

BAULKHAM HILLS HIGH SCHOOL

2016 YEAR 12 HALF-YEARLY

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 120 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions
- Start a new page for each question

Total marks – 70 Exam consists of 8 pages.

This paper consists of TWO sections.

Section 1 – Pages 2-4 Multiple Choice Question 1-10 (10 marks)

<u>Section 2</u> – Pages 5-8 Extended Response Question 11- 14 (60 marks)

Reference sheet is provided

Section I - 10 marks Allow about 15 minutes for this section			
1.	 x = 1 is a root of the equation 3x⁵ - 5x⁴ + 5x - 3 = 0. What is its multiplicity? (A) 1 (B) 2 (C) 3 (D) 4 		
2.	If $z = 1 + i$, evaluate z^{12} (A) 64 (B) -64 (C) 64 <i>i</i> (D) -64 <i>i</i>		
3.	The equation of a curve is $x^2 + 2y^2 - 2xy + x = 8$. What is the gradient of the curve at the point (3,2)? (A) $\frac{1}{4}$ (B) $-\frac{1}{4}$ (C) $\frac{3}{2}$ (D) $-\frac{3}{2}$		
4.	Which of the following is a focus of the hyperbola $\frac{y^2}{4} - \frac{x^2}{10} = 1$ (A) $(\sqrt{14}, 0)$ (B) $(0, \sqrt{14})$ (C) $(\sqrt{\frac{28}{5}}, 0)$ (D) $(0, -\sqrt{\frac{28}{5}})$		

5.	The equation $ z - 4 + z + 4 = 10$ defines an ellipse. What is the length of its semi-minor axis?					
	(A) 2.4 units					
	(B) 3 units					
	(C) 4 units					
	(D) 5 units					
6.	The roots of the polynomial $P(x) = 4x^3 + 4x - 5$ are α , β and γ . Find the value of $(\alpha + \beta - 3\gamma)(\beta + \gamma - 3\alpha)(\alpha + \gamma - 3\beta)$					
	(A) -80					
	(B) -16					
	(C) 16					
	(D) 80					
7.	The polynomial equation $P(x) = 0$ has real coefficients and has roots which include $x = -2 + i$ and $x = 2$. What is the minimum possible degree of $P(x)$?					
	and $x = 2$. What is the minimum possible degree of $F(x)$?					
	(A) 1					
	(B) 2					
	(C) 3					
	(D) 4					
8.	X 20°					
	$A = D = 30^{\circ}$					
	The size of θ in the diagram is:					
	(A) 50°					
	(B) 55°					
	(C) 60°					
	(D) 65°					

Section II – Extended Response Attempt questions 11-14. Show all necessary working. Answer each question on a SEPARATE PAGE Clearly indicate question number. Each piece of paper must show your BOS number. All necessary working should be shown in every question.

Que	Question 11 (15 marks)	
(a)	Let $z = \sqrt{3} - i$ and $w = 1 - i$, find: (i) $i\overline{z} + w$ (ii) $\frac{z}{w}$ in modulus argument form	2 2
(b)	 (i) Sketch the region on the Argand diagram where both of the following inequalities apply: z - 2 - 2i ≤ 2 0 ≤ arg(z - 2 - 2i) ≤ π/4 (ii) State the range of values for z in this region. 	3
(c)	 (i) Solve the equation z⁵ = -1. (You may leave your answer in modulus-argument form). (ii) Hence factorise z⁵ + 1 over the real field. (iii) Hence or otherwise, prove that cos π/5 cos 2π/5 = 1/4 	2 1 3
	End of Question 11	

Que	estion 12 (15 marks)	Marks			
a)	The polynomial $P(x) = 4x^3 - 3x - 1$ has a double zero which is real. Find the value of this zero.	2			
b)	Find a polynomial $P(x)$ with real coefficients having $2i$ and $1 - 3i$ as zeroes. Express your answer as the product of two real quadratic factors.				
(c)	 ω is a non-real root of z³ = 1. (i) Show that 1 + ω + ω² = 0. (ii) Evaluate (1 + ω)³(3 + 3ω²), expressing your answer in simplest form. 	1 2			
(d)	The point $P\left(ct, \frac{c}{t}\right)$ lies on the hyperbola $xy = c^2$. The point T lies at the foot of the perpendicular drawn from the origin to the tangent at <i>P</i> . (i) Show that the tangent at <i>P</i> has equation $x + t^2y = 2ct$	1			
	(ii) Show that the locus of T is given by $(x^2 + y^2)^2 = 4c^2xy$	3			
e)	The point $P(acos\theta, bsin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The tangent at <i>P</i> cuts the <i>y</i> -axis at B, and <i>M</i> is the foot of the perpendicular from <i>P</i> to the <i>y</i> -axis.				
	(i) Show that the equation of the tangent to the ellipse at point <i>P</i> is given by $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$ (ii) Show that $OM \times OB = b^2$	2			
		2			
	End of Question 12				

Question 13 (12 marks) Marks For the hyperbola $16x^2 - 9y^2 = 144$ a) (i) Find the eccentricity 1 3 (ii) Neatly sketch the hyperbola clearly showing the foci, directrices, asymptotes and intercepts with the coordinate axes. The curves $y = x^2 - 4$ and $y = \frac{1}{x}$ intersect at the points P, Q and R where $x = \alpha$, b) $x = \beta$ and $x = \gamma$ respectively. $y = x^2$ Р 0 $y = \frac{1}{x}$ 0 R 1 Explain why α , β and γ are the roots of $x^3 - 4x - 1 = 0$. (i) 2 Find a polynomial equation with integer coefficients whose roots are α^2 , β^2 and γ^2 (ii) Find a polynomial equation with integer coefficients whose roots are $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$ and $\frac{1}{\nu^2}$. (iii) 2 Hence find the numerical value of $OP^2 + OQ^2 + OR^2$ (iv) 2 From a pack of eight cards numbered 1,2,3,4,5,6,7 and 8, three cards are drawn at random c) and laid on a table from left to right to form a three-digit number. How many of the numbers formed in this way will: 2 contain two even digits and one odd digit? (i) 2 have their digits in ascending order? (ii) **End of Question 13**

Question 14 (15 marks)			Marks				
a)	x and y Find th	are real numbers such that $\frac{x}{i} - \frac{y}{1+i} = -1 - 3i$. e values of x and y.	2				
b)	(i)	Given $z + \bar{z} = 2Re(z)$ and $ z ^2 = z\bar{z}$ (you do not need to prove these results), prove that: $ \alpha ^2 + \beta ^2 - \alpha - \beta ^2 = 2Re(\alpha\bar{\beta})$	3				
		where α and β are complex numbers					
	(ii)	The diagram below shows the angle θ between the complex numbers α and β on the Argand diagram.					
		y β θ α x	2				
	Prove that $ \alpha \beta \cos\theta = Re(\alpha\bar{\beta})$						
c)	(i)	Prove that $\frac{\cos x - \cos(x + 2y)}{2\sin y} = \sin(x + y)$	3				
	(ii)	Prove by induction that $\sin A + \sin 3A + \sin 5A + \dots + \sin(2n-1)A = \frac{1 - \cos 2nA}{2 \sin A}$ for all positive integers <i>n</i> .	3				
	(iii)	Simplify $\sin 5A + \sin 7A + \sin 9A + \dots + \sin 19A$, expressing your answer as a single fraction.	2				
		End of Question 14					
End of Paper							