BAULKHAM HILLS HIGH SCHOOL

2011
YEAR 12 HALF YEARLY
EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back of the cover sheet
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work

Total marks - 80

- Attempt Questions 1-8
- All questions are of equal value
- Start a separate piece of paper for each question.
- Put your BOS number and the question number at the top of each sheet.

Total marks - 80

Attempt Questions 1 - 8
All questions are of equal value
Answer each question on a SEPARATE piece of paper clearly marked Question 1,
Question 2, etc. Each piece of paper must show your BOS number.
Question 1 (10 marks) Use a separate piece of paper
a) Given that $z=-\sqrt{3}-i$, evaluate;
(i) $\bar{z} 1$
(ii) $|z| \quad 1$
(iii) $\arg z \quad 1$
(iv) $\frac{1}{z}$
(v) z^{4} in the form $x+i y \quad 2$
b) (i) On an Argand Diagram sketch the locus of a point corresponding to the
complex number z, where $|z-3|=3$
(ii) Use your diagram in (i) to explain why $\arg (z-3)=\arg z^{2}$

Question 2 (10 marks) Use a separate piece of paper
a) For the hyperbola $\frac{y^{2}}{12}-\frac{x^{2}}{4}=1$, find the;
(i) eccentricity.
(ii) coordinates of the focii. 1
(iii) equations of the directrices. 1
(iv) equations of the asymptotes. 1
b) The polynomial $P(z)$ has the equation $P(z)=z^{4}-2 z^{3}-z^{2}+2 z+10$.

3
Given that $(z-2+i)$ is a factor of $P(z)$, express $P(z)$ as a product of two real quadratic factors.
c) Solve the inequality $\frac{4 x}{3+2 x-x^{2}} \leq 1$

Marks

Question 3 (10 marks) Use a separate piece of paper
a) (i) Find a monic cubic equation with roots α, β and γ such that

2

2

4

Question 4 (10 marks) Use a separate piece of paper
a) In the square $O A B C$, shown below, the point A represents the complex number z and the point C represents the complex number ω.

(i) Find $\arg \left(\frac{z-\omega}{z+\omega}\right)$,
(ii) If $z=2+i$, what complex numbers do B and C represent?
b) How many different ways are there of arranging four married couples at a circular table with men and women in alternate positions, and no wife next to her husband?
c) Prove that $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}=0$ has no multiple roots for $n \geq 1$

Marks

Question 5 (10 marks) Use a separate piece of paper
a) The equation $x^{3}-6 x^{2}+11 x-6=0$, has roots α, β and γ.
(i) Without finding the roots α, β and γ, find the equation with roots $\alpha-2, \beta-2$ and $\gamma-2$.
(ii) Hence, or otherwise, solve $x^{3}-6 x^{2}+11 x-6=0$.
b) In the diagram, two circles touch at P and share a common tangent $T P$.
C lies on the circumference of one circle and D lies on the circumference of the other, such that D, P and C are collinear.
$T C$ and $T D$ intersect the circles at B and A respectively.

(Note: on page 7 there is a copy of the above diagram that you can use, please detach and include with your solutions)
(i) Show, giving reasons, that $A T B P$ is a cyclic quadrilateral.
(ii) Show, giving reasons, that $A B C D$ is a cyclic quadrilateral.

Question 6 (10 marks) Use a separate piece of paper
a) Let ω be one of the cube roots of unity.
(i) Find the two possible values of $1+\omega+\omega^{2}$.
(ii) If ω is one of the non-real cube roots of unity, find the value of $(2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{4}\right)\left(2-\omega^{5}\right)$
b) The tangent to the rectangular hyperbola $x y=4$ at the point $T\left(2 t, \frac{2}{t}\right)$ has the equation $x+t^{2} y=4 t$. (Do not prove this)
(i) The tangent cuts the x-axis at the point Q. Show that the line through Q which is perpendicular to the tangent at T has equation $t^{2} x-y=4 t^{3}$.
(ii) This line through Q cuts the rectangular hyperbola at the points R and S.

Show that the midpoint M of $R S$ has coordinates $M\left(2 t,-2 t^{3}\right)$.
(iii) Find the equation of the locus of M as T moves on the rectangular hyperbola, stating any restrictions that may apply.

Question 7 (10 marks) Use a separate piece of paper
a) The complex number $\frac{\sqrt{3}}{2}+\frac{i}{2}$ is one of the nth roots of -1 .

Find the least value of n for this to be so.
b) Solve the equation $x^{4}+x^{3}+x^{2}+x+1=0$
c) Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $a>b>0$.

(i) Show that the tangent to the ellipse at the point $(a \cos \theta, b \sin \theta)$ has the equation $b x \cos \theta+a y \sin \theta-a b=0$.
(ii) R and R ' are the feet of the perpendiculars from the foci S and S ' to the tangent at P. Show that $S R \times S^{\prime} R^{\prime}=b^{2}$.

Marks

Question 8 (10 marks) Use a separate piece of paper
a) 47231 is a five digit number whose digits sum to 17 (i.e. $4+7+2+3+1=17$) How many five digit numbers sum to 43 ?
b) (i) Prove by mathematical induction, that for all positive integers n;

$$
\frac{1}{2}+\cos \theta+\cos 2 \theta+\ldots+\cos (n-1) \theta=\frac{\sin \frac{1}{2}(2 n-1) \theta}{2 \sin \frac{1}{2} \theta}
$$

(Hint: you may use the identity $2 \cos A \sin B=\sin (A+B)-\sin (A-B)$)
(ii) In the diagram, n rectangles of equal width are constructed under the curve $y=\cos x$ from $x=0$ to $x=\frac{\pi}{6}$.

Use the result of part (i) to show that the sum S_{n} of the areas of the n rectangles is given by

$$
S_{n}=\frac{\pi}{12 n}\left\{(\sqrt{3}-1)+\frac{\sin (2 n-1) \frac{\pi}{12 n}}{\sin \frac{\pi}{12 n}}\right\}
$$

(iii) Hence find $\lim _{n \rightarrow \infty} S_{n}$
(Hint: Let $n=\frac{1}{h}$)

End of paper

Question 5 b)

Please detach and include with your solutions

BAULKHAM HILLS HIGH SCHOOL

EXTENSION 2 HALF YEARLY 2011 SOLUTIONS

Solution	Marks	Comments
QUESTION 1		
1a) (i) $\bar{z}=-\sqrt{3}+i$	1	
$\text { 1a) (ii) } \begin{aligned} \|z\| & =\sqrt{(-\sqrt{3})^{2}+(-1)^{2}} \\ & =2 \end{aligned}$	1	
1a) $\text { (iii) } \begin{aligned} \arg z & =\tan ^{-1}\left(\frac{-1}{-\sqrt{3}}\right) \\ & =-\frac{5 \pi}{6} \end{aligned}$	1	Note: argument should be quoted $-\pi<\arg z \leq \pi$
$\text { 1a) (iv) } \begin{aligned} \frac{1}{z} & =\frac{\bar{z}}{\|z\|^{2}} \\ & =\frac{-\sqrt{3}+i}{4} \\ & =-\frac{\sqrt{3}}{4}+\frac{i}{4} \end{aligned}$	1	
1a) (v) $\begin{aligned} z^{4} & =\left(2 \operatorname{cis}-\frac{5 \pi}{6}\right)^{4} \\ & =2^{4} \operatorname{cis}-\frac{20 \pi}{6} \\ & =16\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \\ & =-8+8 \sqrt{3} i \end{aligned}$	2	1 mark - Correct use of De Moivre's theorem or equivalent merit - Correctly changing from mod-arg to $x+i y$ Note: correct use of student's answers to (ii) \& (iii) should gain full marks
1b) (i)	2	1 mark - Recognises the locus is a circle
1b) (ii) $\begin{aligned} & \arg (z-3)=2 \arg z \\ & (\angle \text { at centre twice } \angle \text { at circumference }) \\ & \therefore \arg (z-3)=\arg z^{2} \end{aligned}$ $\|z-3\|=3$	2	1 mark - Uses diagram to make progress towards a solution

Solution	Marks	Comments
QUESTION 2		
$\text { 2a) (i) } \begin{aligned} a^{2} & =b^{2}\left(e^{2}-1\right) \\ 4 & =12\left(e^{2}-1\right) \\ e^{2}-1 & =\frac{1}{3} \\ e^{2} & =\frac{4}{3} \\ e & =\frac{2}{\sqrt{3}} \end{aligned}$	1	
$\text { 2a) (ii) } \begin{aligned} & \left(0, \pm \sqrt{12} \times \frac{2}{\sqrt{3}}\right) \\ = & (0, \pm 4) \end{aligned}$	1	1 mark - Correct use of formulae and foci located on x axis and directrices parallel to y axis
$\text { 2a) (iii) } \begin{aligned} y & = \pm \sqrt{12} \times \frac{\sqrt{3}}{2} \\ y & = \pm 3 \end{aligned}$	1	
$\text { 2a) (iv) } \begin{aligned} y & = \pm \frac{\sqrt{12}}{2} x \\ y & = \pm \sqrt{3} x \end{aligned}$	1	
2b) If $(z-2+i)$ is a factor, so is $(z-2-i)$ $\therefore\left(z^{2}-4 z+5\right)$ is a factor $\begin{aligned} P(z) & =z^{4}-2 z^{3}-z^{2}+2 z+10 \\ & =\left(z^{2}-4 z+5\right)\left(z^{2}+2 z+2\right) \end{aligned}$	3	2 marks - Finds one quadratic factor 1 mark - Identifies conjugate as another root
2c)	3	3 marks - Correct graphical solution on number line or algebraic solution, with correct working 2 marks - Bald answer - Identifies the four correct critical points via a correct method - Correct conclusion to their critical points obtained using a correct method 1 mark - Uses a correct method - Acknowledges a problem with the denominator. 0 marks - Solves like a normal equation, with no consideration of the denominator.

Solution	Marks	Comments
QUESTION 3		
3a) (i) $\begin{aligned} & \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\ & 29=7^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\ & 2(\alpha \beta+\alpha \gamma+\beta \gamma)=20 \\ & \alpha \beta+\alpha \gamma+\beta \gamma=10 \\ & \therefore \text { equation is } x^{3}-7 x^{2}+10 x-5=0 \end{aligned}$	2	1 mark - Correctly evaluates $\Sigma \alpha \beta$ - Correct equation for their $\Sigma \alpha \beta$
3a) (ii) $\begin{gathered} \sum \alpha^{3}-7 \sum \alpha^{2}+10 \sum \alpha-15=0 \\ \sum \alpha^{3}=7 \sum \alpha^{2}-10 \sum \alpha+15 \\ =7(29)-10(7)+15 \\ =148 \end{gathered}$	2	2 marks - Correctly solution for incorrect equation found in part (i) 1 mark - Correctly deriving a formula for $\Sigma \alpha^{3}$ using their equation. - Substitutes correctly into an incorrect $\Sigma \alpha^{3}$ obtained using a correct method.
$\text { 3b) (i) } \begin{aligned} z^{n}+\frac{1}{z^{n}} & =(\operatorname{cis} \theta)^{n}+(\operatorname{cis} \theta)^{-n} \\ & =\operatorname{cis}(n \theta)+\operatorname{cis}(-n \theta) \\ & =\cos n \theta+i \sin n \theta+\cos n \theta+i \sin (-n \theta) \\ & =\cos n \theta+i \sin n \theta+\cos n \theta-i \sin n \theta \\ & =2 \cos n \theta \end{aligned}$	2	1 mark - Uses De Moivre's Theorem in an attempt to show desired result.
3b) (ii) $\begin{aligned} 2 z^{4}+3 z^{3}+5 z^{2}+3 z+2 & =0 \\ 2 z^{2}+3 z+5+\frac{3}{z}+\frac{2}{z^{2}} & =0 \\ 2\left(z^{2}+\frac{1}{z^{2}}\right)+3\left(z+\frac{1}{z}\right)+5 & =0 \\ 4 \cos 2 \theta+6 \cos \theta+5 & =0 \\ 8 \cos ^{2} \theta-4+6 \cos \theta+5 & =0 \\ 8 \cos ^{2} \theta+6 \cos \theta+1 & =0 \\ (4 \cos \theta+1)(2 \cos \theta+1) & =0 \\ \cos \theta=-\frac{1}{4} \quad \text { or } \quad \cos \theta= & =\frac{1}{2} \end{aligned}$ $\therefore z=-\frac{1}{4} \pm \frac{\sqrt{15}}{4} i \quad \text { or } \quad z=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$	4	3 marks - Correctly finding values for $\cos \theta$ - Correct solution for incorrect values of $\cos \theta$ 2 marks - Correctly finding the equation $4 \cos 2 \theta+6 \cos \theta+5=0$ or equivalent 1 mark - Dividing equation by z^{2}

Solution	Marks	Comments
QUESTION 4		
4a) (i) $\begin{aligned} \overrightarrow{\mathrm{OB}}=z+\omega & \text { translate } \overrightarrow{\mathrm{CA}} \text { to origin } \\ \overrightarrow{\mathrm{CA}}=z-\omega & \angle B O A^{\prime}=\frac{\pi}{2} \quad(\text { diagonals } \perp \text { in square }) \\ & \begin{aligned} \arg \left(\frac{z-\omega}{z+\omega}\right) & =\arg (z-\omega)-\arg (z+\omega) \\ & =-[\arg (z+\omega)-\arg (z-\omega)] \\ & =-\frac{\pi}{2} \end{aligned} \end{aligned}$	2	1 mark - Linking the problem to the diagonals of the square - Answer of $\frac{\pi}{2}$
4a) (ii) $\begin{array}{rlrl} C=i z & B & =z+\omega \\ & =i(2+i) & & =2+i+(-1+2 i) \\ & =-1+2 i & & =1+3 i \end{array}$	3	2 mrks - Correctly finds one of B or C and makes progress towards finding other. 1 mark - Correctly finds B or C - States $B=z+\omega$ and $C=i z$, but does not evaluate Note: statements may be made in part (i)
4b) (1) Place husbands around table $=3$! (2) Wife A has two spots to choose (3) Wife B (or D) then only has one spot (4) Leaving only one spot for each of the other two wives. $\begin{aligned} \text { Ways } & =3!\times 2 \times 1 \times 1 \times 1 \\ & =12 \end{aligned}$	2	1 mark - Partially correct logic that leads to an incorrect answer.
4c) $\begin{aligned} & P(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!} \\ & P^{\prime}(x)=1+\frac{2 x}{2!}+\frac{3 x^{2}}{3!}+\ldots+\frac{n x^{n-1}}{n!} \\ & P^{\prime}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n-1}}{(n-1)!} \end{aligned}$ In order for multiple roots to exist $P(x)=P^{\prime}(x)=0$ $\begin{aligned} P(x) & =P^{\prime}(x) \\ 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n-1}}{(n-1)!} \\ \frac{x^{n}}{n!} & =0 \\ x & =0 \end{aligned}$ But $P(0)=1 \neq 0, \therefore x=0$ is not a root, thus no multiple roots exist.	3	2 marks - Finds $P^{\prime}(x)$ and equates with $P(x)$ to find possible multiple root. 1 mark - Uses $P^{\prime}(x)=0$ to find multiple roots.

Solution	Marks	Comments
QUESTION 5		
5a) (i) $\begin{aligned} & \text { Let } y=x-2 \\ & \qquad x=y+2 \\ & \qquad \begin{aligned} x^{3}-6 x^{2}+11 x-6 & =0 \\ (y+2)^{3}-6(y+2)^{2}+11(y+2)-6 & =0 \\ y^{3}+6 y^{2}+12 y+8-6 y^{2}-24 y-24+11 y+22-6 & =0 \\ y^{3}-y & =0 \end{aligned} \end{aligned}$	2	1 mark - Substitutes correctly for x.
5a) (ii) $\begin{gathered} y^{3}-y=0 \\ y\left(y^{2}-1\right)=0 \\ y=0 \text { or } y= \pm 1 \end{gathered}$ $\therefore x-2=0 \text { or } x-2= \pm 1$ $x=2 \text { or } x=2 \pm 1$ $x=2 \text { or } x=1 \text { or } x=3$	3	2 marks - Finds some of the correct roots of original equation - Finds all three roots using incorrect roots of equation found in (i) 1 mark - Finds roots of equation found in (i)
5b) (i) $\begin{array}{ll} \angle T P B=\angle B C P & \text { (alternate segment theorem) } \\ \angle T P A=\angle A D P & (\\ \angle T C D+\angle T D C+\angle C T D=180^{\circ} & (\angle \text { sum of } \triangle T C D) \\ \therefore \angle T P B+\angle T P A+\angle C T D=180^{\circ} & \\ \angle A P B=\angle T P B+\angle T P A & \text { (common } \angle) \\ \angle A P B+\angle C T D=180^{\circ} & \\ \therefore A T B P \text { is a cyclic quadrilateral } & \text { (opposite } \angle ' s \text { supplementary) } \end{array}$	3	2 marks - Correct solution with poor reasoning - Significant progress towards solution with good reasoning. 1 mark - Significant progress towards solution with poor reasoning. - Progress towards solution with good reasoning.
5b) (ii) ($\angle ' s$ in same segment are $=$) ($\angle T P A=\angle P D A$, proven in (i)) (exterior $\angle=$ opposite interior \angle)	2	1 mark - Correct solution with poor reasoning - Progress towards solution with good reasoning.

Solution	Marks	Comments
QUESTION 6		
6a) (i) If ω is a complex cube root then other roots are 1 and ω^{2} $\therefore 1+\omega+\omega^{2}=0$ (sum of roots of $x^{3}-1=0$) If ω is a real cube root then $\omega=1$ $\begin{aligned} \therefore 1+\omega+\omega^{2}= & 1+1+1^{2} \\ = & 3 \\ & \therefore 1+\omega+\omega^{2}=0 \text { or } 3 \end{aligned}$	2	1 mark - Correctly find one possible value.
$\text { 6a) (ii) } \begin{array}{rlrl} & (2-\omega)\left(2-w^{2}\right)\left(2-\omega^{4}\right)\left(2-w^{5}\right) & \left(\omega^{3}=1\right) \\ = & (2-\omega)\left(2-\omega^{2}\right)(2-w)\left(2-\omega^{2}\right) & & \\ = & (2-\omega)^{2}(3+\omega)^{2} & \left(\omega^{2}=-1-\omega\right) \\ = & \left(6-\omega-\omega^{2}\right)^{2} & \\ = & (7)^{2} & \\ = & 49 & \left(1=-\omega-\omega^{2}\right) \end{array}$	2	1 mark - Uses $\omega^{3}=1$ - Uses $1+\omega+\omega^{2}=0$
6b) (i) x intercepts occur when $y=0$ $\begin{aligned} t^{2} x-0 & =4 t^{3} \\ t^{2} x & =4 t^{3} \\ x & =4 t \end{aligned}$	2	1 mark - Finds x intercept. - Finds slope
6b) (ii) Solving line and hyperbola simultaneously $\begin{aligned} x y & =4 \\ x\left(t^{2} x-4 t^{3}\right) & =4 \\ t^{2} x^{2}-4 t^{3} x-4 & =0 \end{aligned}$ The roots of this equation are the x coordinates of R and S. $\begin{array}{rlrl} x_{M} & =\frac{\sum \alpha \beta}{2} & y_{M} & =t^{2}(2 t)-4 t^{3} \\ & = & =2 t^{3}-4 t^{3} \\ & =\frac{4 t^{3}}{2 t^{2}} & & =-2 t^{3} \\ & =2 t & & \\ & \therefore M\left(2 t,-2 t^{3}\right) & \end{array}$	2	1 mark - Successfully finds x or y coordinate - Uses $\Sigma \alpha \beta$ in attempt to find midpoint
6b) (iii) $\begin{array}{rl} x=2 t & y \\ t=\frac{x}{2} & =-2 t^{3} \\ & =-2\left(\frac{x}{2}\right)^{3} \\ & =-\frac{x^{3}}{4} \end{array}$ However $t \neq 0, \quad \therefore x \neq 0$ Locus is $y=-\frac{x^{3}}{4}$, excluding the point $(0,0)$	2	1 mark - Identifies locus without the point of exclusion

Solution	Marks	Comments
QUESTION 7		
$\text { 7a) } \begin{aligned} \frac{\sqrt{3}}{2}+\frac{i}{2} & =\operatorname{cis} \frac{\pi}{6} \\ \left(\operatorname{cis} \frac{\pi}{6}\right)^{n} & =-1 \\ \operatorname{cis} \frac{n \pi}{6} & =\operatorname{cis} \pi \\ \frac{n \pi}{6} & =\pi \\ \therefore \quad n & =6 \end{aligned}$	2	1 mark - Another multiple of 6. $\operatorname{cis} \frac{n \pi}{6}=\operatorname{cis} \pi$
7b) $\begin{aligned} & x^{4}+x^{3}+x^{2}+x+1=0 \\ & \frac{(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)}{x-1}=0 \\ & \frac{x^{5}-1}{x-1}=0 \\ & x^{5}-1=0, \quad x \neq 1 \\ & x=\operatorname{cis} \frac{2 \pi}{5}, \operatorname{cis}-\frac{2 \pi}{5}, \operatorname{cis} \frac{4 \pi}{5}, \operatorname{cis}-\frac{4 \pi}{5} \end{aligned}$	3	2 marks - Finds the solutions, but includes $x=1$ - Incorrectly solves $x^{5}-1=0$ but acknowledges $x \neq 1$ 1 mark - Attempts to link the question with roots of unity
$\text { 7c) (i) } \begin{aligned} x & =a \cos \theta & y & =b \sin \theta \end{aligned} \quad \frac{d y}{d x}=\frac{d y}{d \theta} \times \frac{d \theta}{d x} .$	2	1 mark - Correctly derives slope of the tangent
$\text { 7c) (ii) } \begin{aligned} S R & =\left\|\frac{a b e \cos \theta-0-a b}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\right\| \quad S^{\prime} R^{\prime}=\left\|\frac{-a b e \cos \theta-0-a b}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\right\| \\ S R \times S^{\prime} R^{\prime} & =\left\|\frac{a b e \cos \theta-0-a b}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\right\| \times\left\|\frac{-a b e \cos \theta-0-a b}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\right\| \\ & =\frac{a^{2} b^{2} e^{2} \cos ^{2} \theta-a^{2} b^{2} \mid}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\ & =b^{2}\left(\frac{\left\|a^{2} e^{2} \cos ^{2} \theta-a^{2}\right\|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}\right) \\ & =b^{2}\left\{\frac{\left\|a^{2} e^{2} \cos ^{2} \theta-a^{2}\right\|}{a^{2}\left(1-e^{2}\right) \cos ^{2} \theta+a^{2} \sin ^{2} \theta}\right\} \\ & =b^{2}\left\{\frac{\|-1\| \mid a^{2}-a^{2} e^{2} \cos ^{2} \theta}{a^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)-a^{2} e^{2} \cos ^{2} \theta}\right\}=b^{2}\left(\frac{a^{2}-a^{2} e^{2} \cos ^{2} \theta}{a^{2}-a^{2} e^{2} \cos ^{2} \theta}\right)=b^{2} \end{aligned}$	3	2 marks - Makes substantial progress towards solution. 1 mark - Finds a correct expression for $S R \times S^{\prime} R^{\prime}$

Solution	Marks	Comments
QUESTION 8		
8a) Possible sets of digits $9+9+9+9+7=43$ $9+9+9+8+8=43$ \# of numbers $\begin{aligned} & =\frac{5!}{4!}+\frac{5!}{3!\times 2!} \\ & =5+10 \\ & =15 \end{aligned}$	2	1 mark - Identifies the two sets of digits - Evaluates the number of ways for one set of digits
8b) (i) Prove for $n=1$ $\begin{aligned} L H S & =T_{1} \\ & =\frac{1}{2} \end{aligned}$ $\therefore L H S=R H S$ $\begin{aligned} R H S & =\frac{\sin \frac{1}{2}\{2(1)-1\} \theta}{2 \sin \frac{1}{2} \theta} \\ & =\frac{\sin \frac{1}{2} \theta}{2 \sin \frac{1}{2} \theta} \\ & =\frac{1}{2} \end{aligned}$ Hence the result is true for $n=1$ Assume the result is true for $n=k$, where k is a positive integer i.e. $\frac{1}{2}+\cos \theta+\cos (2 \theta)+\ldots+\cos (k-1) \theta=\frac{\sin \frac{1}{2}(2 k-1) \theta}{2 \sin \frac{1}{2} \theta}$ Prove the result true for $n=k+1$ i.e. Prove $\frac{1}{2}+\cos \theta+\cos (2 \theta)+\ldots+\cos k \theta=\frac{\sin \frac{1}{2}(2 k+1) \theta}{2 \sin \frac{1}{2} \theta}$ PROOF: $\begin{aligned} & \frac{1}{2}+\cos \theta+\cos (2 \theta)+\ldots+\cos (k-1) \theta+\cos k \theta \\ = & \frac{\sin \frac{1}{2}(2 k-1) \theta}{2 \sin \frac{1}{2} \theta}+\cos k \theta \\ = & \frac{\sin \frac{1}{2}(2 k-1) \theta+2 \sin \frac{1}{2} \theta \cos k \theta}{2 \sin \frac{1}{2} \theta} \\ = & \frac{\sin \frac{1}{2}(2 k-1) \theta+\sin \left(k \theta+\frac{1}{2} \theta\right)-\sin \left(k \theta-\frac{1}{2} \theta\right)}{2 \sin \frac{1}{2} \theta} \\ = & \frac{\sin \frac{1}{2}(2 k-1) \theta+\sin \frac{1}{2}(2 k+1) \theta-\sin \frac{1}{2}(2 k-1) \theta}{2 \sin \frac{1}{2} \theta} \\ = & \frac{\sin \frac{1}{2}(2 k+1) \theta}{2 \sin \frac{1}{2} \theta} \end{aligned}$	4	There are 4 key parts of the induction; 1. Proving the result true for $n=1$ 2. Clearly stating the assumption and what is to be proven 3. Using the assumption in the proof 4. Correctly proving the required statement 4 marks - Successfully does all of the 4 key parts 3 marks - Successfully does 3 of the 4 key parts 2 marks - Successfully does 2 of the 4 key parts 1 mark - Successfully does 1 of the 4 key parts

Solution
 Marks
 Comments

QUESTION 8...continued

Hence the statement is true for $n=k+1$, if it is true for $n=k$
Since the result is true for $n=1$, then it is true for all positive integers, by induction.

8b) (ii) The width of each rectangle is $\frac{\pi}{6 n}$

$$
\begin{aligned}
S_{n} & =\frac{\pi}{6 n}\left[\cos \frac{\pi}{6 n}+\cos \frac{2 \pi}{6 n}+\cos \frac{3 \pi}{6 n}+\ldots+\cos \frac{(n-1) \pi}{6 n}+\cos \frac{n \pi}{6 n}\right] \\
& =\frac{\pi}{6 n}\left[\cos \frac{\pi}{6 n}+\cos \frac{2 \pi}{6 n}+\cos \frac{3 \pi}{6 n}+\ldots+\cos \frac{(n-1) \pi}{6 n}+\cos \frac{\pi}{6}\right] \\
& =\frac{\pi}{6 n}\left[\cos \frac{\pi}{6 n}+\cos \frac{2 \pi}{6 n}+\cos \frac{3 \pi}{6 n}+\ldots+\cos \frac{(n-1) \pi}{6 n}+\frac{\sqrt{3}}{2}\right] \\
& =\frac{\pi}{6 n}\left[\frac{\sqrt{3}}{2}-\frac{1}{2}+\left\{\frac{1}{2}+\cos \frac{\pi}{6 n}+\cos \frac{2 \pi}{6 n}+\cos \frac{3 \pi}{6 n}+\ldots+\cos \frac{(n-1) \pi}{6 n}\right\}\right]
\end{aligned}
$$

$=\frac{\pi}{6 n}\left\{\frac{\sqrt{3}}{2}-\frac{1}{2}+\frac{\sin \frac{1}{2}(2 n-1) \frac{\pi}{6 n}}{2 \sin \frac{1}{2} \times \frac{\pi}{6 n}}\right\}$

8b) (iii) $\lim _{n \rightarrow \infty} S_{n}=\lim _{h \rightarrow 0} S_{\frac{1}{h}}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{h \pi}{12}\left[\sqrt{3}-1+\frac{\sin \left(\frac{2}{h}-1\right) \frac{h \pi}{12}}{\sin \frac{h \pi}{12}}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{(\sqrt{3}-1) h \pi}{12}+\frac{h \pi}{\left.\frac{12}{\sin \frac{h \pi}{12}} \times \sin \left(\frac{2}{h}-1\right) \frac{h \pi}{12}\right]}\right. \\
& =0+1 \times \sin \left(\frac{\pi}{6}-0\right) \\
& =\frac{1}{2}
\end{aligned}
$$

1 mark

- Successfully uses the result of part(i) in a method that would lead to a correct solution.
- Writes S_{n} as a sum of the areas of the rectangles.

$$
=\frac{\pi}{12 n}\left\{\sqrt{3}-1+\frac{\sin (2 n-1) \frac{\pi}{12 n}}{\sin \frac{\pi}{12 n}}\right\}
$$

1 mark

- Bald answer
- Uses $\lim _{x \rightarrow 0} \frac{x}{\sin x}$
- Correctly substitutes $n=\frac{1}{h}$

