

BAULKHAM HILLS HIGH SCHOOL

2011 year 12 half yearly examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back of the cover sheet
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work

Total marks – 80

- Attempt Questions 1 8
- All questions are of equal value
- Start a separate piece of paper for each question.
- Put your BOS number and the question number at the top of each sheet.

Attempt Questions 1 – 8	
All questions are of equal value Answer each question on a SEPARATE piece of paper clearly marked Question 1	
Question 2, etc. Each piece of paper must show your BOS number.	
Oursettion 1 (10 m m/hs) Use a surger size of some	Marks
Question 1 (10 marks) Use a separate piece of paper a) Given that $z = -\sqrt{3} - i$, evaluate:	
(i) \overline{z}	1
(ii) <i>z</i>	1
(iii) arg z	1
(iv) $\frac{1}{z}$	1
(v) z^4 in the form $x + iy$	2
b) (i) On an Argand Diagram sketch the locus of a point corresponding to the complex number <i>z</i> , where $ z-3 = 3$	2
(ii) Use your diagram in (i) to explain why $\arg(z-3) = \arg z^2$	2
Question 2 (10 marks) Use a separate piece of paper	
a) For the hyperbola $\frac{y^2}{12} - \frac{x^2}{4} = 1$, find the;	
(i) eccentricity.	1
(ii) coordinates of the focii.	1
(iii) equations of the directrices.	1
(iv) equations of the asymptotes.	1
b) The polynomial $P(z)$ has the equation $P(z) = z^4 - 2z^3 - z^2 + 2z + 10$. Given that $(z-2+i)$ is a factor of $P(z)$, express $P(z)$ as a product of two real quadratic factors.	3
c) Solve the inequality $\frac{4x}{3+2x-x^2} \le 1$	3

Total marks – 80

MarksQuestion 3 (10 marks) Use a separate piece of papera) (i) Find a monic cubic equation with roots α, β and γ such that $\alpha\beta\gamma = 5, \ \alpha + \beta + \gamma = 7$ and $\alpha^2 + \beta^2 + \gamma^2 = 29$.(ii) Find $\alpha^3 + \beta^3 + \gamma^3$ b) (i) Given that $z = \cos\theta + i\sin\theta$, prove that $z^n + \frac{1}{z^n} = 2\cos n\theta$ 2

(ii) Hence, or otherwise, solve
$$2z^4 + 3z^3 + 5z^2 + 3z + 2 = 0$$
 4

Question 4 (10 marks) Use a separate piece of paper

a) In the square *OABC*, shown below, the point A represents the complex number z and the point C represents the complex number ω .

(ii) If z = 2 + i, what complex numbers do *B* and *C* represent?

3

2

2

b) How many different ways are there of arranging four married couples at a circular table with men and women in alternate positions, and no wife next to her husband?

c) Prove that
$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots+\frac{x^n}{n!}=0$$

has no multiple roots for $n \ge 1$ 3

Question 5 (10 marks) Use a separate piece of paper	Marks
a) The equation $x^3 - 6x^2 + 11x - 6 = 0$, has roots α, β and γ .	
(i) Without finding the roots α , β and γ , find the equation with roots	2
$\alpha - 2$, $\beta - 2$ and $\gamma - 2$.	
(ii) Hence, or otherwise, solve $x^3 - 6x^2 + 11x - 6 = 0$.	3

b) In the diagram, two circles touch at *P* and share a common tangent *TP*.

C lies on the circumference of one circle and D lies on the circumference of the other, such that D, P and C are collinear.

TC and *TD* intersect the circles at *B* and *A* respectively.

(Note: on page 7 there is a copy of the above diagram that you can use, please detach and include with your solutions)

(i)	Show, giving reasons, that ATBP is a cyclic quadrilateral.	3
(ii)	Show, giving reasons, that ABCD is a cyclic quadrilateral.	2

Question 6 (10 marks) Use a separate piece of paper

- a) Let ω be one of the cube roots of unity.
 - (i) Find the two possible values of $1 + \omega + \omega^2$.
 - (ii) If ω is one of the non-real cube roots of unity, find the value of $(2-\omega)(2-\omega^2)(2-\omega^4)(2-\omega^5)$
- b) The tangent to the rectangular hyperbola xy = 4 at the point $T\left(2t, \frac{2}{t}\right)$ has the

equation $x + t^2 y = 4t$. (Do not prove this)

- (i) The tangent cuts the *x*-axis at the point *Q*. Show that the line through *Q* which 2 is perpendicular to the tangent at *T* has equation $t^2x y = 4t^3$.
- (ii) This line through Q cuts the rectangular hyperbola at the points R and S. 2 Show that the midpoint M of RS has coordinates $M(2t, -2t^3)$.
- (iii) Find the equation of the locus of *M* as *T* moves on the rectangular hyperbola, 2 stating any restrictions that may apply.

Question 7 (10 marks) Use a separate piece of paper

a) The complex number $\frac{\sqrt{3}}{2} + \frac{i}{2}$ is one of the *n*th roots of -1. 2 Find the least value of *n* for this to be so.

b) Solve the equation
$$x^4 + x^3 + x^2 + x + 1 = 0$$

c) Consider the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, where $a > b > 0$.

- (i) Show that the tangent to the ellipse at the point $(a\cos\theta, b\sin\theta)$ has the equation $bx\cos\theta + ay\sin\theta ab = 0$.
- (ii) *R* and *R*' are the feet of the perpendiculars from the foci *S* and *S*' to the tangent at *P*. Show that $SR \times S'R' = b^2$.

Marks

2

2

2

3

3

Question 8 (10 marks) Use a separate piece of paper

- a) 47231 is a five digit number whose digits sum to 17 (i.e. 4+7+2+3+1=17) 2 How many five digit numbers sum to 43?
- b) (i) Prove by mathematical induction, that for all positive integers *n*;

$$\frac{1}{2} + \cos\theta + \cos 2\theta + \dots + \cos(n-1)\theta = \frac{\sin\frac{1}{2}(2n-1)\theta}{2\sin\frac{1}{2}\theta}$$

(Hint: you may use the identity $2\cos A\sin B = \sin(A+B) - \sin(A-B)$)

(ii) In the diagram, *n* rectangles of equal width are constructed under the curve 2 $y = \cos x$ from x = 0 to $x = \frac{\pi}{6}$.

Use the result of part (i) to show that the sum S_n of the areas of the *n* rectangles is given by

$$S_{n} = \frac{\pi}{12n} \left\{ \left(\sqrt{3} - 1\right) + \frac{\sin(2n-1)\frac{\pi}{12n}}{\sin\frac{\pi}{12n}} \right\}$$

(iii) Hence find $\lim_{n \to \infty} S_n$ (Hint: Let $n = \frac{1}{h}$)

End of paper

- 6 -

Marks

4

2

Question 5 b)

Please detach and include with your solutions

BAULKHAM HILLS HIGH SCHOOL EXTENSION 2 HALF YEARLY 2011 SOLUTIONS

Solution	Marks	Comments
QUESTION 1	-	
1a) (i) $\bar{z} = -\sqrt{3} + i$	1	
1a) (ii) $ z = \sqrt{(-\sqrt{3})^2 + (-1)^2}$ = 2	1	
1a) (iii) $\arg z = \tan^{-1} \left(\frac{-1}{-\sqrt{3}} \right)$ = $-\frac{5\pi}{6}$	1	<i>Note: argument should be</i> <i>quoted</i> $-\pi < \arg z \le \pi$
1a) (iv) $\frac{1}{z} = \frac{\overline{z}}{ z ^2}$ = $\frac{-\sqrt{3} + i}{4}$	1	
$= -\frac{\sqrt{3}}{4} + \frac{i}{4}$		
1a) (v) $z^4 = \left(2\operatorname{cis} -\frac{5\pi}{6}\right)^4$ = $2^4\operatorname{cis} -\frac{20\pi}{6}$ = $16\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$ = $-8 + 8\sqrt{3}i$	2	 1 mark Correct use of De Moivre's theorem or equivalent merit Correctly changing from mod-arg to x + iy Note: correct use of student's answers to (ii) & (iii) should gain full marks
1b) (i) Im(z) $4^{4}_{2}_{3}_{4}_{4}_{4}_{4}_{4}_{4}_{4}_{4}_{4}_{4$	2	 1 mark • Recognises the locus is a circle
1b) (ii) $Im(z) \qquad \text{arg}(z-3) = 2 \arg z$ $\left(\angle at \ centre \ twice \ \angle at \ circumference \right)$ $\xrightarrow{-2}{-2} \xrightarrow{-2}{-4} \xrightarrow{-2}{ z-3 = 3} \qquad \therefore \arg(z-3) = \arg z^{2}$	2	 1 mark Uses diagram to make progress towards a solution

Solution	Marks	Comments
QUESTION 2		
2a) (i) $a^2 = b^2(e^2 - 1)$ $4 = 12(e^2 - 1)$ $e^2 - 1 = \frac{1}{3}$ $e^2 = \frac{4}{3}$ $e = \frac{2}{\sqrt{3}}$	1	
2a) (ii) $\left(0, \pm\sqrt{12} \times \frac{2}{\sqrt{3}}\right)$ = (0, ±4)	1	 1 mark Correct use of formulae and foci located on <i>x</i> axis and directrices
2a) (iii) $y = \pm \sqrt{12} \times \frac{\sqrt{3}}{2}$ $y = \pm 3$	1	parallel to y axis
2a) (iv) $y = \pm \frac{\sqrt{12}}{2}x$ $y = \pm \sqrt{3}x$	1	
2b) If $(z-2+i)$ is a factor, so is $(z-2-i)$ $\therefore (z^2-4z+5)$ is a factor $P(z) = z^4 - 2z^3 - z^2 + 2z + 10$ $= (z^2 - 4z + 5)(z^2 + 2z + 2)$	3	 2 marks Finds one quadratic factor 1 mark Identifies conjugate as another root
2c) $\frac{4x}{3+2x-x^{2}} \le 1$ $3+2x-x^{2} \ne 0$ $x^{2}-2x-3 \ne 0$ $(x-3)(x+1) \ne 0$ $x \ne 3 \text{ or } x \ne -1$ $x^{2}+2x-3=0$ $(x+3)(x-1)=0$ $x = -3 \text{ or } x = 1$ $4x = 3+2x-x^{2}$ $x^{2}+2x-3=0$ $(x+3)(x-1)=0$ $x = -3 \text{ or } x = 1$ $4x = 3+2x-x^{2}$ $x \le 3 \text{ or } x = 1$	3	 3 marks Correct graphical solution on number line or algebraic solution, with correct working 2 marks Bald answer Identifies the four correct critical points via a correct method Correct conclusion to their critical points obtained using a correct method 1 mark Uses a correct method Acknowledges a problem with the denominator. 0 marks Solves like a normal equation , with no consideration of the denominator.

$\frac{QUESTION 3}{3a) (i)} \qquad \alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma) \\ 29 = 7^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma) = 20 \\ \alpha\beta + \alpha\gamma + \beta\gamma = 10 \\ \therefore \text{ equation is } x^{3} - 7x^{2} + 10x - 5 = 0 \\ 3a) (ii) \qquad \sum \alpha^{3} - 7\sum \alpha^{2} + 10\sum \alpha - 15 = 0 \\ \sum \alpha^{3} = 7\sum \alpha^{2} - 10\sum \alpha + 15 \\ = 7(29) - 10(7) + 15 \\ = 148 \\ 3b) (i) z^{n} + \frac{1}{z^{n}} = (\operatorname{cis}\theta)^{n} + (\operatorname{cis}\theta)^{-n} \\ = \operatorname{cis}(n\theta) + \operatorname{cis}(-n\theta) \\ = \cos n\theta + i\sin n\theta + \cos n\theta + i\sin(-n\theta) \\ = 2\cos n\theta \\ 3b) (ii) \qquad 2z^{4} + 3z^{3} + 5z^{2} + 3z + 2 = 0 \\ 2z^{2} + 3z + 5 + \frac{3}{z} + \frac{2}{z^{2}} = 0 \\ 2\left(z^{2} + \frac{1}{z^{2}}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0 \\ 4x^{2} + 3\left(z + \frac{1}{z}\right) + 5 \\ 5x^{2} + 3\left(z + \frac{1}{z}\right) + 5 \\ $	2	 1 mark Correctly evaluates Σαβ Correct equation for their Σαβ 2 marks Correctly solution for incorrect equation found in part (i) 1 mark Correctly deriving a formula for Σα³ using their equation. Substitutes correctly into an incorrect Σα³ obtained using a correct method
3a) (i) $\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$ $29 = 7^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma) = 20$ $\alpha\beta + \alpha\gamma + \beta\gamma = 10$ \therefore equation is $x^{3} - 7x^{2} + 10x - 5 = 0$ 3a) (ii) $\sum \alpha^{3} - 7\sum \alpha^{2} + 10\sum \alpha - 15 = 0$ $\sum \alpha^{3} = 7\sum \alpha^{2} - 10\sum \alpha + 15$ = 7(29) - 10(7) + 15 = 148 3b) (i) $z^{n} + \frac{1}{z^{n}} = (\operatorname{cis}\theta)^{n} + (\operatorname{cis}\theta)^{-n}$ $= \operatorname{cis}(n\theta) + \operatorname{cis}(-n\theta)$ $= \operatorname{cos}n\theta + \operatorname{isin}n\theta + \operatorname{cos}n\theta + \operatorname{isin}(-n\theta)$ $= \operatorname{cos}n\theta + \operatorname{isin}n\theta + \operatorname{cos}n\theta - \operatorname{isinn}\theta$ $= 2\operatorname{cos}n\theta$ 3b) (ii) $2z^{4} + 3z^{3} + 5z^{2} + 3z + 2 = 0$ $2z^{2} + 3z + 5 + \frac{3}{z} + \frac{2}{z^{2}} = 0$ $2\left(z^{2} + \frac{1}{z^{2}}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$	2	 1 mark Correctly evaluates Σαβ Correct equation for their Σαβ 2 marks Correctly solution for incorrect equation found in part (i) 1 mark Correctly deriving a formula for Σα³ using their equation. Substitutes correctly into an incorrect Σα³ obtained using a correct method
$29 = 7 - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$ $2(\alpha\beta + \alpha\gamma + \beta\gamma) = 20$ $\alpha\beta + \alpha\gamma + \beta\gamma = 10$ $\therefore \text{ equation is } x^3 - 7x^2 + 10x - 5 = 0$ $3a) (ii) \sum \alpha^3 - 7\sum \alpha^2 + 10\sum \alpha - 15 = 0$ $\sum \alpha^3 = 7\sum \alpha^2 - 10\sum \alpha + 15$ $= 7(29) - 10(7) + 15$ $= 148$ $3b) (i) z^n + \frac{1}{z^n} = (\operatorname{cis}\theta)^n + (\operatorname{cis}\theta)^{-n}$ $= \operatorname{cis}(n\theta) + \operatorname{cis}(-n\theta)$ $= \operatorname{cos}n\theta + \operatorname{isin}n\theta + \operatorname{cos}n\theta + \operatorname{isin}(-n\theta)$ $= \operatorname{cos}n\theta + \operatorname{isin}n\theta + \operatorname{cos}n\theta - \operatorname{isin}n\theta$ $= 2\operatorname{cos}n\theta$ $3b) (ii) 2z^4 + 3z^3 + 5z^2 + 3z + 2 = 0$ $2z^2 + 3z + 5 + \frac{3}{z} + \frac{2}{z^2} = 0$ $2\left(z^2 + \frac{1}{z^2}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$	2	 Σαβ Correct equation for their Σαβ 2 marks Correctly solution for incorrect equation found in part (i) 1 mark Correctly deriving a formula for Σα³ using their equation. Substitutes correctly into an incorrect Σα³ obtained using a correct method
$2(\alpha\beta + \alpha\gamma + \beta\gamma) = 20$ $\alpha\beta + \alpha\gamma + \beta\gamma = 10$ $\therefore \text{ equation is } x^3 - 7x^2 + 10x - 5 = 0$ $3a) (ii) \sum \alpha^3 - 7\sum \alpha^2 + 10\sum \alpha - 15 = 0$ $\sum \alpha^3 = 7\sum \alpha^2 - 10\sum \alpha + 15$ = 7(29) - 10(7) + 15 = 148 $3b) (i) z^n + \frac{1}{z^n} = (\operatorname{cis}\theta)^n + (\operatorname{cis}\theta)^{-n}$ $= \operatorname{cis}(n\theta) + \operatorname{cis}(-n\theta)$ $= \cos n\theta + i\sin n\theta + \cos n\theta + i\sin(-n\theta)$ $= \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta$ $= 2\cos n\theta$ $3b) (ii) 2z^4 + 3z^3 + 5z^2 + 3z + 2 = 0$ $2z^2 + 3z + 5 + \frac{3}{z} + \frac{2}{z^2} = 0$ $2\left(z^2 + \frac{1}{z^2}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$	2	 Correct equation for their Σαβ 2 marks Correctly solution for incorrect equation found in part (i) 1 mark Correctly deriving a formula for Σα³ using their equation. Substitutes correctly into an incorrect Σα³ obtained using a correct method
$\alpha\beta + \alpha\gamma + \beta\gamma = 10$ $\therefore \text{ equation is } x^3 - 7x^2 + 10x - 5 = 0$ $3a) (ii) \sum \alpha^3 - 7\sum \alpha^2 + 10\sum \alpha - 15 = 0$ $\sum \alpha^3 = 7\sum \alpha^2 - 10\sum \alpha + 15$ $= 7(29) - 10(7) + 15$ $= 148$ $3b) (i) z^n + \frac{1}{z^n} = (\operatorname{cis}\theta)^n + (\operatorname{cis}\theta)^{-n}$ $= \operatorname{cis}(n\theta) + \operatorname{cis}(-n\theta)$ $= \cos n\theta + i\sin n\theta + \cos n\theta + i\sin(-n\theta)$ $= 2\cos n\theta$ $3b) (ii) 2z^4 + 3z^3 + 5z^2 + 3z + 2 = 0$ $2z^2 + 3z + 5 + \frac{3}{z} + \frac{2}{z^2} = 0$ $2\left(z^2 + \frac{1}{z^2}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$	2	 their 2αp 2 marks Correctly solution for incorrect equation found in part (i) 1 mark Correctly deriving a formula for Σα³ using their equation. Substitutes correctly into an incorrect Σα³ obtained using a correct method
$\therefore \text{ equation is } x^3 - 7x^2 + 10x - 5 = 0$ 3a) (ii) $\sum \alpha^3 - 7\sum \alpha^2 + 10\sum \alpha - 15 = 0$ $\sum \alpha^3 = 7\sum \alpha^2 - 10\sum \alpha + 15$ $= 7(29) - 10(7) + 15$ $= 148$ 3b) (i) $z^n + \frac{1}{z^n} = (\operatorname{cis}\theta)^n + (\operatorname{cis}\theta)^{-n}$ $= \operatorname{cis}(n\theta) + \operatorname{cis}(-n\theta)$ $= \cos n\theta + i\sin n\theta + \cos n\theta + i\sin(-n\theta)$ $= 2\cos n\theta$ 3b) (ii) $2z^4 + 3z^3 + 5z^2 + 3z + 2 = 0$ $2z^2 + 3z + 5 + \frac{3}{z} + \frac{2}{z^2} = 0$ $2\left(z^2 + \frac{1}{z^2}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$	2	 2 marks Correctly solution for incorrect equation found in part (i) 1 mark Correctly deriving a formula for Σα³ using their equation. Substitutes correctly into an incorrect Σα³ obtained using a correct method
3a) (ii) $\sum \alpha^{3} - 7 \sum \alpha^{2} + 10 \sum \alpha - 15 = 0$ $\sum \alpha^{3} = 7 \sum \alpha^{2} - 10 \sum \alpha + 15$ $= 7(29) - 10(7) + 15$ $= 148$ 3b) (i) $z^{n} + \frac{1}{z^{n}} = (\operatorname{cis}\theta)^{n} + (\operatorname{cis}\theta)^{-n}$ $= \operatorname{cis}(n\theta) + \operatorname{cis}(-n\theta)$ $= \cos n\theta + i\sin n\theta + \cos n\theta + i\sin(-n\theta)$ $= \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta$ $= 2\cos n\theta$ 3b) (ii) $2z^{4} + 3z^{3} + 5z^{2} + 3z + 2 = 0$ $2z^{2} + 3z + 5 + \frac{3}{z} + \frac{2}{z^{2}} = 0$ $2\left(z^{2} + \frac{1}{z^{2}}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$	2	 2 marks Correctly solution for incorrect equation found in part (i) 1 mark Correctly deriving a formula for Σα³ using their equation. Substitutes correctly into an incorrect Σα³ obtained using a correct method
$\sum \alpha^{3} = 7 \sum \alpha^{2} - 10 \sum \alpha + 15$ = 7(29) - 10(7) + 15 = 148 3b) (i) $z^{n} + \frac{1}{z^{n}} = (\operatorname{cis} \theta)^{n} + (\operatorname{cis} \theta)^{-n}$ = $\operatorname{cis}(n\theta) + \operatorname{cis}(-n\theta)$ = $\operatorname{cos} n\theta + i \operatorname{sin} n\theta + \operatorname{cos} n\theta + i \operatorname{sin}(-n\theta)$ = $\operatorname{cos} n\theta + i \operatorname{sin} n\theta + \operatorname{cos} n\theta - i \operatorname{sin} n\theta$ = $2 \operatorname{cos} n\theta$ 3b) (ii) $2z^{4} + 3z^{3} + 5z^{2} + 3z + 2 = 0$ $2z^{2} + 3z + 5 + \frac{3}{z} + \frac{2}{z^{2}} = 0$ $2\left(z^{2} + \frac{1}{z^{2}}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$	2	 found in part (i) 1 mark Correctly deriving a formula for Σα³ using their equation. Substitutes correctly into an incorrect Σα³ obtained using a correct method
$\sum_{n=1}^{\infty} a^{n} = i \sum_{n=1}^{\infty} a^{n} + i \sum_{n=1}^{\infty} a^{n} = i \sum_{n=1}^{\infty} a^{n} + i \sum_{n=1}^{\infty} a^{n} = $	2	 contectly deriving a formula for Σα³ using their equation. Substitutes correctly into an incorrect Σα³ obtained using a correct method
= 7(29) - 10(7) + 15 = 148 $3b) (i) z^{n} + \frac{1}{z^{n}} = (cis\theta)^{n} + (cis\theta)^{-n}$ $= cis(n\theta) + cis(-n\theta)$ $= cosn\theta + isinn\theta + cosn\theta + isin(-n\theta)$ $= cosn\theta + isinn\theta + cosn\theta - isinn\theta$ $= 2cosn\theta$ $3b) (ii) 2z^{4} + 3z^{3} + 5z^{2} + 3z + 2 = 0$ $2z^{2} + 3z + 5 + \frac{3}{z} + \frac{2}{z^{2}} = 0$ $2\left(z^{2} + \frac{1}{z^{2}}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$		 using their equation. Substitutes correctly into an incorrect Σα³ obtained using a correct method
$3b) (i) z^{n} + \frac{1}{z^{n}} = (cis\theta)^{n} + (cis\theta)^{-n}$ $= cis(n\theta) + cis(-n\theta)$ $= cosn\theta + isinn\theta + cosn\theta + isin(-n\theta)$ $= cosn\theta + isinn\theta + cosn\theta - isinn\theta$ $= 2cosn\theta$ $3b) (ii) 2z^{4} + 3z^{3} + 5z^{2} + 3z + 2 = 0$ $2z^{2} + 3z + 5 + \frac{3}{z} + \frac{2}{z^{2}} = 0$ $2\left(z^{2} + \frac{1}{z^{2}}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$ $4 - 2\theta - \xi - \theta - \xi = 0$		into an incorrect $\Sigma \alpha^3$ obtained using a correct
$3b) (i) z^{n} + \frac{1}{z^{n}} = (\operatorname{cis} \theta)^{n} + (\operatorname{cis} \theta)^{-n}$ $= \operatorname{cis}(n\theta) + \operatorname{cis}(-n\theta)$ $= \operatorname{cos} n\theta + i \operatorname{sin} n\theta + \operatorname{cos} n\theta + i \operatorname{sin}(-n\theta)$ $= \operatorname{cos} n\theta + i \operatorname{sin} n\theta + \operatorname{cos} n\theta - i \operatorname{sin} n\theta$ $= 2 \operatorname{cos} n\theta$ $3b) (ii) \qquad 2z^{4} + 3z^{3} + 5z^{2} + 3z + 2 = 0$ $2z^{2} + 3z + 5 + \frac{3}{z} + \frac{2}{z^{2}} = 0$ $2\left(z^{2} + \frac{1}{z^{2}}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$ $4 - 2\theta = z = 0$		methou.
$= \operatorname{cis}(n\theta) + \operatorname{cis}(-n\theta)$ $= \cos n\theta + i \sin n\theta + \cos n\theta + i \sin(-n\theta)$ $= \cos n\theta + i \sin n\theta + \cos n\theta - i \sin n\theta$ $= 2\cos n\theta$ 3b) (ii) $2z^{4} + 3z^{3} + 5z^{2} + 3z + 2 = 0$ $2z^{2} + 3z + 5 + \frac{3}{z} + \frac{2}{z^{2}} = 0$ $2\left(z^{2} + \frac{1}{z^{2}}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$ $4z^{2} + 3z^{2} + 5z^{2} + 3z^{2} = 0$		1 markUses De Moivre's Theorem in an attempt
$= \cos n\theta + i\sin n\theta + \cos n\theta + i\sin(-n\theta)$ $= \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta$ $= 2\cos n\theta$ $3b) (ii) \qquad 2z^4 + 3z^3 + 5z^2 + 3z + 2 = 0$ $2z^2 + 3z + 5 + \frac{3}{z} + \frac{2}{z^2} = 0$ $2\left(z^2 + \frac{1}{z^2}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$	n	to show desired result.
$= \cos n\theta + i \sin n\theta + \cos n\theta - i \sin n\theta$ = 2cosnθ 3b) (ii) $2z^{4} + 3z^{3} + 5z^{2} + 3z + 2 = 0$ $2z^{2} + 3z + 5 + \frac{3}{z} + \frac{2}{z^{2}} = 0$ $2\left(z^{2} + \frac{1}{z^{2}}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$	2	
$= 2\cos n\theta$ 3b) (ii) $2z^{4} + 3z^{3} + 5z^{2} + 3z + 2 = 0$ $2z^{2} + 3z + 5 + \frac{3}{z} + \frac{2}{z^{2}} = 0$ $2\left(z^{2} + \frac{1}{z^{2}}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$ $4z^{2} - 2z^{2} - 5z^{2} = 0$		
3b) (ii) $2z^{4} + 3z^{3} + 5z^{2} + 3z + 2 = 0$ $2z^{2} + 3z + 5 + \frac{3}{z} + \frac{2}{z^{2}} = 0$ $2\left(z^{2} + \frac{1}{z^{2}}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$ $4z^{2} + 2z^{2} + 5z^{2} = 0$		
$2z^{2} + 3z + 5z^{2} + 3z^{2} + 2z^{2} = 0$ $2z^{2} + 3z + 5 + \frac{3}{z} + \frac{2}{z^{2}} = 0$ $2\left(z^{2} + \frac{1}{z^{2}}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$ $4z^{2} + 2z^{2} + 5z^{2} + $		3 marks
$2\left(z^{2} + \frac{1}{z^{2}}\right) + 3\left(z + \frac{1}{z}\right) + 5 = 0$		 Correctly finding values for cosθ Correct solution for
		incorrect values of cosθ 2 marks
$4\cos 2\theta + 6\cos \theta + 5 = 0$		equation $4\cos^2\theta + 6\cos\theta + 5 = 0$
$8\cos^2\theta - 4 + 6\cos\theta + 5 = 0$		or equivalent
$8\cos^2\theta + 6\cos\theta + 1 = 0$		1 mark
$(4\cos\theta + 1)(2\cos\theta + 1) = 0$		• Dividing equation by $\frac{1}{2}^{2}$
$\cos\theta = -\frac{1}{4} or \cos\theta = -\frac{1}{2}$	4	۷.
$\sqrt{15} \int \frac{4}{\theta} \int \frac{\sqrt{3}}{1} \int \frac{2}{\theta} \int \frac{2}{1} \int \frac{1}{1} \int 1$		

Solution	Marks	Comments
QUESTION 4		
$\begin{array}{c c} 4a) (i) \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		 1 mark • Linking the problem to the diagonals of the square • Answer of π/2
	2	
$\overrightarrow{CA} = z - \omega \qquad \text{translate CA to origin}$ $\overrightarrow{CA} = z - \omega \qquad \angle BOA' = \frac{\pi}{2} (\text{diagonals } \perp \text{ in square})$		
$\operatorname{arg}\left(\frac{z-\omega}{z+\omega}\right) = \operatorname{arg}(z-\omega) - \operatorname{arg}(z+\omega)$		
$= -\left[\arg(z+\omega) - \arg(z-\omega)\right]$		
$=-\frac{\pi}{2}$		
4a) (ii) $C = iz$ = i(2 + i) = -1 + 2i $B = z + \omega$ = 2 + i + (-1 + 2i) = 1 + 3i	3	 2 mrks Correctly finds one of <i>B</i> or <i>C</i> and makes progress towards finding other. 1 mark Correctly finds <i>B</i> or <i>C</i> States <i>B</i> = <i>z</i> + ω and <i>C</i> = <i>iz</i>, but does not evaluate <i>Note: statements may be made in part (i)</i>
4b) ① Place husbands around table = 3! ② Wife A has two spots to choose ③ Wife B (or D) then only has one spot ④ Leaving only one spot for each of the other two wives. $Ways = 3! \times 2 \times 1 \times 1 \times 1$ = 12	2	 1 mark Partially correct logic that leads to an incorrect answer.
$4c) P(x) = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n-1}}{n!}$ $P'(x) = 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!}$ $P'(x) = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n-1}}{(n-1)!}$ In order for multiple roots to exist $P(x) = P'(x) = 0$ $P(x) = P'(x)$ $1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n-1}}{(n-1)!}$ $\frac{x^{n}}{n!} = 0$ $x = 0$ But $P(0) = 1 \neq 0$ $\therefore x = 0$ is not a root, thus no multiple roots exist	3	 2 marks Finds P'(x) and equates with P(x) to find possible multiple root. 1 mark Uses P'(x) = 0 to find multiple roots.

Soluti	on	Marks	Comments
	QUESTION 5		
5a) (i) Let $y = x - 2$ x = y + 2 $(y + 2)^3 - 6(y + y^3 + 6y^2 + 12y + 8 - 6y^2 - 24y - 24$	$x^{3} - 6x^{2} + 11x - 6 = 0$ 2) ² + 11(y + 2) - 6 = 0 - 24 + 11y + 22 - 6 = 0 y^{3} - y = 0	2	 1 mark Substitutes correctly for <i>x</i>.
5a) (ii) $y^3 - y = 0$ $\therefore x - 2$ $y(y^2 - 1) = 0$ $x =$ $y = 0 \text{ or } y = \pm 1$ $x = 2$	$= 0 \text{ or } x - 2 = \pm 1$ = 2 or x = 2±1 or x = 1 or x = 3	3	 2 marks Finds some of the correct roots of original equation Finds all three roots using incorrect roots of equation found in (i) 1 mark Finds roots of equation found in (i)
5b) (i) $\angle TPB = \angle BCP$ $\angle TPA = \angle ADP$ $\angle TCD + \angle TDC + \angle CTD = 180^{\circ}$ $\therefore \angle TPB + \angle TPA + \angle CTD = 180^{\circ}$ $\angle APB = \angle TPB + \angle TPA$ $\angle APB + \angle CTD = 180^{\circ}$ $\therefore ATBP \text{ is a cyclic quadrilateral}$	(alternate segment theorem) (\angle sum of $\triangle TCD$) (common \angle) (opposite \angle 's supplementary)	3	 2 marks Correct solution with poor reasoning Significant progress towards solution with good reasoning. 1 mark Significant progress towards solution with poor reasoning. Progress towards solution with good reasoning.
5b) (ii) $\angle TPA = \angle TBA$ $\therefore \angle PDA = \angle TBA$ $\therefore ABCD$ is a cyclic quadrilateral	$(\angle 's \text{ in same segment are }=)$ $(\angle TPA = \angle PDA$, proven in (i)) (exterior $\angle =$ opposite interior \angle)	2	 mark Correct solution with poor reasoning Progress towards solution with good reasoning.

Solution	Marks	Comments
QUESTION 6		
6a) (i) If ω is a complex cube root then other roots are 1 and ω^2		1 mark
$\therefore 1 + \omega + \omega^2 = 0 \qquad (\text{sum of roots of } x^3 - 1 = 0)$		• Correctly find one
If ω is a real cube root then $\omega = 1$		possible value.
$1 + \omega + \omega^2 = 1 + 1 + 1^2$	2	
-3		
-5 $1+a+a^2-0 \text{ or } 3$		
$\frac{1}{(a)(ii)} \frac{(2-a)(2-a^2)(2-a^4)(2-a^5)}{(a^3-1)} $		1 mark
$(\omega = 1)$		• Uses $\omega^3 = 1$.
$= (2 - \omega)(2 - \omega^{2})(2 - w)(2 - \omega^{2})$		• Uses $1 + \omega + \omega^2 = 0$
$= (2 - \omega)^{2} (3 + \omega)^{2}$ $(\omega^{2} = -1 - \omega)$	2	
$=(6-\omega-\omega^{2})^{2}$	2	
$-(7)^{2}$		
-(1)		
$= 49 \qquad (1 = -\omega - \omega)$		1 mont
		• Finds x intercept.
		• Finds slope
τ		
M Q R		
	2	
r intercents occur		
x intercepts occur when $y = 0$ $y = t^{-}(x - 4t)$		
$y = t^{2}x - 4t^{3}$		
Slope of tangent = $-\frac{1}{t^2}$ $\frac{2}{t^2}x - y - 4t^3 = 0$		
$t^2x = 4t^3$: required slope $-t^2$		
x = 4t		
6b) (ii) Solving line and hyperbola simultaneously		1 mark • Successfully finds r or y
xy = 4		coordinate
$x(t^2x - 4t^3) = 4$		• Uses $\Sigma \alpha \beta$ in attempt
$t^{2}x^{2}-4t^{3}x-4=0$		to find midpoint
The roots of this equation are the <i>x</i> coordinates of <i>R</i> and <i>S</i> .		
$r = \sum \alpha \beta$ $v = t^2(2t) = 4t^3$	2	
$x_M - \frac{1}{2}$ $y_M - i(2i) - 4i$		
$4t^{3} = 2t^{2} - 4t^{3}$		
$=\frac{1}{2t^2}$ = $-2t^3$		
-2t		
$-2t + M(2t - 2t^3)$		
$\frac{m(2i, -2i)}{2i^3}$		1 mark
y = -2t		• Identifies locus without
$t = \frac{x}{2} \qquad \qquad = -2\left(\frac{x}{2}\right)^3$		the point of exclusion
$=-\frac{x^{2}}{4}$	2	
4		
However $t \neq 0$, $\therefore x \neq 0$		
Locus is $y = -\frac{x}{4}$, excluding the point (0,0)		

Solution	Marks	Comments
QUESTION 7		
7a) $\frac{\sqrt{3}}{2} + \frac{i}{2} = \operatorname{cis}\frac{\pi}{6}$ $\left(\operatorname{cis}\frac{\pi}{6}\right)^{n} = -1$ $\operatorname{cis}\frac{n\pi}{6} = \operatorname{cis}\pi$ $\frac{n\pi}{6} = \pi$	2	1 mark • Another multiple of 6. $\operatorname{cis} \frac{n\pi}{6} = \operatorname{cis} \pi$
6		
\therefore $n = 6$		
7b) $x^{4} + x^{5} + x^{2} + x + 1 = 0$ $\frac{(x-1)(x^{4} + x^{3} + x^{2} + x + 1)}{x-1} = 0$ $\frac{x^{5} - 1}{x-1} = 0$ $x^{5} - 1 = 0$, $x \neq 1$ $x = \operatorname{cis} \frac{2\pi}{5}$, $\operatorname{cis} -\frac{2\pi}{5}$, $\operatorname{cis} \frac{4\pi}{5}$, $\operatorname{cis} -\frac{4\pi}{5}$	3	 2 marks Finds the solutions, but includes x = 1 Incorrectly solves x⁵ - 1 = 0 but acknowledges x ≠ 1 1 mark Attempts to link the question with roots of unity
7c) (i) $x = a\cos\theta$ $y = b\sin\theta$ $\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$ $\frac{dx}{d\theta} = -a\sin\theta$ $\frac{dy}{d\theta} = b\cos\theta$ $= -\frac{b\cos\theta}{a\sin\theta}$ $y - b\sin\theta = -\frac{b\cos\theta}{a\sin\theta}(x - a\cos\theta)$ $ay\sin\theta - absin^2\theta = -bx\cos\theta + ab\cos^2\theta$ $bx\cos\theta + ay\sin\theta - ab(\sin^2\theta + \cos^2\theta) = 0$ $bx\cos\theta + ay\sin\theta - ab = 0$	2	 1 mark Correctly derives slope of the tangent
$7c) (ii) SR = \left \frac{abe\cos\theta - 0 - ab}{\sqrt{b^2 \cos^2\theta + a^2 \sin^2\theta}} \right S'R' = \left \frac{-abe\cos\theta - 0 - ab}{\sqrt{b^2 \cos^2\theta + a^2 \sin^2\theta}} \right $ $SR \times S'R' = \left \frac{abe\cos\theta - 0 - ab}{\sqrt{b^2 \cos^2\theta + a^2 \sin^2\theta}} \right \times \left \frac{-abe\cos\theta - 0 - ab}{\sqrt{b^2 \cos^2\theta + a^2 \sin^2\theta}} \right $ $= \frac{\left \frac{a^2b^2e^2\cos^2\theta - a^2b^2 \right }{b^2\cos^2\theta + a^2\sin^2\theta} \right $ $= b^2 \left\{ \frac{\left \frac{a^2e^2\cos^2\theta - a^2}{a^2(1 - e^2)\cos^2\theta + a^2\sin^2\theta} \right }{a^2(1 - e^2)\cos^2\theta + a^2\sin^2\theta} \right\}$ $= b^2 \left\{ \frac{\left -11 \right \left \frac{a^2 - a^2e^2\cos^2\theta}{a^2(\sin^2\theta + \cos^2\theta) - a^2e^2\cos^2\theta} \right }{a^2(\sin^2\theta + \cos^2\theta) - a^2e^2\cos^2\theta} \right\} = b^2 \left(\frac{a^2 - a^2e^2\cos^2\theta}{a^2 - a^2e^2\cos^2\theta} \right) = b^2$	3	 2 marks Makes substantial progress towards solution. 1 mark Finds a correct expression for <i>SR</i> × <i>S'R'</i>

		comments
QUESTION 8		
8a) Possible sets of digits 9+9+9+9+7=43 9+9+9+8+8=43 = 5+10 = 15 # of numbers $= \frac{5!}{4!} + \frac{5!}{3! \times 2!}$	2	 1 mark Identifies the two sets of digits Evaluates the number of ways for one set of digits
$\begin{array}{l} 9+9+9+9+7=43\\ 9+9+9+8+8=43\\ =5+10\\ =15\\ \hline \\ \hline$	2	 Identifies the two sets of digits Evaluates the number of ways for one set of digits There are 4 key parts of the induction; Proving the result true for n = 1 Clearly stating the assumption and what is to be proven Using the assumption in the proof Correctly proving the required statement 4 marks Successfully does all of the 4 key parts 3 marks Successfully does 2 of the 4 key parts I mark Successfully does 1 of the 4 key parts
$= \frac{1}{2 \sin \frac{1}{2}\theta}$ $= \frac{\sin \frac{1}{2}(2k+1)\theta}{2\sin \frac{1}{2}\theta}$		

Solution	Marks	Comments
QUESTION 8continued		
Hence the statement is true for $n = k + 1$, if it is true for $n = k$		
Since the result is true for $n = 1$, then it is true for all positive integers, by induction.		
8b) (ii) The width of each rectangle is $\frac{\pi}{6n}$		1 mark • Successfully uses the result of part(i) in a
$S_{n} = \frac{\pi}{6n} \left[\cos\frac{\pi}{6n} + \cos\frac{2\pi}{6n} + \cos\frac{3\pi}{6n} + \dots + \cos\frac{(n-1)\pi}{6n} + \cos\frac{n\pi}{6n} \right]$		method that would lead to a correct solution.
$= \frac{\pi}{6n} \left[\cos\frac{\pi}{6n} + \cos\frac{2\pi}{6n} + \cos\frac{3\pi}{6n} + \dots + \cos\frac{(n-1)\pi}{6n} + \cos\frac{\pi}{6} \right]$		• Writes <i>S_n</i> as a sum of the areas of the rectangles.
$= \frac{\pi}{6n} \left[\cos\frac{\pi}{6n} + \cos\frac{2\pi}{6n} + \cos\frac{3\pi}{6n} + \dots + \cos\frac{(n-1)\pi}{6n} + \frac{\sqrt{3}}{2} \right]$		
$= \frac{\pi}{6n} \left[\frac{\sqrt{3}}{2} - \frac{1}{2} + \left\{ \frac{1}{2} + \cos\frac{\pi}{6n} + \cos\frac{2\pi}{6n} + \cos\frac{3\pi}{6n} + \dots + \cos\frac{(n-1)\pi}{6n} \right\} \right]$	2	
$= \frac{\pi}{6n} \left\{ \frac{\sqrt{3}}{2} - \frac{1}{2} + \frac{\sin\frac{1}{2}(2n-1)\frac{\pi}{6n}}{2\sin\frac{1}{2} \times \frac{\pi}{6n}} \right\}$		
$= \frac{\pi}{12n} \left\{ \sqrt{3} - 1 + \frac{\sin(2n-1)\frac{\pi}{12n}}{\sin\frac{\pi}{12n}} \right\}$		
8b) (iii) $\lim_{n \to \infty} S_n = \lim_{h \to 0} S_{\frac{1}{h}}$		1 mark • Bald answer
$= \lim_{h \to 0} \frac{h\pi}{12} \left[\sqrt{3} - 1 + \frac{\sin\left(\frac{2}{h} - 1\right)\frac{h\pi}{12}}{\sin\frac{h\pi}{12}} \right]$		• Uses $\lim_{x \to 0} \frac{x}{0 \sin x}$ • Correctly substitutes $n = \frac{1}{h}$
$= \lim_{h \to 0} \left[\frac{(\sqrt{3} - 1)h\pi}{12} + \frac{h\pi}{12} \times \sin\left(\frac{2}{h} - 1\right)\frac{h\pi}{12}}{\sin\frac{h\pi}{12}} \right]$	2	
$= 0 + 1 \times \sin\left(\frac{\pi}{6} - 0\right)$		
$=\frac{1}{2}$		