\qquad

BAULKHAM HILLS HIGH SCHOOL

YEAR 12

YEAR 12 HALF YEARLY EXAMINATION

2007

MATHEMATICS EXTENSION 2

Time allowed - Three hours
(Plus five minutes reading time)

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- Begin each Question on a fresh page.
- All necessary working should be shown.
- Write your teacher's name and your name on the cover sheet provided.
- At the end of the exam, staple your answers in order behind the cover sheet provided.
(a) The complex number z is given by $z=\frac{2+i}{2-i}-2$. Find:
(i) \bar{z}
(ii) $\operatorname{Im}(z)$
(iii) $|z|$
(b) Draw neat labelled sketches to show each of the following graphs on the Argand diagram.
(i) $|z-i z|=2$
(ii) $|z-1-2 i| \leq 3$ and $|z+i| \leq|z-i|$
(c) Prove $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ and explain when the equality holds. 3
(d) Solve for $z=x+i y$ the equation $z \bar{z}+2 z=\frac{1}{4}+i$.
(e) Use De Moivre's Theorem to express $\operatorname{Cos} 5 \theta$ in terms of $\operatorname{Cos} \theta$ and $\operatorname{Sin} \theta$.

QUESTION 2 (15 Marks)

(a) Solve $z^{2}-5 i z+2=0$
(b) Given $z=3-3 \sqrt{3} i$, 3
(i) Find z in mod-arg form
(ii) Find z^{4} in the form $x+i y$.
(c) Find the square roots of $4+3 i$. 3
(d) Describe in words and sketch the locus of z if $\operatorname{Arg}\left(\frac{z-1}{z-2 i}\right)=\frac{\pi}{2}$. 3
(e) Solve $z^{5}=1$ over the complex field and plot the solutions on an Argand diagram.
(f) Find i^{2009}.
(a) The ellipse E is defined by $\mathrm{E}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
(i) For E write down its eccentricity, co-ordinates of its foci and equations of its directrices, and sketch the curve, showing its features.
(ii) Show that the equation of the normal at $\mathrm{P}(3 \operatorname{Cos} \theta, 2 \operatorname{Sin} \theta)$ is

$$
\begin{equation*}
\frac{3 x}{\operatorname{Cos} \theta}-\frac{2 y}{\operatorname{Sin} \theta}=5 \tag{3}
\end{equation*}
$$

(iii)If the normal at P cuts the major axis at G and the minor axis at H , then find M , the midpoint of GH .
(b)
(i) Show that for an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, the sum of the focal distances is $2 a$.
(ii) Hence find the equation of the locus of z such that $|z+2 i|+|z-2 i|=6$

QUESTION 4 (15 Marks)

(a)
(i) Show that in the first quadrant the ellipse $4 x^{2}+9 y^{2}=36$ and the hyperbola $4 x^{2}-y^{2}=4$ intersect at right angles.
(ii) Find the equation of the one circle through the points of intersection of the two conics in all four quadrants.
(b) Find the equation(s) of the normal to the curve $x y(x+y)+2=0$ at the point(s) where the gradient of the tangent is -1 .
(c) $A S$ and $T B$ are tangents. Prove:
(i) $\triangle S A T$ lll $\triangle B T S$
(ii) $A T \times B S=S T^{2}$
(iii) $S B \cap A T$

(a) The rectangular hyperbola H has equation $x^{2}-y^{2}=2$. Write down its eccentricity, the co-ordinates of its foci S and S^{\prime}, and vertices A and A^{\prime}, the equations of its directrices and asymptotes.
(b)
(i) Show the condition for the line $y=m x+c$ to be a tangent to the

$$
\begin{equation*}
\text { ellipse } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text { is } c^{2}=a^{2} m^{2}+b^{2} \tag{3}
\end{equation*}
$$

(ii) Show that the pair of tangents drawn from $(5,0)$ to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ are at right angles to each other.
(c)
(i) Prove that the equation of the tangent to $x y=c^{2}$ at the point $P\left(c p, \frac{c}{p}\right)$ is $x+p^{2} y=2 c p$. 2
(ii) If the tangent at P passes through the foot of the ordinate of $Q\left(c q, \frac{c}{q}\right)$ show that $q=2 p$.
(iii) Hence prove that the locus of the midpoint of PQ is $x y=\frac{9 c^{2}}{8} . \quad 2$

QUESTION 6 (15 Marks)

(a) Sketch the graph of $y=(2 x+5)(x+1)$ showing clearly the intercepts on the axes and the co-ordinates of any turning points.

2
(b) Use the graph in part (a) to sketch the graph of $y=\frac{1}{(2 x+5)(x+1)}$ showing clearly the intercepts on the axes, the co-ordinates of any turning points and the equations of any asymptotes.

$$
4
$$

(c) Use the graph in part (a) to sketch the graph of $y=\ln [(2 x+5)(x+1)]$ showing the y intercept and the equations of any asymptotes.
(d) Find the equation of the tangent to the curve $y=\ln [(2 x+5)(x+1)]$ at $x=0$.
(e) Hence find the values of k such that exactly one of the solutions of the equation $\ln [(2 x+5)(x+1)]=k x+\ln 5$ is a positive number.
(a) Sketch the graph of $f(x)=\frac{3 x^{2}-7}{(x-2)(x+3)}$, given that $f^{\prime}(x)=\frac{(3 x-1)(x-7)}{(x-2)^{2}(x+3)^{2}}$
(b) Hence draw neat half-page sketches of:
(i) $y=\sqrt{f(x)} \quad \vdots \quad 2$
(ii) $y=(f(x))^{2} \quad 2$
(iii) $y=f(\mid x)$
(b) (i) Draw the graph of $y \neq|2 x+1|-|x-2|$ in the domain $-6 \leq x \leq 3 \quad 2$
(ii) Use the graph to solve $|2 x+1|-|x-2| \leq 2 \quad \because \quad 2$

QUESTION 8 (15 Marks)

(a) For what values of a does $\int_{i}^{a}\left(x+\frac{1}{2}\right) d x=2 \int_{0}^{\frac{\pi}{4}} \sec ^{2} x d x$?
(b)
(i) Write an expression for $\operatorname{Cos}(\mathrm{A}+\mathrm{B})$ and $\operatorname{Cos}(\mathrm{A}-\mathrm{B})$. Hence express $2 \operatorname{Sin} A \operatorname{Sin} B$ as a difference of two functions.

2
(ii) Given that $\operatorname{Sin} x \operatorname{Sin} 3 x+\operatorname{Sin} x \operatorname{Sin} 5 x+\operatorname{Sin} x \operatorname{Sin} 7 x=\operatorname{Sin} a x \operatorname{Sin} b x$ then find the values of a and b.
(c) Given p and q are roots of $a x^{2}+b x+c=0$, show, without solving for p or q, that $\frac{q}{a p+b}+\frac{p}{a q+b}=\frac{-2}{a}$.
(d) For the graph of $y=f(x)$ shown :

(i) Find $\int_{0}^{4} f(x) d x$
(ii) For what value of a, where $0 \leq a \leq 4$, does $\int_{0}^{a} f(x) d x$ have the smallest value?

BHHS YEAR12 MATHS EAT 2. HALFYEARLY 2007 - SOCUTLONS TR

$$
\begin{aligned}
& Q \mid(a) z=\frac{2+i}{2-i}-z=\frac{2+i}{2-i} \times \frac{2+2}{2+i}-2 \\
&=\frac{4+4 i}{5}-1 \\
&=-2=\frac{3}{5}+\frac{4 i}{5}-2 \\
& \therefore
\end{aligned}
$$

(i) $\bar{z}=\frac{-\frac{2}{5}-\frac{4 i}{5}}{}$ (ii) $4 m z=\frac{4}{5}$
(iii) $(z)=\sqrt{\frac{49}{25}+\frac{16}{25}}=\frac{\sqrt{65}}{5}$
(b) (i) $|z-i z|=2$

$$
\begin{aligned}
& |(x+i y)-i(x+i y)|=2 \\
& |x+y+i(y-x)|=2 \\
& (x+y)^{2}+(y-x)^{2}=4 \\
& x^{2}+2 x y+y^{2}+y^{2}-2 y x+x^{2}=4
\end{aligned}
$$

$$
\therefore x^{2}+y^{2}=2
$$

$$
\text { (ii) }|z-(i+2 i)| \leq 3 \text { and }|z+i| \leq|z-i|
$$

(C) In $\triangle O A C$

$$
\begin{aligned}
& O A=\left|z_{1}\right|, A C=O B=\left|z_{2}\right| \\
& O C=\left|z_{1}+z_{2}\right|
\end{aligned}
$$

In cany $\triangle, O C<O A+A C$

$$
\therefore\left|z_{1}+z_{2}\right|<\left|z_{1}\right|+\left|z_{2}\right|
$$

Equalify holds when ary $z_{1}=\arg z_{2}$
or O, A, B are collinear. 1
(d) $x^{2}+y^{2}+2 x+2 i y=\frac{1}{4}+i$

$$
\begin{aligned}
& -2 y=1=y=\frac{1}{2} \\
& x^{2}+\frac{1}{4}+2 x=\frac{1}{4}
\end{aligned}
$$

$$
x(x+2)=0 \therefore E=0 \text { or }-2
$$

$\therefore z=\frac{1}{2} i$ or $z=-2+\frac{1}{2} i:$

$$
\text { (e) } \begin{aligned}
2^{5}= & (\cos \theta+i \sin \theta)^{5}=\cos 5 \theta+i \sin 5 \theta \\
\text { or } 2^{5}= & \cos ^{3} \theta+5 \cos 4 \theta i \sin \theta+10 \cos ^{3} \theta i^{2} \sin ^{2} \theta \\
& +10 \cos ^{2} \theta i^{3} \sin ^{3} \theta+5 \cos \theta i^{4} \sin ^{4} \theta \\
& +i^{5} \sin ^{5} \theta \\
= & \left(\cos ^{5} \theta 10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos ^{3} \theta \sin ^{4} \theta\right) \\
& +i\left(5 \cos ^{4} \theta \sin \theta-10 \cos ^{2} \theta \sin ^{3} \theta+\sin ^{5} \theta\right)
\end{aligned}
$$

Equating veal parts give.
$\cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta$

Q2(a)

$$
\begin{aligned}
z & =\frac{5 i \pm \sqrt{-25-8}}{2}=\frac{5 i \pm i \sqrt{33}}{2} \\
& =\frac{(5 \pm \sqrt{33}) i}{2}
\end{aligned}
$$

(b)(i) $r=\sqrt{9+27}=\sqrt{36}=6$
$\operatorname{Tan}(\operatorname{mg} 2)=-\frac{3 \sqrt{3}}{3}=-\sqrt{3} \therefore \operatorname{Arg} 2=-\frac{\pi}{3}$

$$
\text { (ii) } \begin{aligned}
\therefore 2 & =6\left[\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right] \\
& \left.=6^{4}\left(\cos \frac{-4 \pi}{3}\right)+i \sin \left(-\frac{-4 \pi}{3}\right)\right] \\
& =1296\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \\
& =-648+648)
\end{aligned}
$$

(c) Let $a+i b=\sqrt{4+3 i}$

$$
\therefore a^{2}-b^{2}+2 a b i=4+3 i .
$$

$\therefore a^{2}-b^{2}=4$ and $2 a b=3 \therefore b=\frac{3}{2 a}$
$\therefore a^{2}-\frac{a}{4 a^{2}}=4$ or $4 a^{4}-16 a^{2}-9=0$

$$
\left(2 a^{2}-9\right)\left(2 a^{2}+1\right)=0
$$

$a^{2}=\frac{9}{2}$ or $a^{2}=-\frac{1}{2} \therefore$ NO soln.
$a= \pm \frac{3}{\sqrt{2}}, b= \pm \frac{3}{2}>\frac{\sqrt{2}}{3}= \pm \frac{1}{\sqrt{2}}$

$$
\therefore \sqrt{4+3 i}= \pm\left(\frac{3}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)
$$

(d) $\operatorname{Arg}(z-1)-\operatorname{Arg}(z-2 i)=\frac{\pi}{2}$

Locus is a somi-cicle with diameter endpoints $(0,2)$ and $(1,0)$ but not including enclpoints.

(2) $2^{5}=(\cos \theta+i \sin \theta)^{5}=\cos 2 k \pi+i \sin 2 k \pi$

$$
\because \cos 5 \theta=\cos 2 k \pi \text {, for } k=0,1,2,3,4 .
$$

$$
\therefore \theta=\frac{2 k \pi}{5}, k=0,1,2,3, k
$$

$$
\therefore z_{1}=1
$$

$z_{2}=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}$
$z_{3}=\cos \frac{4 \pi}{5}+i \sin \frac{4 \pi}{5}$
$z_{4}=\operatorname{Cos} \frac{6 \pi}{5}+i \operatorname{Sin} \frac{6 \pi}{5}$
$z_{5}=\cos \frac{8 \pi}{5}+e \sin \frac{8 \pi}{5}$
(f) $i^{4}=1$

$\therefore i^{2008}=1$
$\therefore i^{2002}=i$

Q3 (a) $a=3, b=2$
(i) $b^{2}=a^{2}\left(1-e^{2}\right)$
$4=9\left(1-e^{2}\right)$

$$
1-e^{2}=\frac{4}{5}, e^{2}=\frac{5}{9}, e=\frac{\sqrt{5}}{3}
$$

Foci $=(\pm a e, 0)=(\pm \sqrt{5,0})$
Dir. are $x= \pm \frac{a}{e} \therefore x= \pm \frac{9}{\sqrt{5}}$ or $x= \pm \frac{9 \sqrt{5}}{5}$

(ii) Diff. Imp.

$$
\begin{aligned}
& \frac{2 x}{9}+\frac{2 y}{4} y^{\prime}=0 \therefore y^{\prime}=-\frac{2 x}{9} \times \frac{2}{y}=\frac{-4 x}{9 y} \\
& { }^{\text {Tang }}=-\frac{12 \cos \theta}{18 \sin \theta}=-\frac{2 \cos \theta}{3 \sin \theta}
\end{aligned}
$$

$\therefore m_{\text {form }}=\frac{3 \sin \theta}{2 \cos \theta}$
Egn of n omal is

$$
\begin{aligned}
& y-2 \sin \theta=\frac{3 \sin \theta}{2 \cos \theta}(x-3 \cos \theta) \\
& \frac{2 y}{\sin \theta}-4=\frac{3 x}{\cos \theta}-9 \\
& \frac{3 x}{\cos \theta}-\frac{2 y}{\sin \theta}=5
\end{aligned}
$$

(iii) $A E G, y=0 \therefore x=\frac{5}{3} \cos \theta$

$$
\therefore M=\left(\frac{5}{6} \cos \theta,-\frac{5}{4} \sin ^{2} \theta\right)
$$

(b)(i) $P S=e P M$ where M is on d $=e\left(\frac{a}{2}-x_{1}\right)=a-e x$.
$P S^{\prime}=e P M^{\prime}$ where M^{\prime} is on d^{\prime} $=e\left(x_{1}-\frac{a}{e}\right)=e x_{1}+a$
$P S+P S^{\prime}=a-2 x_{1}+e x_{1}+a=2 a$
(ii) $P S+P S^{\prime}=2 b$ where $S=(0,2)$

$$
\begin{aligned}
& s^{\prime}=(0,-2), b=3 \\
& \therefore b e=2 \quad \therefore e=\frac{2}{3} \\
& c^{2}=b^{2}\left(1-e^{2}\right) \\
& \\
& =9\left(1-\frac{4}{9}\right) \\
& \\
& =9 \times \frac{5}{9}=5 \\
& \therefore a
\end{aligned}
$$

\therefore Eqd is

$$
\frac{x^{2}}{5}+\frac{y^{2}}{9}=1
$$

Q4 (a) infor $4 x^{2}+9 y^{2}=36$, dff implicity

$$
\begin{aligned}
& 8 x+18 y y^{\prime}=0 \therefore y_{1}^{\prime}=-\frac{4 x}{9 y}-1
\end{aligned}
$$

For $4 x^{2}-y^{2}=4$, diff imp.

$$
8 x-2 y y^{\prime}=0, \quad y_{2}^{\prime}=\frac{4 x}{y_{2}}
$$

For $y^{2}=4 x^{2}-4$ sub in $4 x^{2}+9 y^{2}=36$

$$
4 x^{2}+36 x^{2}-36=36
$$

$$
\begin{aligned}
& 40 x^{2}=72 \\
& x^{2}-\text { 哣 }
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{2}{5} \quad x=\frac{3}{\sqrt{5}} \sin \theta_{1} \\
& x^{2}=\frac{1}{5}
\end{aligned}
$$

$$
\therefore y^{2}=\frac{36}{5}-4=\frac{16}{5} \therefore y=\frac{4}{\sqrt{5}}
$$

$$
\therefore y_{1}^{\prime} \times y_{2}^{\prime}=-\frac{4}{4} \times \frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{4} \times 4 \times \frac{3}{\sqrt{5}}+\frac{\sqrt{5}}{4}=-1
$$

\therefore Interect at repht angles.
(ii) By symmetry, p is of intersection
are $\left(\pm \frac{3}{15}, \pm \frac{4}{\sqrt{5}}\right)$. Centre $=(0,0)$

$$
O P=\sqrt{\frac{9}{5}+\frac{16}{5}}=\sqrt{5}
$$

\therefore Equis $x^{2}+y^{2}=5$
(b) $x^{2} y+x y^{2}+z=0$.

$$
\begin{aligned}
& \text { D. ef. impl. } x^{2} y^{\prime}+y^{2}-1+x \cdot 2 y y^{\prime}=0 \\
& y^{\prime}\left(x^{2}+2 x y\right)=-y^{2}-2 x y \\
& y^{\prime}=\frac{-y^{2}-2 x y}{x^{2}+2 x y}
\end{aligned}
$$

If $m_{\text {Tang }}=-1,-y^{2}-2 x y=-x^{2}-2 x y$

$$
\begin{aligned}
\therefore x^{2} & =y^{2} \\
x & = \pm y
\end{aligned}
$$

If $x=y, x^{3}+x^{3}+2=0 \therefore \frac{x}{y}=-1$ If $-x=y,-x^{3}+x^{3}+2=0$; Nos oln. $m_{N}=1$
\therefore Equif normal is $y+1=1(x+1)$ $y=x$
(c) (i) I $\triangle A S A T, \triangle B T S$
$\angle S A T=\angle B T S$ (Lhettang chord)
$\angle A S T=\angle S B T(\angle$ bet taing 4 chord $)$ = Linalt \cdot Ses -
$\therefore \angle A T S=\angle B S T\left(3 \operatorname{cod} \angle ' s\right.$ in $\left.A^{\prime} S\right)$
$\therefore \triangle S A T \| \triangle B T S$ (AAA)
(ii) $\frac{S T}{A T}=\frac{B S}{S T}\left(\begin{array}{l}\text { Match-sicks in } \\ \text { sim. }\end{array}\right.$
sim. Als are in some rati (iii) $\angle A T S=\angle B S T\left(E q . L L_{s}\right.$ insim. NSS $)$
$\therefore S B \| A T$ (A1t. 4 s aqual)

$$
\begin{aligned}
& \text { Q5(a) } \frac{x^{2}}{2}-\frac{y^{2}}{2}=1 \therefore a=\sqrt{2}, b=\sqrt{2} \\
& b^{2}=a^{2}\left(e^{2}-1\right) \therefore e^{2}-1=1 \therefore e^{2}=2 \cdot e=\sqrt{2} \\
& \therefore \text { Foci }=(\pm a, 0)=(\pm 2,0)
\end{aligned}
$$

$$
v_{\text {ort }} \text { cess }=(\pm a, 0)=(\pm \sqrt{2}, 0)
$$

Directries are $x= \pm \frac{a}{2} \therefore x= \pm$ (
Asymptotes are $y= \pm x$
(b) (c) Solve $y=m x+c$ with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$$
\begin{aligned}
& \therefore-\frac{x^{2}}{a^{2}}+\frac{m^{2} x^{2}+2 m x c+c^{2}}{b^{2}}=1 \\
& b^{2} x^{2}+a^{2} m^{2} x^{2}+2 a^{2} m c x+a^{2} c^{2}=a^{2} b^{2} \\
& \left(b^{2}+a^{2} m^{2}\right) x^{2}+2 a^{2} m c x+a^{2} c^{2}-a^{2} b^{2}=0
\end{aligned}
$$

If tangent $\Delta=0$

$$
\begin{aligned}
& \therefore a^{4} m^{2} c^{2}=4\left(b^{2}+a^{2} m^{2}\right) a^{2}\left(c^{2}-b^{c}\right) \\
& a^{2} m^{2} c^{2}=b^{2} c^{2}-b^{4}+a^{2} m^{2} c^{2}-a^{2} b^{2} m^{2} \\
& b^{4}+a^{2} b^{2} m^{2}=b^{2} c^{2} \\
& \therefore c^{2}=a^{2} m^{2}+b^{2}
\end{aligned}
$$

(ii) Since $y=m x+c$ then

$$
y=m x \pm \sqrt{16 m^{2}+9}
$$

Sub in $(5,0)$

$$
\begin{gathered}
0=5 m \pm \sqrt{16 m^{2}+9} \\
16 m^{2}+9=25 m^{2} \\
9 m^{2}=9 \\
m^{2}=1 \\
m= \pm 1
\end{gathered}
$$

Tangents with gradients 1 and-1 \therefore Perpendicular.
(c)(i) $x y=c^{2}-\therefore y=c^{2} x^{-1}$

$$
\therefore y^{\prime}=-c^{2} x^{-2}=-\frac{c^{2}}{x^{2}}
$$

$A \in P\left(c p, \frac{c}{p}\right) m_{T}=-\frac{c^{2}}{c^{2} p^{2}}=-\frac{1}{p^{2}}$
\therefore Eqn of tangent is

$$
\begin{aligned}
y-\frac{c}{p} & =-\frac{1}{p^{2}}(x-c p) \\
p^{2} y-c p & =-x+c p \\
p^{2} y+x & =2 c p
\end{aligned}
$$

(ii) Tangent passes thru (cq,o)

$$
\therefore 0+c q=2 c p_{1} \therefore q=2 p
$$

(ii) $M_{P Q}=\left(\frac{c(p+q)}{2}, \frac{c}{c+} \frac{c}{2}\right)$

Let $q=2 p$

$$
\therefore M P Q=\left(\frac{3 P c}{2}, \frac{c}{2} \cdot \frac{3}{2 p}\right)
$$

\therefore If $x=\frac{3 c_{p}}{2}$ and $y=\frac{3 c}{4 p}$
then $x y=\frac{9 c^{2}}{8}$

6 (a) $y=(2 x+5)(x+1)$

$$
=0 \text { at } x=-2 \frac{1}{2}, x=-1
$$

vertex at $x=-1 \frac{3}{4}, y=-\frac{9}{8}$
when $x=0, y=5$?
nt. 1

(b) $y=\frac{1}{(2 x+5)(x+1)}$

Asym.at $x=-2 \frac{1}{2}, x=-1$
y-int at $y=\frac{1}{5}$
Truing p t at $x=-1 \frac{3}{4}, y=-\frac{8}{4}$

(c) $y=\ln [(2 x+5)(x+1)]$

Exists when $y=(2 x+5)(x+1)$ is pos.
\therefore For $x<-2 \frac{1}{2}$ and $x>-1$ When $x=0, y=\ln 5$ i

(d) $y^{\prime}=\frac{(x+1) 2+(2 x+5) 1}{(2 x+5)(x+1)}=\frac{4 x+7}{(2 x+5)(x+1)}-$

When $x=0, m_{\tau}=\frac{2}{5}$ and $y=\ln 5$
\therefore Eu. is $y=\frac{7}{5} x+\ln 5$
(e) If $k=\frac{2}{5}$, tangent touches at $x=0$ and crosses for $x<-2 \frac{1}{2}$
IF $0<k<\frac{2}{5}$, line crosses for $x<-2 \frac{1}{2}$, for $x=0$ and for $x>0$.
\therefore one positive sol $f \circ<k<\frac{7}{5}$
27.(a) Asymptotes at $x=-3, x=2-1$

St.pts when $f^{\prime}(x)=0$
$\therefore x=3, y=1 \frac{1}{5}$ and $x=7, y=2 \frac{4}{5}-1$
When $-3<x<\frac{1}{3}, f^{\prime}(x)>0$
Urn $\frac{1}{3}<x<2, f^{\prime}(x)<0$
when $\left.2<x \ll>, f^{\prime}(x)<0\right\}:$ Hin at $x=7$ When $x \gg, f^{\prime}(x)>0$
For $f(x)=\frac{3 x^{2} 7}{x^{2}+x-6}=3+\frac{11-3 x}{x^{2}+x-6}$
\therefore Hor. asym at $y=3$ by division
As $x \rightarrow \infty, y \rightarrow 3^{-}$

(b) (c) $y=\sqrt{f(x)}$ only exists for $f(x) \geq 0$ Asym at $x=-3, x=2$. Hort $A s, y=\sqrt{3}$ $y^{\prime}=\frac{f^{\prime}(x)}{2 \sqrt{f(x)}} \therefore$ st pts when $f^{\prime}(x)=0$
Der. Non not exist when $f(x)=0_{\text {shape }}-1$

(ii) $y=(f(x))^{2} \therefore y^{\prime}=2(f(x))^{\prime} f^{\prime}(x)=0$
when $f(x)=0$ and $f^{\prime}(x)=0$
ie when $x=\frac{1}{3}, 7, \pm \sqrt{\frac{7}{3}}$

(ii) $y=\left(\mid x()\right.$, y^{\prime} is under at $x=0$

d x_{i}

$Q 8(v) \int_{1}^{a}\left(x+\frac{1}{2}\right) d x=2 \int_{0}^{\frac{\pi}{4}} \sec ^{2} x d x$

$$
\left.\left[\frac{x^{2}}{2}+\frac{x}{2}\right]_{1}^{a}=\pi \operatorname{Tan} x\right]_{0}^{\frac{\pi}{4}} \quad \text { int }-1
$$

$\left(\frac{a^{2}}{2}+\frac{a}{2}\right)-\left(\frac{1}{2}+\frac{1}{2}\right)=2-0$

$$
\frac{a^{2}}{2}+\frac{a}{2}-3=0
$$

$$
a^{2}+a-b=0
$$

$$
(a+3)(a-2)=0
$$

$\therefore a=-3$ or 2

$$
\begin{align*}
& \text { bd c } \cos (A+B)=\cos A \cos B-\sin A \sin B \cdots(1) \\
& \cos (A-B)=\cos A \cos A+\sin A \sin B \cdots(1) \tag{2}
\end{align*}
$$

$\therefore(2)-(1)$ gives

$$
\cos (A-B)-\cos (A+B)=2 \sin A \sin B
$$

(ii) $\sin x \sin 3 x+\sin x \sin 5 x+\sin x \sin 7 x$
$=\frac{1}{2}(\cos 2 x-\cos 4 x+\cos 4 x-\cos 6 x$ $+\cos 6 x-\cos 8 x^{\prime}$
$=\frac{1}{2}(\cos 2 x-\cos 8 x)$
Since $A-B=2 x$
$=\frac{1}{2} \times 2 \sin 5 x \sin 3 x$ and $A+B=8 x$
$=\sin 5 x \sin 3 x$ and $B=3 x$
$\therefore a=5$ and $b=3-1$ or $a=3$ and $b=5$

$$
\text { (ㄹ) } \begin{aligned}
& p+q=-\frac{b}{a} \therefore a p+a q=-b-(1) \\
& p q=\frac{c}{a}-a p q=c \\
\therefore & \frac{q}{a p+b}+\frac{p}{a q+b}=\frac{q}{-a q}+\frac{p}{-a p} v \operatorname{sing}(1) \\
= & -\frac{1}{a}+\frac{1}{-a}=-\frac{2}{a}
\end{aligned}
$$

(d)
(c) $\int_{0}^{4} f(x) d x=\frac{1}{2} \times 1 \times 1-\frac{1}{2}\left(2 \frac{1}{2}+1\right) \times 1+\frac{1}{2} \times \frac{1}{2} \times 1$ $=\frac{1}{2}-1 \frac{3}{4}+\frac{1}{4}$

$$
=-1
$$

(ii) $\int_{0}^{a} f(x) d x$ has the smallest value when it is most negative.

$$
\therefore a=3 \frac{1}{2}-1
$$

