $\left.(1-t)>0\right)$
$\therefore A$ is increasing for $t<1$
when $t>1 \quad \frac{d A}{d t}<0 \quad$ (Duce $\left.(1-t)<0\right)$
$\therefore A$ is decreasing for $t>1$
ii) When $t=0, A=0.0005$

$$
\begin{align*}
A & =\int \frac{d A}{d t} d t \\
& =\int \frac{1}{200}(1-t) e^{-t} d t \\
& =\frac{1}{200} t e^{-t}+C \quad \text { (from part b)) } \tag{1}
\end{align*}
$$

when $t=0: 0.0005=0+c$

$$
\begin{align*}
\therefore c & =0.0005 \\
\therefore A & =\frac{1}{200}+e^{-t}+0.0005 \tag{1}
\end{align*}
$$

iii) from i) the maximum occurs when $t=1$:

$$
\begin{align*}
\therefore A_{\max } & =\frac{1}{200} \times 1 \times e^{-1}+0.0005 \\
& =0.002339397 \ldots \\
& \doteq 0.0023(t 04 \text { dec.pl) } \tag{1}
\end{align*}
$$

Question 6
a) i) tangents to a circle frond an external point are equal.

$$
\therefore T X=X A
$$

So $\triangle T X A$ is isosceles and $\angle X T A=\angle X A T=\theta$ (base angles of isosceles \triangle)
ii) similarly, \triangle AVS is 150 sceles with base angles) $\angle Y A S$ d $\angle Y S A$ equal.
But $\angle Y A S=\angle T A X=\theta$ (vertically opposite)
So $\angle Y S A=\theta \neq \angle X T A=\theta$
But these are alternate
so $T x \| y s$
b) Let $\angle A D E=\theta$
$\therefore \angle A B C=\theta$ (exterior angle cyclic quadrilateral)
$\triangle A B C$ is is oseles ($A B=A C$, given)
$\therefore \angle A B C=\angle A C B=\theta$ (bose angles isosceles \triangle) (1)
$\angle A \subset B=\angle A D B=\theta$ (angles in same segment)
$\therefore \angle A D E=\angle A D B$ (both equal θ)
$\therefore D B$ bisects $\angle B D E$

c) i) $\angle P A F=\angle P B F=\alpha$ (angles in same segment)
ii) $\angle A N B=\angle A M B=90^{\circ}$ (given)
$\therefore A B$ is a diameter of arcle through $A, N, M \neq B$ (angle in a semicircle is a right \langle)
$\therefore A, N, M \neq B$ are concyelie.
[arg angles in sane segment / standing on chord AB....]
ii) $\angle N B M=\angle M A N$ (angles standing on same are of circle ANMB)

$$
\begin{aligned}
\angle M A N & =\angle P A F \quad(\text { same angle }) \\
& =\alpha \\
\therefore \angle N B M & =\alpha
\end{aligned}
$$

iv) $\ln \Delta^{\prime} s$ $H M B \neq F M B$:
(side: $M B$ is common
acopiprovabové
(1) $\left\{\begin{array}{l}\text { angle: } \angle M B H=\angle M B F=\alpha \quad(\angle M B H \text { is same as } \angle N B M \\ \angle M B F \text { is same as } \angle P B F\end{array}\right)$
(1) $\left\{\right.$ angle: $\angle H M B=\angle F M B=90^{\circ}$ ($A M$ is altitude of $\triangle A P B$)

$$
\therefore \triangle H M B \equiv \triangle F M B \quad(\triangle A S)
$$

(1) $\left\{\quad \therefore H M=F M\right.$ (matching sides of congruent $\Delta^{\prime} ' s$)
$\therefore M$ bisects $H F$.
($\sin \theta$ (ter option... using $\tan a=\ldots$)
Question 7

$$
\text { a) i) } \begin{align*}
m & =\frac{a p^{2}-a q^{2}}{2 a p-2 a q} \\
& =\frac{a(p+q)(p-q)}{2 q(p-q)} \quad(a \neq 0 \neq p-q \neq c) \\
& =\frac{p+q}{2} \tag{1}\\
y-y_{1} & =m\left(x-x_{1}\right) \\
y-a p^{2} & =\frac{p+q}{2}(x-2 a p) \tag{1}\\
\therefore y & =\frac{p+q}{2} x-\frac{2 q p^{2}}{2}-\frac{2 a p q}{x}+a p^{2} \\
\therefore y & =\frac{1}{2}(p+q) x-a p q \quad \text { as req} q^{\prime} d .
\end{align*}
$$

ii) Focus $S(0, a) \rightarrow$ satisfies equation if on chord:

$$
\begin{align*}
& \therefore a=\frac{1}{2}(p+q) \times 0-a p q \tag{1}\\
& \therefore p q=-a \\
&=-1 \text { as req'd. }
\end{align*}
$$

iii)

$$
\begin{align*}
P Q & =p S+S Q \\
& =\sqrt{(2 a p)^{2}+\left(a p^{2}-a\right)^{2}}+\sqrt{(2 a q)^{2}+\left(a q^{2}-a\right)^{2}} \\
& =\sqrt{4 a^{2} p^{2}+a^{2} p^{4}-2 a^{2} p^{2}+a^{2}+\sqrt{4 a^{2} q^{2}+a^{2} q^{4}-2 a^{2} q^{2}+a^{2}}} \\
& =\sqrt{a^{2}\left(2 p^{2}+p^{4}+1\right)}+\sqrt{a^{2}\left(2 q^{2}+q^{4}+1\right)} \\
& =\sqrt{a^{2}\left(p^{2}+1\right)^{2}}+\sqrt{a^{2}\left(q^{2}+1\right)^{2}} \\
& =a\left(p^{2}+1\right)+a\left(q^{2}+1\right) \tag{1}\\
& =a\left(p^{2}+q^{2}+2\right) \\
& =a\left(p^{2}+2+\frac{1}{p^{2}}\right) \\
& =a\left(p+\frac{1}{p)^{2}} \quad \text { (Duce } p q=-1\right.
\end{align*}
$$

as required
b) i) $y=t x-t^{2}$

$$
\begin{align*}
& A\left(x_{a}, 0\right): 0=t x-t^{2} \\
& \therefore x=t \\
& \therefore A(t, 0) \tag{1}
\end{align*}
$$

gradient OT:

$$
\begin{align*}
m_{\text {OT }} & =\frac{t^{2}}{2 t} \\
& =\frac{t}{2} \\
\therefore m_{\text {_O }} & =-\frac{2}{t} \tag{1}
\end{align*}
$$

\therefore equation $A P: \quad y-0=-\frac{2}{t}(x-t)$

$$
\therefore y=-\frac{2}{t}(x-t) \text { as required }
$$

ii) equation $O T$: $y-0=\frac{t}{2}(x-0)$
$\therefore \epsilon=\frac{2 y}{x}$ as required
iii) Locus of $P \rightarrow$ simultareously solve $A P \& O T$:

$$
\begin{align*}
& y=-\frac{2}{t}(x-t) \tag{1}\\
& t=\frac{2 y}{x}
\end{align*}
$$

Sub (2) into (1):

$$
\begin{align*}
& y=\frac{-2 x}{2 y}\left(x-\frac{2 y}{x}\right) \tag{1}\\
& y^{2}=-x^{2}+2 y \\
& x^{2}+y^{2}-2 y=0 \\
& x^{2}+y^{2}-2 y+1=1 \\
& x^{2}+(y-1)^{2}=1
\end{align*}
$$

\therefore locw iscircle: cantre (0, 1), radius 1 Texcept the point $(0,0)$

