

TRINITY GRAMMAR SCHOOL

Mathematics Department

2012

HALF YEARLY
EXAMINATION
HSC ASSESSMENT TASK 3

Year 12

Mathematics

Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-14
- Write your Board of Studies Student Number and Class Teacher on the writing booklet(s) or sheet(s) submitted
- Weighting: 30\%

Total marks - 70

Section I Pages 3-6
10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II
Pages 7-14

60 marks

- Attempt Questions 11 - 14
- Allow about 1 hour 45 minutes for this section

Section I 10 marks

- Circle the correct response on the answer sheet provided
- Each question is worth 1 mark

1 The exact value of $\cos ^{-1}\left(-\frac{1}{2}\right)$ is:
(A) $\frac{\pi}{3}$
(B) $-\frac{\pi}{3}$
(C) $\frac{2 \pi}{3}$
(D) $-\frac{2 \pi}{3}$

2 State the domain for which the function $y=4 x-x^{2}$ is an increasing, one-to-one function.
(A) $x \leq 2$
(B) $x<2$
(C) $x>0$
(D) $x<4$

3 What is the value of $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$?
(A) $\frac{1}{3}$
(B) 1
(C) 3
(D) undefined

4 The domain of the function $y=\ln \left(x^{2}+e\right)$ is:
(A) $x \geq 0$
(B) $x \leq 0$
(C) all real values of x
(D) all real $x, x \neq 0$

5 The range of the function $y=\ln \left(x^{2}+e\right)$ is:
(A) $y \geq 0$
(B) $y \geq 1$
(C) $y \geq e$
(D) all real $y, y \neq 0$

6 The area under the curve $y=\sin x$ between $x=-\frac{\pi}{2}, x=\frac{\pi}{2}$ and the x-axis is:
(A) -1
(B) 0
(C) 1
(D) 2

7 To find $\int_{0}^{1} x \sqrt{x^{2}+1} d x$ using the substitution $u=x^{2}+1$, in terms of u the correct expression is:
(A) $\int_{0}^{1} \sqrt{u} d u$
(B) $\frac{1}{2} \int_{0}^{1} \sqrt{u} d u$
(C) $\int_{1}^{2} \sqrt{u} d u$
(D) $\frac{1}{2} \int_{1}^{2} \sqrt{u} d u$

8 The exact value of $\sin \left(\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(-\frac{4}{3}\right)\right)$ is:
(A) -1
(B) $-\frac{7}{25}$
(C) $\frac{7}{25}$
(D) 1
$9 \quad$ Which of the graphs below represents $y=3 \sin ^{-1} \frac{x}{2}$?
(A)
(C)

(B)

(D)

10 Below is the solution to the integral $\int_{0}^{\frac{\pi}{4}} \cos ^{2} x d x$.

$$
\begin{array}{rlr}
& \int_{0}^{\frac{\pi}{4}} \cos ^{2} x d x & \\
= & \frac{1}{2} \int_{0}^{\frac{\pi}{4}}(1+\cos 2 x) d x & \text { LINE I } \\
= & \frac{1}{2}\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{4}} & \text { LINE II } \\
= & \frac{1}{2}\left[\left(\frac{\pi}{4}-\frac{1}{2} \sin \frac{\pi}{2}\right)-\left(0-\frac{1}{2} \sin 0\right)\right] & \text { LINE III } \\
= & \frac{\pi}{8}-\frac{1}{4} & \text { LINE IV }
\end{array}
$$

The line containing the FIRST mistake is:
(A) LINE I
(B) LINE II
(C) LINE III
(D) LINE IV

End of Section I

Section II 60 marks

- Begin each question in a new writing booklet or on a new answer sheet
- Show all necessary working
- Each question is worth 15 marks

Question 11 (15 marks)

a) Find:
i) $\frac{d}{d x} \sin (3 x-2)$
ii) $\int \sec ^{2} 3 x d x$
iii) $\int \sin ^{2} 2 x d x$.
b) Find the value of $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x^{2}}$
c)
i) Show that $\frac{1+\cos 2 x}{\sin 2 x}=\cot x$.
ii) Hence, find the exact value of $\cot 15^{\circ}$.
d) Use the principle of mathematical induction to show that $9^{n+2}-4^{n}$ is divisible by 5 for all positive integers of n.
e) $\quad A B C$ is a triangle inscribed in a circle. M is a point on the tangent to the circle at B and N is a point on $A C$ produced so that $M N$ is parallel to $B A$.

i) Copy or trace the diagram into your answer booklet.
ii) Give a reason why $\angle M B C=\angle B A C$.
iii) Show that $M N C B$ is a cyclic quadrilateral.

Question 12

a) In the diagram below, $B X$ and $B Y$ represent two roads intersecting at an angle of 60°. On the road $B X$ are situated three telegraph poles $A B, C D$ and $E F$, all of equal height, the same distance, x metres, apart (i.e. $B D=D F=x$). P is a point on the $\operatorname{road} B Y$ and the angles of elevation to A and C are 45° and 30° respectively.

i) Show that $D P=h \sqrt{3}$.
ii) Show that $\angle B D P=30^{\circ}$ and hence that $\triangle B P D$ is right angled at P.
iii) Prove that $x=2 h$.
iv) Show that $P F=h \sqrt{13}$ and hence show that the angle of elevation of E from P is approximately $15 \cdot 5^{\circ}$.
b) State the domain and range of $y=\sin ^{-1}(2 x+1)$ and then sketch the curve.
c) The position $x \mathrm{~cm}$ of a particle moving along an x-axis is given by $x=3 t+e^{-2 t}$ where t is the time in seconds.
i) What is the position of the particle when $t=\frac{1}{2}$ second? Give your answer in
exact form.
ii) What is the initial velocity of the particle? $\mathbf{2}$
iii) Show the initial acceleration of the particle is $4 \mathrm{~cm} / \mathrm{s}^{2}$. 2
iv) Explain why the particle will never come to rest. $\mathbf{1}$

Question 13 (15 marks) Begin a NEW answer booklet or answer sheet

a) Find the slope of the tangent to $y=\tan ^{-1}(\sqrt{1-x})$ at the point $y=\frac{\pi}{4}$.
b) \quad Solve $\frac{2}{2-x} \geq 3$.
c) Evaluate $\int_{0}^{\frac{\pi}{6}} \frac{2 \cos x}{1+4 \sin ^{2} x} d x$ using the substitution $u=2 \sin x$.
d) The region bounded by the curve $y=\sin x$, the x-axis and the lines $x=\frac{\pi}{12}$ and $x=\frac{\pi}{4}$ is rotated through one complete revolution about the x-axis. Find the volume of the solid formed.
e) The curves $y=\ln x$ and $x y=e$ intersect at the point $\mathrm{P}(e, 1)$. Show that at the point $\mathrm{P} \tan \theta=\frac{2 e}{e^{2}-1}$.
f) The diagram shows the graph of $y=\sin x$ for $0 \leq x \leq 2 \pi$. Copy or trace the diagram onto your answer sheet.

i) On the same set of axes, sketch the graph of $y=\cos 2 x$ for $0 \leq x \leq 2 \pi$.
ii) Hence, state the number of solutions in $0 \leq x \leq 2 \pi$ to the equation $\sin x=\cos 2 x$.
a) An isotope of carbon, C_{14} decays at a rate proportional to the mass present. The rate of change is given by $\frac{d M}{d t}=-k M$ where k is a positive constant and M is the mass present.
i) Show $M=M_{0} e^{-k t}$ is a solution to this equation.
ii) The half-life of this isotope is 5600 years. This means it takes 5600 years for 100 grams of C_{14} to decay to 50 grams. Find the value of k correct to 3 significant figures.
iii) Archaeologists use radiocarbon dating to establish the age of discoveries. Calculate the age of an item in which only one-eighth of the original carbon remains.
b) In the diagram below $A B C D$ is a cyclic quadrilateral. $C D$ is produced to $E . P$ is a point on the circle through A, B, C, D such that $\angle A B P=\angle P B C$.

Copy or trace the diagram into your answer booklet marking all the information given.
i) Explain why $\angle A B P=\angle A D P$.
ii) Show that $P D$ bisects $\angle A D E$.
iii) If, in addition, $\angle B A P=90^{\circ}$ and $\angle A P D=90^{\circ}$, explain where the centre of the circle is located.
c) $\quad A$ is the point $(-2,1)$ and B is the point (x, y). The point $P(13,-9)$ divides $A B$ externally in the ratio 5:3. Find the values of x and y.
d) Find the area under the curve $y=\cos ^{-1} x$ between $x=0, x=\frac{1}{2}$ and the x-axis.
e) For the function $f(x)=\frac{1}{1-x^{2}}$
i) Find the inverse function.
ii) Using Simpsons Rule, find the area under the inverse function between $x=1$ and $x=3$ using five function values.

End of Section II

End of Examination

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(+\sqrt{x^{2}-a^{2}}, \quad x>a>0\right. \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\quad \ln \left(+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Note $\ln x=\log _{e} x, \quad x>0$

TRINITY GRAMMAR SCHOOL
2012, Year 12 Mathematics Extension 1
Half Yearly Examination
SECTION I
ANSWER SHEET

Student Number:
Class Teacher:

Be sure to write your answers for Section I on this answer sheet. After you have selected an answer, CIRCLE the correct answer. To change an answer, erase your previous mark completely, and then record your new answer. Mark only one answer for each question.

Q1.	A	B	C	D
Q2.	A	B	C	D
Q3.	A	B	C	D
Q4.	A	B	C	D
Q5.	A	B	C	D
Q6.	A	B	C	D
Q7.	A	B	C	D
Q8.	A	B	C	D
Q9.	A	B	C	D
Q10.	A	B	C	D

