

BAULKHAM HILLS HIGH SCHOOL

2014
YEAR 12 HALF-YEARLY

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 120 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions
- Start a new page for each question

Total marks - 70
Exam consists of 11 pages.
This paper consists of TWO sections.

Section 1 - Pages 4-6

Multiple Choice
Question 1-10 (10 marks)
Section 2 - Pages 7-10
Extended Response
Question 11-14 (60 marks)
Standard integrals provided on page 11

Section I-10 marks

Allow about 15 minutes for this section

Use the multiple choice answer sheet for question 1-10

1. Which of the following shapes is the locus of the point P representing the complex number z moving in an Argand diagram such that

$$
|z-2 i|+|z+2 i|=6
$$

(A) A circle
(B) A parabola
(C) A hyperbola
(D) An ellipse
2. What is the multiplicity of the root $x=-1$ of the equation $3 x^{5}-5 x^{4}-35 x-27=0$?
(A) one
(B) two
(C) three
(D) four
3. In modulus argument form $-\sqrt{2}(1-i)$ is
(A) $2\left(\cos \left(\frac{3 \pi}{4}\right)-i \sin \left(\frac{3 \pi}{4}\right)\right)$
(B) $2\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right)$
(C) $\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}$
(D) $-\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}$
4. If $y=\cos ^{-1}\left(e^{x}\right)$, the expression for $\frac{d y}{d x}$ is
(A) $-\operatorname{cosec} y$
(B) $-\tan y$
(C) $-\cot y$
(D) $-\sec y$
5. If α, β and γ are roots of the equation $x^{3}+5 x^{2}+4=0$, then the cubic equation with roots α^{2}, β^{2} and γ^{2} is
(A) $4 x^{3}+5 x^{2}+1=0$
(B) $x^{3}-25 x^{2}-40 x-16=0$
(C) $x^{3}+25 x^{2}+40 x+16=0$
(D) $x^{3}+25 x^{2}-40 x+16=0$
6. The equation of the normal to the hyperbola $x=2 \sec \theta, y=\tan \theta$ at the point where $\theta=\frac{\pi}{4}$ is
(A) $\sqrt{2} x+y-5=0$
(B) $\sqrt{2} x+2 y-2=0$
(C) $\sqrt{2} x-2 y-2=0$
(D) $\sqrt{2} x-y+5=0$
7. On an Argand diagram, point Z is shown to represent the complex number z . Which diagram below shows the vector that represents $(1-i) z$?
(A)

(B)

(C)

(D)

8. Three of the six letters of the word $\boldsymbol{R} \boldsymbol{O} \boldsymbol{M} \boldsymbol{A R O}$ are selected and arranged in a row. How many different arrangements are possible?
(A) 120
(B) 30
(C) 42
(D) ${ }^{6} P_{3} \times 3$!
9. Given the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$, which of the following would be the equation of the asymptotes?
(A) $y= \pm \frac{3}{4} x$
(B) $y= \pm \frac{4}{3} x$
(C) $y= \pm \frac{16}{9} x$
(D) $y= \pm \frac{16}{9} x$
10. The locus of z in the Argand plane where $\arg (z-2)-\arg (z-i)=\frac{\pi}{3}$ is
(A)

(B)

(C)

(D)

End of Section I

Section II - Extended Response

Attempt questions 11-14. Show all necessary working.
Answer each question on a SEPARATE PAGE Clearly indicate question number.
Each piece of paper must show your BOS number.
All necessary working should be shown in every question.

Question 11 (15 marks)
(a) Let $z=i-\sqrt{3}$ and $w=1-i$, find
(i) $\bar{z}+w \quad 1$
(ii) $z w$ in modulus /argument form.
(b) (i) Find all the complex numbers $z=a+i b$ such that
$(a+i b)^{2}=8+6 i$, where a, b are real numbers.
(ii) Hence solve $z^{2}+2 z(1+2 i)-(11+2 i)=0$
(c) Solve $x^{4}+4 x^{3}-16 x-16=0$ given that it has a root of multiplicity 3
(d) Find the equation of the locus of all z, such that $|z-2|=\operatorname{Re}(z)$.
(e) For the hyperbola $x y=12$, find its
(i) foci
(ii) equations of directrices
a) A nine member committee consists of 4 male students, 3 female students and 2 teachers. The committee meets around a circular table so that the male students sit together as a group, and so do the female students, but no female student sits next to a male student.
(i) How many different arrangements are possible?
(ii) One particular male student does not wish to sit next to one particular teacher.

How many ways can this be arranged?
b) The points represented by the complex number $z_{1}=\sqrt{3}+i$ and two other complex numbers z_{2} and z_{3}, lie on the circumference of a circle with centre O and radius 2. These three points are vertices of an equilateral triangle.
Find the complex numbers z_{2} and z_{3} in the form $a+i b$ where a and b are real.
(c) Solve $z^{4}-z^{3}+6 z^{2}-z+15=0$ for z given that $z=1-2 i$ is a root of the equation.
(d) The locus of z is represented by $|z-1|=1$
(i) Sketch the locus.
(ii) Show that $\left|z^{2}-z\right|=|z|$
(iii) Show that $\arg (z-1)=\frac{2}{3} \arg \left(z^{2}-z\right)$.
(e)

The diagram shows points A, B and T marked on a circle. A tangent to the circle at $T, K C$ is drawn such that $B C$ is perpendicular to $K C$. $T M$ is perpendicular to $A B$.

Show that $M C$ is parallel to $A T$.

End of Question 12

a) Solve $\left|3 x^{2}-2 x-2\right|<3 x$
b) Given that ω is a non-real root of the equation $z^{5}=1$ and that $\alpha=\omega+\omega^{4}$ is a root of the quadratic equation $x^{2}+b x+c=0$, where b and c are real.
(i) Prove that $1+\omega+\omega^{2}+\omega^{3}+\omega^{4}=0$.
(ii) Find the second root β of the equation $x^{2}+b x+c=0$ in terms of positive powers of ω.
(iii) Find the values of the coefficients a and b.
(iv) Deduce that the exact value of

$$
\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2}
$$

(c)

The point $P(a \cos \theta, b \sin \theta)$ lies on $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. A line is drawn through the origin parallel to the tangent at P. The line meets the ellipse at Q and Q^{\prime}.
(i) Show that the equation of the tangent at P is $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$
(ii) Show that the equation of $Q Q^{\prime}$ is $x b \cos \theta+y a \sin \theta=0$
(iii) Hence find the coordinates of Q and Q^{\prime}
(iv) Prove that the area of the $\Delta \mathrm{QPQ}^{\prime}$ is independent of the position of P.

End of Question 13

a) Given that $\cos \theta+i \sin \theta \neq 1$, prove by mathematical induction that

$$
1+\operatorname{cis} \theta+\operatorname{cis} 2 \theta+\cdots+\operatorname{cis}(n \theta)=\frac{1-\operatorname{cis}(n+1) \theta}{1-\operatorname{cis} \theta}
$$

where $n \geq 0$, and cis $\theta=\cos \theta+i \sin \theta$
b)

If complex numbers z_{1}, z_{2}, z_{3} represent vertices of an equilateral triangle
(i) Express $z_{2}-z_{1}$ in terms of $z_{3}-z_{1}$
(ii) Hence prove $z_{1}{ }^{2}+z_{2}{ }^{2}+z_{3}{ }^{2}=z_{1} \cdot z_{2}+z_{2} \cdot z_{3}+z_{3} \cdot z_{1}$
c)

The points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$, where, $|p| \neq|q|$, lie on the rectangular hyperbola with equation $x y=c^{2}$.
(i) Show that the equation of the tangent to the hyperbola $x y=c^{2}$ at the point $P\left(c p, \frac{c}{p}\right)$ is $x+p^{2} y=2 c p$
(ii) If the tangents at $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ meet at the point $R\left(x_{0}, y_{0}\right)$, prove that $p+q=\frac{2 c}{y_{0}}$ and $p q=\frac{x_{0}}{y_{0}}$
(iii) If the length of chord $P Q$ is d units, show that $d^{2}=c^{2}(p-q)^{2}\left\{1+\frac{1}{p^{2} q^{2}}\right\}$
(iv) If d remains fixed, deduce that the locus of R has equation

$$
4 c^{2}\left(x^{2}+y^{2}\right)\left(c^{2}-x y\right)=x^{2} y^{2} d^{2}
$$

End of Question 14

End of Paper

Multiple choice

1. (D) ellipse
2. $\bar{B})^{\prime}(x)(-1)=0$
$3 . A$

$$
-\sqrt{2}(1-i)=-\sqrt{2}+\sqrt{2} i=z
$$

modulus $=\sqrt{(-\sqrt{2})^{2}(\sqrt{2})^{2}}=2 \quad$ arg $z=\tan ^{-1}\left(-\frac{\sqrt{2}}{\sqrt{2}}\right)=\frac{3 \pi}{4}$

$$
\therefore z=2\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right.
$$

4. A $(2 \sec \theta, \tan \theta) a t \theta=\frac{\pi}{4} \quad a=2 \quad b=1$

$$
\begin{aligned}
& \quad=\left(2 \sec \frac{7}{4}, \tan \frac{\pi}{4}\right)=(2 \sqrt{2}, 1) \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \therefore \frac{x^{2}}{4}-y^{2}=1 \therefore \frac{2 x}{4}-2 y \cdot \frac{d y}{d x}=0 \\
& \therefore m_{r}=\frac{2 \sqrt{2}}{4 \times 1}=\frac{\sqrt{2}}{2} \therefore m_{N}=-\frac{2}{\sqrt{2}}=-\sqrt{2} \quad \therefore \frac{d y}{d x}=\frac{x}{4 y} \\
& \therefore \text { eqn. of normal } \therefore y-1=-\sqrt{2}(x-2 \sqrt{2}) \therefore \sqrt{2} x+y-5=0
\end{aligned}
$$

5. B let $y=x^{2} \therefore x=\sqrt{y} \quad \therefore P(x)=0 \therefore P(\sqrt{y})=0$

$$
\begin{aligned}
\therefore(\sqrt{y})^{3}+5(\sqrt{y})^{2}+4=0 \\
y \sqrt{y}=-5 y-4 \therefore y^{3}=(-5 y-4)^{2}=25 y^{2}+40 y+16
\end{aligned}
$$

\therefore cubic equation is $y^{3}-25 y^{2}-40 y+16=0$ or $x^{3}-25 x^{2}-400+16=0$
$6 . C$

$$
\begin{aligned}
& y=\cos ^{-1}\left(e^{x}\right) \quad \therefore e^{x}=\cos y \\
& \frac{d y}{d x}=\frac{-e^{x}}{\sqrt{1-\left(e^{x}\right)^{2}}}=\frac{-\cos y}{\sqrt{1-\cos ^{2} y}}=\frac{-\cos y}{\sin y}=-\cot y
\end{aligned}
$$

7. $B(1-i) z=z-i z$

8. C

Choose R, R and one of $0, M, 4 \therefore{ }^{3} C, \times \frac{3!}{2!}=9$
choose 0,0 , and one of $R, M, A \therefore 9$
arrange $R D M, A \quad{ }^{4} P_{4}=4!=24$

$$
\therefore t_{0} t a l=9+9+24=42
$$

$9 . B$

$$
\begin{aligned}
& \frac{y^{2}}{16}=\frac{x^{2}}{9}-1 \\
& \frac{y^{2}}{x^{2}}=\frac{16}{9}-\frac{16}{x^{2}} \quad \therefore \text { asymptote } \frac{y}{x}= \pm \frac{4}{3} \\
& \quad \therefore y= \pm \frac{4}{3} x
\end{aligned}
$$

10. $A \arg \frac{(z-2)}{(z-i)}=\frac{\pi}{3}$

(a) $z=i-r_{3}, w=1-i$

$$
\begin{equation*}
\text { (i) } \bar{z}+w=-\sqrt{3}-i+1-i=(-\sqrt{3}+1)-2 i \tag{1}
\end{equation*}
$$

(ii) $z \cdot w=(-\sqrt{3}+i)(i-i)=(-\sqrt{3}+1)+i(1+\sqrt{3})(1) / 3)$
(0B) $|z \cdot w|=|-\sqrt{3}+i||1-i|=|2| \times|\sqrt{2}|=2 \sqrt{2}$ (1)
$\arg (z \cdot w)=\arg (z)+\arg (w)=\frac{5 \pi}{6}+\left(-\frac{\pi}{4}\right)=\frac{7 \pi}{2}$ (1)

$$
\begin{equation*}
\therefore z w=2 \sqrt{2} \text { cis } \frac{3 \pi}{12} \tag{1}
\end{equation*}
$$

(b)

$$
\begin{aligned}
& (i)(a+i b)^{2}=8+6 i \\
& a^{2}-b^{2}+2 i a b=8+6 i
\end{aligned}
$$

(1) $a^{2}-b^{2}=8$
(1)
(2) $2 a b=6 \quad \therefore \quad b=\frac{3}{a}$

$$
\begin{aligned}
& \therefore a^{2}-\left(\frac{3}{a}\right)^{2}=8 \quad \therefore a^{4}-8 a^{2}-9=0 \\
&\left(a^{2}-9\right)\left(a^{2}+1\right)=0
\end{aligned}
$$

$a= \pm 3$ nosolution inreal

$$
\therefore\left(\begin{array}{l}
a=3 \tag{1}\\
a=1 \\
b=-3 \\
b=-1
\end{array}\right) \therefore \quad a= \pm 3 \text { nosolut } \quad \therefore= \pm(3+i)
$$

(ii)

$$
\begin{align*}
& z^{2}+2 z(1+2 i)-(11+2 i)=0 \\
& z=\frac{-2(1+2 i) \pm \sqrt{4(1+2 i)^{2}-(-4(11+2 i))}}{2} \\
&=\frac{-2(1+2 i) \pm \sqrt{(1+2 i)^{2}+(11+2 i)}}{2} \tag{1}\\
&=-(1+2 i) \pm \sqrt{8+6 i}=-(1+2 i) \pm(\pm 3+i)
\end{align*}
$$

(4.) ii) cont. $\therefore z=2-i$ or $-4-3 i$ (1)
c) $x^{4}+4 x^{3}-16 x-16=0$
let $p(x)=x^{4}+4 x^{3}-16 x-16$

$$
\begin{aligned}
& p^{\prime}(x)=4 x^{3}+12 x^{2}-16=4\left(x^{3}+3 x^{2}-4\right) \\
& p^{\prime}(x)=12 x^{2}+24 x=0=12 x(x+2),
\end{aligned}
$$

when $x=0, x=-2$
but $P(0) \neq 0 \therefore 0$ is not a root

$$
x(-2)=0, p^{\prime}(-2)=0 \times p^{\prime \prime}(-2)=0
$$

$\therefore x=-2$ is a root multiplicity 3 (1)

$$
\therefore\left(x^{4}+4 x^{3}-16 x-16\right) \div(x+2)^{3}=x-2
$$

$\therefore x=-2$ and $x=2$ (single root)
multiplicity 3
d) $|z-2|=\operatorname{Re}(z) \quad$ let $z=x+i y$

$$
\therefore|x+1 y-2|=x
$$

$$
\begin{equation*}
\therefore \sqrt{(x-2)^{2}+y^{2}}=x \tag{1}
\end{equation*}
$$

$$
(x-2)^{2}+y^{2}=x^{2}
$$

$$
x^{2}-4 x+4+y_{2}^{2}=x^{2}
$$

(1) locus of z
e) $x y=12=c^{2}=\frac{a^{2}}{2} \quad \therefore \quad 12=\frac{a^{2}}{2} \therefore a=\sqrt{24}=2 \sqrt{6}$

$$
s, s^{\prime}(\pm a, \pm a) \div S(+2 \sqrt{6},+2 \sqrt{6}), s^{\prime}(-2 \sqrt{6},-2 \sqrt{6})
$$

directrices:

$$
\begin{align*}
\therefore+y & =2 \sqrt{6} \tag{1}\\
\therefore+y & =-2 \sqrt{6}
\end{align*}
$$

You may ask for extra writing paper if you need more space to answer question 11

i) $4!3!\times 2=288$ ways teachers
ii) aparticular male student M_{1} sits next to a particular tedder T_{1} in $3!3!\times 2=72$ ways
\therefore number of ways M, docsn't sit next to $T_{1}=288-72$ (1) $=216$ ways

$$
\begin{equation*}
z_{3}=z_{2} \cdot \operatorname{cis}\left(\frac{2 \pi}{3}\right)=2 \operatorname{cis} \frac{3 \pi}{2}=2 \operatorname{cis}\left(-\frac{\pi}{2}\right)=-2 i^{\circ} \text { (1) } \tag{1}
\end{equation*}
$$

c) ω is a root of $z^{5}=1 \quad \therefore \quad \omega^{5}=1$ or $\omega^{5}-1=0$ but $\omega^{5}-1=(\omega-1)\left(\omega^{4}+\omega^{3}+\omega^{2}+\omega+1\right)=0$
since co-nonneal: $\omega \neq 1 \quad$ 1. $\quad \omega^{4}+\omega^{3}+\omega^{2}+\omega+1=0$
Now quadratic equation $x^{2}+b x+c=0$
where $\alpha=\omega+\omega \omega^{4}, \beta=\omega^{2}+\omega^{3}$. But $\alpha+\beta=-\frac{b}{a_{2}}$

$$
\begin{aligned}
\therefore \omega_{0}+c^{4}+a^{2}+c^{3} & =-b=-1 \\
\therefore b & =1
\end{aligned}
$$

\qquad
12c) cont: $\alpha \cdot \beta=\frac{c}{a}$

$$
\therefore\left(a+\omega^{4}\right)\left(\omega^{2}+\omega^{3}\right)=\omega^{3}+\omega^{4}+\omega^{6}+\omega^{7}=C
$$

since $\left.\begin{array}{rl}\omega^{6} & =\omega^{5} \cdot \omega \\ \omega^{2} & =\omega \cdot \omega^{5} \cdot \omega^{2}=\omega\end{array}\right\} \therefore \omega^{3}+\omega^{4}+\omega+\omega^{2}=c=-1(i)$
\therefore quad. equation is $\quad x^{2}+x-1=0$
d) solve $z^{4}-z^{3}+6 z^{2}-z+15=0$ if $z=1-2 i$ is root
\therefore cocffi ane real $\therefore 1+21^{\circ}=\bar{z}$ is root $a / s o$
\therefore quadratic factor is $[z-(1-2 i][z-2 i)]=z^{2}-2 z+5$
now $\left(z^{4}-z^{3}+6 z^{2}-z+15\right) \div\left(z^{2}-2 z+5\right)=z^{2}+z+3$

$$
\begin{array}{r}
\frac{\left(z-4-2 z^{3}+5 z^{2}\right)}{z^{3}+z^{2}-z+15} \\
-\left(z^{3}-2 z^{2}+5 z\right) \\
3 z^{2}-6 z+15 \\
-\left(3 z^{2}-6 z+15\right) \\
0
\end{array}
$$

\therefore The other roots ane solutions of $z^{2}+z+3=0$

$$
\begin{equation*}
\therefore \quad z=\frac{-1 \pm \sqrt{11}}{2} \tag{i}
\end{equation*}
$$

\therefore roots are: $1-2 i, 1+2 i,-\frac{1}{2}+\frac{\sqrt{11}}{2}, \quad 2-\frac{1}{2}-\frac{\sqrt{11}}{2}$
e) $3 x^{2}-2 x-2<|3 x|$

$\therefore 0<x<2<$ solutions $\rightarrow<-1<x<0$
You may ask for extra writing paper if you need more space to answer question 12

CBMT is a cyclic quadivaterat $\rightarrow \angle B H T=\angle B C T=90^{\circ}$
(1): opposite $<$'s in quadrilateral are supplementary
Now $\angle A T K=\alpha=\angle T B M T(<$ between tangent x chord $u t$ point of con tact $=$ < in alternate segment subtended by that chord)
But $\angle M C T=\angle M B T=\alpha$ (angles standing on the same are TM of circle CBMT)
\therefore AT\|MC (since $\angle A T K=\angle M C T$ and yhey're($)$ corresponding as 5)
a) $|z-1|=1$

Locus is a circle centre $(1,0)$ radius $r=1$
ii) $\left|z^{2}-z\right|=|z(z-1)|=|z||z-1|=|z| x|=|z| \cdot$ shower

Let P bethe $p t$. representing z centre $C(1,0)$, pt. $B(2,0)$

Now $\angle P C B=2 x \angle P O C\left(\begin{array}{l}\text { angle at the centre } \\ =\text { double angle atcircuadi.) }\end{array}\right.$
but $\angle P O C=\arg z$ and $\angle P C B=\arg (z-1)$

$$
\begin{gathered}
\therefore \arg (z-1)=2 \cdot \arg z \\
\text { Now } \frac{2}{3} \arg \left(z^{2}-z\right)=\frac{2}{3} \arg [z(z-1)]=\frac{2}{3}[\arg z+\arg (z-1)] \\
=\frac{2}{3}[\arg z+2 \cdot \arg z]=\frac{2}{3}(3 \arg z)=2 \arg z=\arg (z-1)
\end{gathered}
$$

6)i) since $z^{5}-1=(z-1)\left(z^{4}+z^{3}+z^{2}+z+1\right)$
\therefore roots of $z^{4}+z^{3}+z^{2}+z+1=0$ are amongst roots of $z^{5}-1=0$, where $z \neq 1$.
\therefore roots are $z_{1}=\operatorname{cis} \frac{2 \pi}{5}, z_{2}=\operatorname{cis} \frac{4 \pi}{5}$

$$
\begin{align*}
& z_{3}=\bar{z}_{2}=\operatorname{cis}\left(-\frac{4 \pi}{5}\right) \tag{1}\\
& z_{4}=z_{1}=\operatorname{cis}\left(-\frac{2 \pi}{5}\right)
\end{align*}
$$

$$
\begin{aligned}
& \text { (36) ii) Now } z^{4}+z^{3}+z^{2}+z+1=\left[(z-z)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)\right] \\
&\left.=\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-\overline{z_{2}}\right)(z-\bar{z})\right] \\
&=\left(z^{2}-2 z \cdot \operatorname{Re} z_{1}+1\right)\left(z^{2}-2 z \cdot \operatorname{Re} z_{2}+1\right) \\
& \therefore z^{4}+z^{3}+z^{2}+z+1=\left[z^{2}-2 z \cdot \cos \frac{2 \pi}{5}+1\right]\left[z^{2}-2 z \cdot \cos \frac{4 \pi}{5}+1\right]
\end{aligned}
$$

Now math up coefficients of z

$$
\begin{aligned}
& \therefore z=-2 z \cdot \cos \frac{2 \pi}{5}+\left(-2 z \cdot \cos \frac{4 \pi}{5}\right) \\
& \therefore 1=-2\left(\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}\right) \\
& \therefore-1 / 2=\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5} \quad \therefore \text { proven }
\end{aligned}
$$

c) i) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \therefore \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=\theta: \frac{d y}{d x}=\frac{-b^{2}}{a^{2}} \cdot \frac{x}{y}$

$$
\begin{equation*}
\therefore a \in P(a \cos \theta, b \sin \theta) \quad m_{T}=\frac{-b^{2}}{a^{2}} \cdot \frac{a \cos \theta}{b \sin \theta}=\frac{-b \cos \theta}{a \sin \theta} \tag{1}
\end{equation*}
$$

\therefore equation of tangent.: $y-b \sin \theta=\frac{-b \cos \theta}{a \sin \theta}(x-a \cos \theta)$

$$
\begin{align*}
& \frac{y \sin \theta}{b}-\sin ^{2} \theta=-\cos \theta \tag{1}\\
& a+\cos ^{2} \theta \\
& \therefore \frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=\cos ^{2} \theta+\sin ^{2} \theta=1 \\
& \text { ishon }
\end{align*}
$$

ii) $Q Q^{\prime}$ II tangent at P i $m_{Q Q^{\prime}}=\frac{-b \cos \theta}{a \sin \theta}$

$$
\text { and } \begin{align*}
(\theta, 0) \in Q Q^{\prime}: \text { equation } \quad y & =-\frac{b \cos \theta}{a \sin \theta} x \tag{r}\\
& 0 \& Q Q^{\prime} \therefore \quad
\end{align*}
$$

$$
\therefore y a \sin \theta=-b \cos \theta x
$$

$\therefore Q Q^{\prime}$ is: $x b \cos \theta+y a \sin \theta=0$
You may ask for extra writing paper if you need more space to answer question 13

$$
\text { 13c) iii) } Q, Q^{\prime}\left\{\begin{array}{l}
x b \cos \theta+y a \sin \theta=0 \tag{1}\\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
\end{array}\right.
$$

$$
\text { (i) } x=\frac{-y a \sin \theta}{b \cdot \cos \theta}
$$

$$
\therefore \text { (2) } \frac{\frac{y^{2} d^{2} \sin ^{2} \theta}{b^{2} \cos ^{2} \theta}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
\therefore \frac{y^{2} \sin ^{2} \theta}{b^{2} \cdot \cos ^{2} \theta}+\frac{y^{2}}{b^{2}}=1 \cdot \frac{y^{2}}{b^{2}}\left[\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+1\right]=1
$$

$$
\therefore y^{2}\left[\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta}\right]=b^{2} \quad y^{2}=b^{2} \cos ^{2} \theta \cdot y= \pm b \cos \theta
$$

$$
\therefore x_{\theta, Q^{\prime}}=-\bar{y} \frac{a \sin \theta}{b \cos \theta}=<\begin{aligned}
& -(b b \cos \theta) \frac{a \sin \theta}{b c o s} \theta \\
& -(-b \cos \theta) \frac{a \sin \theta}{b \cos \theta}=+a \sin \theta
\end{aligned}
$$

$$
\begin{equation*}
\therefore Q(-a \sin \theta,+b \cos \theta) \quad Q^{\prime}(+a \sin \theta,-b \cos \theta) \tag{1}
\end{equation*}
$$

iv)

Area $_{\triangle Q^{P} Q^{1}}=\frac{1}{2} \cdot Q Q^{\prime} \times h$

$$
Q Q^{\prime}=\sqrt{(2 a \sin \theta)^{2}+(2 b \cos \theta)^{2}}=2 \sqrt{a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta}
$$

$h=$ herp. distance of $Q Q^{\prime} \div x b \cos \theta+y a \sin \theta=0$ from P $a \cos \theta, b \sin \theta$,

$$
\begin{aligned}
& \therefore h=\frac{|a \cos \theta \cdot b \cos \theta+b \sin \theta \cdot a \cdot \sin \theta|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}=\frac{|a b| \cdot\left|\cos ^{2} \theta+\sin ^{2} \theta\right|}{\sqrt{b^{2} \cdot \cos ^{2} \theta+a^{2} \sin ^{2} \theta}} \\
& \therefore \text { Area }_{\Delta Q R Q}=\frac{1}{2} \frac{|a b|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}} \cdot 2 \sqrt{a a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta}=\frac{|a b|}{\operatorname{constan} t}
\end{aligned}
$$

which is independent of position of P.
a) $\frac{\text { STEP }}{\operatorname{tes}+n} n=0 \therefore \angle 45=1$

$$
\text { hHS }=\frac{1-\operatorname{cis} \theta}{1-\operatorname{cis} \theta}=1
$$

\therefore Hestatementis the for $n=0$.
STEPL: Assume that statement is true for $n=t$

$$
\text { ie. } 1+\operatorname{cis} \theta+\operatorname{cis} 2 \theta+\ldots+\operatorname{cis} K \theta=\frac{1-\operatorname{cis}(k+1) \theta}{1-\operatorname{cis} \theta}
$$

$$
\begin{aligned}
& L+s=\frac{1+\operatorname{cis} \theta+\cdots+\operatorname{cisk} \theta+\operatorname{cis}(k+1) \theta=\frac{1-\operatorname{cis}(k+1) \theta}{1-\operatorname{cis} \theta} \times \operatorname{cis}(k+1) \theta}{a s \sin \sin n} \\
&=\frac{1-\operatorname{cis}(k+1) \theta+(1-\operatorname{cis} \theta)(\operatorname{cis}(k+1) \theta)}{1-\operatorname{cis} \theta} \\
&=\frac{1-\operatorname{cis}(k+1) \theta+\operatorname{cis}(k+1) \theta-\operatorname{cis} \theta \cdot \operatorname{cis}(k+1) \theta}{1-\operatorname{cis} \theta} \\
&=\frac{1-\operatorname{cis}[\theta+(k+1) \theta]}{1-\operatorname{cis} \theta}=1-\operatorname{cis}(k+2) \theta=k+s \\
& 1-\operatorname{cis} \theta
\end{aligned}
$$

\therefore the statencent is time for $n=k_{+1}$ if it's the for $n=k$, and since proven tue for $n=0$ \therefore by math. induction the statenoot is tue for all integers $n \geq 0$.

You may ask for extra writing paper if you need more space to answer question 15
b) i) $z_{2}-z_{1}=\left(z_{3}-z_{1}\right)$ cis $\frac{\pi}{3}$
ii) $z_{1}-z_{3}=\left(z_{2}-z_{3}\right)$ cis $\frac{\pi}{3}$

$$
\begin{align*}
& \therefore \frac{z_{2}-z_{1}}{z_{1}-z_{3}}=\frac{\left(z_{3}-z_{1}\right) \operatorname{cis} \frac{\pi}{3}}{\left(z_{2}-z_{3}\right) \operatorname{cis} \frac{\pi}{3}} \tag{1}\\
& \therefore\left(z_{2}-z_{1}\right)\left(z_{2}-z_{3}\right)=\left(z_{3}-z_{1}\right)\left(z_{1}-z_{3}\right) \tag{1}\\
&\left(z_{2}^{2}-z_{1} z_{2}+z_{3}-z_{2} z_{3}=z_{3} z_{1}-z_{1}-z_{3}^{2}\right)+z_{4} \\
& \therefore z_{1}^{2}+\frac{z_{2}^{2}}{2}+z_{3}^{2}=z_{1} z_{2}+z_{3} z_{2}+z_{1} z_{3} \quad \therefore \text { poves }
\end{align*}
$$

c) ij

$$
\begin{array}{r}
x y=c^{2}: y=\frac{c^{2}}{x} \\
\frac{d y}{d x}=\frac{-c^{2}}{x^{2}} \\
\text { at } p\left(c p, \frac{c}{p}\right) \therefore m_{7}=-\frac{c^{2}}{c^{2} p^{2}}=\frac{-1}{p^{2}} \tag{1}\\
p \text { is }
\end{array}
$$

eqn. of tangentat P is

$$
\begin{aligned}
y-\frac{c}{p} & =-\frac{1}{p^{2}}(x-c p) \\
p^{2}\left(y-\frac{c}{p}\right) & =-(x-c p) \\
p^{2} y-c p & =-x+c p
\end{aligned}
$$

$\therefore x+p^{2} y=2 c p$ (i) proven
ii) Similarly at Q ($c g, \frac{c}{q}$) tayent is: $x+q^{2} y=2 c q$ (ii)

$$
\begin{align*}
& R\left(x_{0} y_{0}\right)\left\{\begin{array}{l}
x_{0}+p^{2} y_{0} \\
x_{0}+q^{2} y_{0} \\
p^{2} y_{0} \\
=2 c p
\end{array}\right. \\
& \begin{array}{l}
2 x_{0}+q^{2} y_{0}=2 c q \\
p^{2} y_{0}-q^{2} y_{0}=2 c p-2 c q
\end{array} \\
& \left(p^{2}-q^{2}\right) y_{0}=2 c(p-q) \\
& (p-q)(p+q) y_{p}=2 c(p-q) \quad / \div(p-q) \\
& \text { if }|p| \neq|q| \therefore p-q \neq 0 \quad \therefore(p+q) y_{0}=2 c \\
& \therefore p+q=\frac{2 c}{50} \tag{1}
\end{align*}
$$

14c) cont.
From (1) $x_{0}=2 c p-p^{2} y_{0} \quad 1 \div y_{0}$

$$
\begin{aligned}
& \therefore \frac{x_{0}}{y_{0}}=\left(\frac{2 c_{0}}{y_{0}}-\frac{p^{2} y}{x}(1) b u+\left(\frac{2 c}{y_{0}}\right)=p+q\right. \\
& \therefore \frac{x_{0}}{y_{0}}=(p+q) \cdot p-p^{2}=p^{2}+q p-p^{2}=p q \\
& \therefore \frac{x_{0}}{y_{0}}=p q \quad \text { (pwren) }
\end{aligned}
$$

iii) $\quad P Q^{2}=d^{2} \quad($ since $P Q=d)$

$$
\begin{aligned}
\therefore d^{2} & =(c p-c q)^{2}+\left(\frac{c}{p}-\frac{c}{q}\right)^{2} \\
& \left.=c^{2}(p-q)^{2}+c^{2}\left(\frac{1}{p}-\frac{1}{q}\right)^{2}\right\} \\
& \left.\left.=c^{2}\left[(p-q)^{2}+\frac{(q-p)^{2}}{p^{2} q^{2}}\right]\right)(0)(p-q)^{2}=(q-p)^{2}\right] \\
& =c^{2}(p-q)^{2}\left[1+\frac{1}{p^{2} q^{2}}\right]
\end{aligned}
$$

iv) but $(p-q)^{2}=(p+q)^{2}-4 p q$
sub. this into (iii)

$$
\therefore d^{2}=c^{2}\left[(p+q)^{2}-4 p q\right]\left[1+\frac{1}{p^{2} q^{2}}\right]
$$

also $(p+q)=\frac{2 c}{y_{0}}$ and $p q=\frac{x_{0}}{y_{0}}$

$$
\begin{aligned}
& \left.\therefore d^{2}=c^{2}\left[\left(\frac{z_{c}}{y_{0}}\right)^{2}-4\left(\frac{x_{0}}{y_{0}}\right)\right]\left[1+\frac{1}{x_{0}}\right)^{2}\right] \\
& d^{2}=c^{2}\left[\frac{4 c^{2}}{y_{0}^{2}}-\frac{4 x_{0}}{y_{0}}\right]\left[1+\frac{y_{0}^{2}}{x_{0}^{2}}\right] \\
& d^{2}=\frac{4 c^{2}}{y_{0}^{2}}\left(c^{2}-x_{0} y_{0}\right]\left[\frac{x_{0}^{2}+y_{0}^{2}}{x_{0}^{2}}\right]
\end{aligned}
$$

14 c) iv) cont.

$$
\therefore d^{2} x_{0}^{2} y_{0}^{2}=4 c^{2}\left(c^{2}-x_{0} y_{0}\right)\left(x_{0}^{2}+y_{0}^{2}\right)
$$

but $R\left(x_{0}, y_{0}\right) \in$ on the locus

$$
\begin{aligned}
& \therefore \text { locus of } R\left(x_{0}, y_{0}\right) \text { si } d^{2} x^{2} y^{2}=4 c^{2}\left(c^{2}-x y\right)\left(x^{2}+y^{2}\right) \\
& \therefore 4 c^{2}\left(x^{2}+y^{2}\right)\left(c^{2}-x y\right)=x^{2} y^{2} d^{2} .
\end{aligned}
$$

You may ask for extra writing paper if you need more space to answer question 16

