

BAULKHAM HILLS HIGH SCHOOL

2014 YEAR 12 HALF-YEARLY

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 120 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions
- Start a new page for each question

Total marks – 70 Exam consists of 11 pages.

This paper consists of TWO sections.

Section 1 – Pages 4-6 Multiple Choice Question 1-10 (10 marks)

<u>Section 2</u> – Pages 7-10 Extended Response Question 11- 14 (60 marks)

Standard integrals provided on page 11

Section I - 10 marks Allow about 15 minutes for this section Use the multiple choice answer sheet for question 1-10

1.	Which of the following shapes is the locus of the point P representing the complex number z moving in an Argand diagram such that
	(A) A circle $ z - 2i + z + 2i = 6$
	(B) A parabola
	(C) A hyperbola
	(D) An ellipse
2.	What is the multiplicity of the root $x = -1$ of the equation $3x^5 - 5x^4 - 35x - 27 = 0$?
	(A) one
	(B) two
	(C) three
	(D) four
3.	In modulus argument form $-\sqrt{2}(1-i)$ is
	(A) $2\left(\cos\left(\frac{3\pi}{4}\right) - i\sin\left(\frac{3\pi}{4}\right)\right)$
	(B) $2\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)$
	(C) $\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}$
	(D) $-\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}$
4.	If $y = \cos^{-1}(e^x)$, the expression for $\frac{dy}{dx}$ is
	(A) $-\operatorname{cosec} y$
	(B) $-\tan y$
	(C) $-\cot y$
	(D) $-\sec y$

8. Three of the six letters of the word *ROMARO* are selected and arranged in a row. How many different arrangements are possible? (A) 120 (B) 30 (C) 42 (D) ${}^{6}P_{3} \times 3!$ Given the hyperbola $\frac{x^2}{9} - \frac{y^2}{16} = 1$, which of the following would be the equation of the 9. asymptotes? (A) $y = \pm \frac{3}{4}x$ (B) $y = \pm \frac{4}{3}x$ (C) $y = \pm \frac{16}{9}x$ (D) $y = \pm \frac{16}{9}x$ The locus of z in the Argand plane where $\arg(z - 2) - \arg(z - i) = \frac{\pi}{3}$ is 10. $\uparrow Im(z)$ (B) Im(z)(A) Ζ Re(z) Re(z) $\uparrow Im(z)$ A Im(z) (C) (D) 2 Re(z)Re(z) **End of Section I**

Section II – Extended Response Attempt questions 11-14. Show all necessary working. Answer each question on a SEPARATE PAGE Clearly indicate question number. Each piece of paper must show your BOS number. All necessary working should be shown in every question.

Question 11 (15 marks)		Marks
(a)	Let $z = i - \sqrt{3}$ and $w = 1 - i$, find	
	(i) $\bar{z} + w$	1
	(ii) <i>zw</i> in modulus /argument form.	3
(b)	(i) Find all the complex numbers $z = a + ib$ such that $(a + ib)^2 = 8 + 6i$, where <i>a</i> , <i>b</i> are real numbers.	2
	(ii) Hence solve $z^2 + 2z(1+2i) - (11+2i) = 0$	2
(c)	Solve $x^4 + 4x^3 - 16x - 16 = 0$ given that it has a root of multiplicity 3	3
(d)	Find the equation of the locus of all z, such that $ z - 2 = Re(z)$.	2
(e)	For the hyperbola $xy = 12$, find its	
	(i) foci	1
	(ii) equations of directrices	1
	End of Question 11	

Que	Question 12 (15 marks)	
a)	 A nine member committee consists of 4 male students, 3 female students and 2 teachers. The committee meets around a circular table so that the male students sit together as a group, and so do the female students, but no female student sits next to a male student. (i) How many different arrangements are possible? (ii) One particular male student does not wish to sit next to one particular teacher. How many ways can this be arranged? 	2 2
b)	The points represented by the complex number $z_1 = \sqrt{3} + i$ and two other complex numbers z_2 and z_3 , lie on the circumference of a circle with centre <i>O</i> and radius 2. These three points are vertices of an equilateral triangle. Find the complex numbers z_2 and z_3 in the form $a + ib$ where <i>a</i> and <i>b</i> are real.	2
(c)	Solve $z^4 - z^3 + 6z^2 - z + 15 = 0$ for z given that $z = 1 - 2i$ is a root of the equation.	2
(d)	The locus of z is represented by $ z - 1 = 1$ (i) Sketch the locus. (ii) Show that $ z^2 - z = z $ (iii) Show that $\arg(z - 1) = \frac{2}{3} \arg(z^2 - z)$.	1 1 2
(e)	The diagram shows points A, B and T marked on a circle. A tangent to the circle at T, KC is drawn such that BC is perpendicular to $KC. TM$ is perpendicular to AB . Show that MC is parallel to AT .	3
	End of Question 12	

Question 13 (15 marks)		
a)	Solve $ 3x^2 - 2x - 2 < 3x$	3
b)	Given that ω is a non-real root of the equation $z^5 = 1$ and that $\alpha = \omega + \omega^4$ is a root of the quadratic equation $x^2 + bx + c = 0$, where b and c are real.	
	(i) Prove that $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$.	1
	(ii) Find the second root β of the equation $x^2 + bx + c = 0$ in terms of positive powers of ω .	1
	(iii) Find the values of the coefficients <i>a</i> and <i>b</i> .	2
	(iv) Deduce that the exact value of $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$	2
(c)	The point $P(a \cos \theta, b \sin \theta)$ lies on $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. A line is drawn through the origin	
	parallel to the tangent at P. The line meets the ellipse at Q and Q'.	
	(i) Show that the equation of the tangent at <i>P</i> is $\frac{x \cos b}{a} + \frac{y \sin b}{b} = 1$	2
	(ii) Show that the equation of QQ' is $xb\cos\theta + ya\sin\theta = 0$	1
	(iii) Hence find the coordinates of Q and Q'	1
	(iv) Prove that the area of the $\Delta QPQ'$ is independent of the position of <i>P</i> .	2

End of Question 13

Yr. 12 Extension 2 - Half Yearly 2014 Solutions

$$\begin{array}{c|c} \underbrace{Hu} Hiple \ choice \\ \hline 1. \ b) \ e^{Hipse} \\ \hline 2. \left[\underbrace{B} \right] \ p(-i) = 0 \\ p^{1}(x) = 15x^{4} - 20x^{3} - 35 \ \therefore \ p^{1}(-i) = 0 \\ \hline p^{1}(x) = 15x^{4} - 20x^{3} - 35 \ \therefore \ p^{1}(-i) = 0 \\ \hline p^{1}(x) = 60z^{3} - 60z^{2} \ \therefore \ p^{1}(-i) \neq 0 \\ \hline \end{array}$$

$$\begin{array}{c} 3. \left[\underbrace{A} \right] \ - \sqrt{2} \left(1 - i \right) = -\sqrt{2} + \sqrt{2}i = 2 \\ modulus = \sqrt{(45)} + \sqrt{(5i)}^{4} = 2 \\ modulus = \sqrt{(45)} + \sqrt{(5i)}^{4} = 2 \\ \hline \end{array} \\ \begin{array}{c} x = 2 \left(\cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right) \\ \hline \end{array} \right) \\ \hline + \left[\underbrace{A} \right] \ \left(2sec \theta, \ \tan \theta \right) ad \theta = \frac{\pi}{4} \quad a = 2 \ b = 1 \\ = \left(2sec \frac{\pi}{7}, \ \tan \frac{\pi}{7} \right) = \left(2\sqrt{5}, i \right) \\ \frac{x^{2}}{a^{2}} \ - \frac{y^{2}}{b^{2}} = 1 \ \therefore \ \frac{x^{4}}{4} \ - y^{4} = 1 \\ \hline \frac{x^{2}}{a^{2}} \ - \frac{y^{2}}{b^{2}} = 1 \ \therefore \ \frac{x^{4}}{4} \ - y^{-1} = -\sqrt{2} \ \frac{du}{dx} \ = \frac{x}{4y} \\ \hline \frac{du}{dx} \ = \frac{x}{4y} \\ \hline \frac{du}{dx} \ = \frac{2\sqrt{5}}{4x} \ \frac{du}{dx} \ = \frac{\sqrt{5}}{2} \\ \hline \frac{du}{dx} \ = \frac{x}{4y} \\ \hline \frac{du}{dx} \ = \frac{\sqrt{5}}{2} \\ \hline \frac{du}{dx} \ = \frac{\sqrt{5}}{4y} \ \frac{du}{dx} \ = \frac{x}{4y} \\ \hline \frac{du}{dx} \ = \frac{x}{4y} \\ \hline \frac{du}{dx} \ = \frac{x}{4y} \\ \hline \frac{du}{dx} \ = \frac{\sqrt{5}}{2} \\ \hline \frac{du}{dx} \ = \frac{\sqrt$$

8. [C]
Choose R₁R and one of 0, M₁A :: ³C₁ x
$$\frac{3!}{2!} = 9$$

choose 0,0, and one of R₁ H₁A :: 9
arrange \boxed{R} [D] H₁A :: ⁴P₄ = 4! = 29
:. $bb tal = 9 + 9 + 24 = 42$
9. \boxed{B} $\frac{y^{1}}{16} = \frac{\chi^{2}}{4} - 1$
 $\frac{y^{1}}{16} = \frac{16}{7} - \frac{16}{\chi^{2}}$:: asymptote $\frac{y}{\chi} = \pm \frac{4}{3}$
:. $y = \pm \frac{4}{3} \times \frac{1}{3}$
10. \boxed{A} arg $\frac{(2-2)}{(2-i)} = \frac{\pi}{3}$
 $\frac{1}{\sqrt{\frac{2}{2}}}$

.

, ,, , , , ,

BOS#:

 $\frac{2}{2} = i - \sqrt{3}$ w = 1 - i= $-k_3 - i$ (a + 1. Z+W 3+/ 2 1 -13+i)(1-i)=(-13+1 3 +; 1+13 2.W 121×112 = 21/2 = 1 - 1/2 + 1/1 - 1/ = (1) OR arg(z) + arg(w) = $arg(z) - 2\sqrt{2} cis \frac{2\pi}{12}$ = 7/ 51 + (-1 arg 8+61 1 b"+ diab = 8+6i a = Þ $a^2 - b$ 2 Δ (\mathbf{i}) $b = \frac{3}{a}$ aab = b12 $\left(\frac{3}{a}\right)^2$ a4- 8a2-9=0 a2 =8 ... a2-9) =0 Va2+1 no solution in real a =í, $\dot{q} = 3$ - 3 ., ′3 + $Z = \pm$ 6 = 1 1+2; (11+2°) + 221 Z =0 -2(1+21 4(1+2i)2-2 =1 +2;)) $= -2(1+2i) \pm 2(1+2i)^{2} + (11+2i)$ 7 11+2: (1+2;) = 8+61 = 3+1 1

~ Q11 - page 3 ~

Question 11

BOS#:

11b) ") cout. . z= 2-i or -4-3i () c) $\chi^{4} + 4\chi^{3} - 16\chi - 16 = 0$ let $P(\chi) = \chi^{4} + 4\chi^{3} - 16\chi - 16$ $P'(x) = 4x^3 + 12x^2 - 16 = 4(x^3 + 3x^2 - 4).$ $P'(x) = 12x^2 + 24x = 0 = 12x(x+2)$ when x = 0, x = -2 $\frac{bu + P(0) \neq 0 \cdots 0 \text{ is not a noot}}{P(-2) = 0, P'(-2) = 0 \times P''(-2) = 0}$ $\frac{x = -2}{(x + 4x^3 - 16x - 16)} \stackrel{!}{=} \frac{(x + 2)^3}{(x + 2)^3} = x - 2$ $\frac{x = -2}{(x + 2)^3} \stackrel{!}{=} \frac{(x + 2)^3}{(x + 2)^3} = x - 2$ $\frac{x = -2}{(x + 2)^3} \stackrel{!}{=} \frac{(x + 2)^3}{(x + 2)^3} = x - 2$ $\frac{(x + 2)^3}{(x + 2)^3} = x - 2$ x = -2multiplicity 3 12-21 = Re(2) let 2= 2+iy d) $|\chi + iy - 2| = \chi$ $\frac{1}{(x-2)^{2}+y^{2}} = x^{2}}{(x-2)^{2}+y^{2}} = x^{2}$ $\frac{3x^2 - 4x + 4}{x^2 + y^2} = \frac{x^2}{4x - 4} \quad \text{locus of } z$ e) $24y = 12 = c^2 = \frac{a^2}{2}$... $12 = \frac{a^2}{2}$... $a = \sqrt{24} = 2\sqrt{6}$ $5, s'(\pm a, \pm a) = s(\pm 2\sqrt{6}, \pm 2\sqrt{6}), s'(\pm 2\sqrt{6}, \pm 2\sqrt{6})$ directives: a $x + y = 2\sqrt{6}$ $x + y = -2\sqrt{6}$ $x + y = -2\sqrt{6}$

BOS#:

445 O) i) 4'. 3'. x2 = 288ways ()T > 7 teachers 3F ii) a particular male student M, sits next to a particular beacher T. in 3: 3: x 2 = 72 Ways () : number of ways M, doesn't sit next to T, = 288-72 () = 216 ways 27=13+1" b) $z_i = \overline{13} + i = 2 \operatorname{cis} \overline{L}$ J 11 _____ $\alpha = \frac{\pi}{6}$ $\therefore z_{2} = 2 \operatorname{cis}\left(\frac{\pi}{6} + \frac{2\pi}{5}\right)$ $\frac{=2cis\frac{57}{6}}{i:2_{2}=2(\frac{-\sqrt{3}}{2}+i\frac{1}{2})=-\sqrt{3}+i$ 23 $\frac{2}{3} = \frac{2}{2} \cdot cis(\frac{2\pi}{3}) = 2cis\frac{3\pi}{2} = 2cis(-\frac{\pi}{2}) = -2i^{\circ}$ c) co is a noot of $z^{5} = 1$:: cv = 1 or $cv^{5} - 1 = 0$ $but \ cv^{-1} = (cv - 1)(cv^{4} + cv^{3} + cv^{2} + cv + 1) = 0$ since co-non real: 00 +1 1. cu + cu3 + cu3 + cu +1=0 Now quadratic equation X+bx+c=0 where $\alpha = c_0 + c_0^{\dagger}$, $\beta = c_0^{\dagger} + c_0^{3}$. But $\alpha + \beta = -b$ $\vdots c_0 + c_0^{\dagger} + c_0^{3} = -b = -1$ · 6=1

Question 12

BOS#:

12c/ cont:. d. B= C $\frac{(a_0 + c_0^4)(c_0^2 + c_0^3)}{(c_0^2 + c_0^3)} = c_0^3 + c_0^4 + c_0^6 + c_0^7 = C$ cv' = co' cu' = co: qual equation is x2+x-1=0 d) solve $z^{4}-z^{3}+6z^{2}-z+15=0$ if z=[-2i is not : coeff. and real :: $1+2i^{2}=\overline{z}$ is not also : quadratic factor is $[\overline{z}-(1-2i)]^{2}-(1+2i)]^{2}=z^{2}-2z+5$ $now \left(2^{4}-2^{3}+62^{2}-2+15\right) \div \left(2^{2}-22+5\right) = 2^{2}+2+3$ -(27-223+522) 23+22-2+15 $-(2^{3}-22^{2}+52)$ $32^2 - 62 + 15$ $(32^2 - 62 + 15)$: the other noots are solutions of 22+2+3=0 : noots are: 1-2; 1+2; $-\frac{1}{2} + \frac{\sqrt{11}}{2}$, $-\frac{1}{2} - \frac{\sqrt{11}}{2}$ 3x"-2x-2 2 13x/ (x>0): $3x^2-2x-243x$ or (x=0): $3x^2-2x-24-3x$ $3x^2-5x-240$ $3x^2+x-240$ 3212 +x-260 (3x+1)(x-2)20 (3x-2)(x+1) 40 - 2 - - 2 - - 2 - 2- - 2 -シーインとう QLXLZ) -solutions -> <--14x 20)

Question 12 BOS#: <u>12</u>€)_B A 2 - BHT = - BCT=90° CBMT is a cyclic quadritatentane supplementary Now - ATK = d = - TBMT - between tangent & chord at point of contact = L in alternate Segment subtended by that chord But LMCT = LMBT=d (augles standing on the same arc TM of circle CBMT :. AT / MC since LATK = LMCT and they correspondin 23)

Question 13

BOS#:

12-1/=1 <u>a)</u>____ \bigcirc Lows is a circle ラル centre (1,0) radius r=1 2 = 121×1= 2/...shown $2^{2} - 2 = 2(2-1) = 2(2-1)$ P(z) iii Let P bethept. representing 2 centre C(1,0), pt. B(2,0) B(2,0 CU10) 0 Now LPCB = 2x LPOC (= double angle at circundi) but LPOC = argz and LPCB = arg(z-1) :, ang (2-1) = 2. ang 2 () $Now/\frac{2}{3} arg(2^2-2) = \frac{2}{3} arg[2(2-1)] = \frac{2}{3} arg 2 + arg(2-1)$ $=\frac{2}{3}\left[\arg z + 2, \arg z\right] = \frac{2}{3}\left(3\arg z\right) = 2\arg z = \arg(z-1)$ b); since 25-1 = (2-1) (24+23+22+2+1) : roots of $z^{4}+z^{3}+z^{2}+z+1=0$ are amongst roots of $2^{5}-1=0$, where $2\neq 1$. noots are $z_1 = \operatorname{Cis}^{2} \overline{z_1}$, $z_2 = \operatorname{Cis}^{4} \overline{z_1}$ $Z_3 = \overline{Z_2} = cis\left(-\frac{4T}{5}\right)$ \mathfrak{O} $\overline{z}_4 = \overline{z}_1 = \operatorname{cis}\left(-\frac{2T}{5}\right)$

Question 13 $\begin{array}{l} (3b) \text{ ii}) \text{ Now } 2^{4} + 2^{3} + 2^{2} + 2 + l = \int (2 - 2_{1})(2 - 2_{2})(2 - 2_{3})(2 - 2_{4}) \\ &= (2 - 2_{1})(2 - 2_{1})(2 - 2_{2})(2 - 2_{1})(2 - 2_{1}) \\ &= (2^{2} - 2^{2} \cdot \operatorname{Re} 2_{1} + l)(2^{2} - 2^{2} \cdot \operatorname{Re} 2_{2} + l) \\ \end{array}$ $\therefore 2^{t} + 2^{3} + 2^{2} + 2 + 1 = \left[2^{2} - 22 \cdot \cos \frac{2\pi}{5} + 1 \right] \left[2^{2} - 22 \cdot \cos \frac{4\pi}{5} + 1 \right]$ Now match up coefficients of 2 $\frac{1}{12} = -22.\cos \frac{2\pi}{5} + \left(-22.\cos \frac{4\pi}{5}\right)$ $\frac{1}{12} = -2\left(\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5}\right)$ $\frac{1}{12} = -2\left(\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5}\right)$ $\frac{1}{12} = \cos \frac{2\pi}{5} + \cos \frac{4\pi}{5}\right)$ c) i) $\frac{\chi^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$: $\frac{2\chi}{a^{2}} + \frac{2y}{b^{2}} \cdot \frac{dy}{d\chi} = 0$: $\frac{dy}{d\chi} - \frac{b^{2}}{a^{2}} \cdot \frac{\chi}{y}$: $atP(acos\theta, bsin\theta) = m_{\chi} = -\frac{b^{2}}{a^{2}} \cdot \frac{acos\theta}{bsin\theta} = -\frac{bcos\theta}{asin\theta}$ () $\frac{1.equintion of tanyout: y - bsin \Theta = \frac{-bcos\Theta}{asin\Theta} \left(z - a \cos\Theta \right)}{\frac{y \sin\Theta}{b} - \sin^2\Theta = -\cos\Theta} \left(z + \cos^2\Theta \right)$ $\frac{y \sin\Theta}{b} - \sin^2\Theta = -\cos\Theta}{\alpha} \left(z + \cos^2\Theta \right)$ $\frac{x \cos\Theta}{b} + \frac{y \sin\Theta}{b} = \cos^2\Theta + \sin^2\Theta = 1$ $\frac{x \cos\Theta}{a} + \frac{y \sin\Theta}{b} = \cos^2\Theta + \sin^2\Theta = 1$ ") QQ'Il taugent at P : m = -bcost asing and $(0,0) \in QQ'$: equation $0 \neq QQ'$: $Y = -\frac{b\cos\theta}{a\sin\theta} \times (1)$ i. $yasin\theta = -b\cos\theta \times$ $:\cdot QQ'$ is : $\chi b \cos\theta \neq yasin\theta = 0$

BOS#:

 $\frac{\chi_b \cos \theta + ya \sin \theta = 0}{\left(\frac{\chi^2}{a^2} + \frac{y^2}{b^2} = 1\right)}$ 6) 13c) (ii) $\begin{array}{c} (1) y'_{-} - ya sin \theta \\ b \cdot cos \theta \end{array} \qquad \begin{array}{c} (2) & \frac{y^2 a^2 sin^2 \theta}{b^2 cos^2 \theta} & \frac{y^2}{b^2} \\ a^2 & b^2 \end{array}$ $\frac{y^{2} \sin^{2}\theta}{b^{2} \cos^{2}\theta} + \frac{y^{2}}{b^{2}} - \frac{y^{2} \int \frac{\sin^{2}\theta}{b^{2}} + \int \frac{1}{b^{2}} = 1$ $\frac{\sin^{2}\theta + \cos^{2}\theta}{\cos^{2}\theta} = b^{2} \frac{(1)}{y^{2}} = b^{2} \cos^{2}\theta + y = \pm b\cos\theta$ $\frac{1}{2} \frac{\chi_{a,a'}}{2} = -\frac{1}{2} \frac{a \sin \theta}{b \cos \theta} = \frac{-(tb \cos \theta) \frac{a \sin \theta}{b \cos \theta}}{-(-b \cos \theta) \frac{a \sin \theta}{b \cos \theta}} = -a \sin \theta}{-(-b \cos \theta) \frac{a \sin \theta}{b \cos \theta}} = +a \sin \theta$ · Q (-asino, + bcoso) Q'(+asino, - bcoso) () iv) Area Aq>q'= ± · QQ'xh $QQ' = \sqrt{(2a \sin \theta)^2 + (2b\cos \theta)^2} = 2\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$ h = perp. distance of QQ: xbcoso + yasin 0=0 from Placoso, bsind) : h= lacoso. beoso + bsino.a. sino / [abl. lcos 0+ oin 0] bcoso+ a sino b: coso+ a'sin o 1 labl 2 Vocoso tarsino 2 azino+bcoso - labl constant : Area sara = which is independent of position of P.

Question 14

BOS#:

a) test n=0 :. L#S=1 $\frac{RHS}{1-cisO} = 1$ STEPL: ASSUMP that statement is true for n=t ie. Heiso + cis 20 + .. + cis Ko = 1- cis (K+1)o 1-ciso STER3: Now prove statement true for n= K+1 $LHS = [+ CisD+...+CiskD+cb(K+1)D] = \frac{1-cis(K+1)D}{1-ciD} + cis(K+1)D$ assumption = 1-cis(K+1)D + (1-cisD)(cis(K+1)D) 1-cisD= 1- cis(KAT) + cis(KAT) - ciso. cis(KH) 0-1-ciso $= 1 - cis \left[0 + (k+1)0.7 \right] = 1 - cis (k+2)0 - k+s$ 1-ciso 1-ciso : the statement is true for n=K+1 if it's true for n=k, and since proven true Apr n=0 : by math induction the state most is true for all integers h 20.

BOS#:

b) i) $\frac{2}{2} - \frac{2}{2} = (\frac{2}{2} - \frac{2}{2})$ cis $\frac{1}{3}$ i) $\frac{1}{2} - \frac{2}{3} = (\frac{2}{3} - \frac{2}{3})$ cis $\frac{1}{3}$ i D $\frac{1}{2} \frac{z_2 - z_1}{z_1 - z_3} = \frac{(z_3 - z_1)c_1s_3}{(z_2 - z_3)c_1s_3}$ $\frac{(2_{2}-2_{1})(2_{2}-2_{3})=(2_{3}-2_{1})(2_{1}-2_{3})}{(2_{1}-2_{1})(2_{1}-2_{3})}$ $\frac{(2_{1}-2_{1})(2_{2}-2_{3})=(2_{3}-2_{1})(2_{1}-2_{3})}{(2_{1}-2_{1})(2_{1}-2_{3})(2$ $xy = C^2 : y = \frac{C^2}{2}$ 9 $\frac{dy}{dx} = \frac{-c^2}{x^2}$ at $P(cp, \frac{c}{p})$: $M = -\frac{c^2}{c^2p^2} = -\frac{1}{p^2}$ eqn. of tangent at P is $\frac{y - c}{p} = -\frac{1}{p^{2}} \left(x - cp \right) \qquad ()$ $p^{2} \left(y - \frac{c}{p} \right) = -\left(x - cp \right)$ $p^{2} y - cp = -x + cp$ i x + p^ry = 2cp (i) proven i) similarly at Q (cq, <u>c</u>) tayent is: x+q^ry=2cq (ii) $\frac{R(x_{0}y_{0})}{P_{y_{0}}} = \frac{1}{2} \frac{1}{2$ $\frac{(p^{2}-q^{2})y_{0}=2c(p-q)}{(p-q)(p+q)y_{0}=2c(p-q)(p+q)}$ $\frac{if[p] + [q] \cdot p - q \neq 0}{i \cdot (p + q) \cdot y_0} = \frac{2c}{y_0}$

BOS#:

14c) cont. . From (i) 10 = 2 cp - p yo /= yo $\frac{2cp}{y_0} = \frac{p^2y_0}{y_0}$ 2c 40 1: ×0 - Yo (1) but 1. No $\frac{2}{p} + qp - p^{2} = pq$ (ptg).p-Ĭо $\frac{78}{10} = d^{2} \qquad (since Pa=d)$ $\frac{1}{10} \frac{d^{2}}{d} (cp - cq)^{2} + (c - c)^{2}$ $= c^{2} (p-q)^{2} + c^{2} (p-q)^{2}$ $= c^{2} (p-q)^{2} + (q-p)^{2}$ iii) 2 q)=(q-p C 1+ $-q \int^2 = (p + q)^2 - 4pq$ *iv*) but (P 5 u b. into (iii dr = cr (p+q)2 - 4pq (1+ 1/ p2q2 $=\frac{2c}{y_0}$ and also (ptg 200 pgr = $i d^2 = c^2 \int \left(\frac{2c}{y_0}\right)^2 - 4$ 1 ×0 12 $d^{2} = c^{2} \left[\frac{4c^{2}}{y_{0}^{2}} - \frac{4x_{0}}{y_{0}} \right] \left[\frac{1}{x_{0}^{2}} + \frac{y_{0}}{x_{0}^{2}} \right]$ $\frac{d^{2} = \frac{4C^{2}}{y_{0}^{2}} \left(\frac{c^{2}}{c^{2}} + \frac{x_{0}y_{0}}{y_{0}} \right) \left[\frac{x_{0}y_{0}}{y_{0}^{2}} \right]$

Question 14

BOS#:

cout. 14 c) iv) :. d'x y = 4c' (c'- 16.40) (x + 40) but R(x0, y0) E on the locus :. locus of R(zo, yo) is: dxy = 4c (c - xy) x +y :. $4C^{2}(x+y^{2})(c^{2}-xy) = x^{2}y^{2}d^{2}$.