BAULKHAM HILLS HIGH SCHOOL

2016

YEAR 12 HALF-YEARLY

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 120 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions
- Start a new page for each question

Total marks - 70
Exam consists of 8 pages.
This paper consists of TWO sections.
Section 1 - Pages 2-4
Multiple Choice
Question 1-10 (10 marks)
Section 2 - Pages 5-8
Extended Response
Question 11-14 (60 marks)
Reference sheet is provided

Section I - 10 marks
 Allow about 15 minutes for this section

1. $x=1$ is a root of the equation $3 x^{5}-5 x^{4}+5 x-3=0$. What is its multiplicity?
(A) 1
(B) 2
(C) 3
(D) 4
2. If $z=1+i$, evaluate z^{12}
(A) 64
(B) -64
(C) $64 i$
(D) $-64 i$
3. The equation of a curve is $x^{2}+2 y^{2}-2 x y+x=8$. What is the gradient of the curve at the point $(3,2)$?
(A) $\frac{1}{4}$
(B) $-\frac{1}{4}$
(C) $\frac{3}{2}$
(D) $-\frac{3}{2}$
4. Which of the following is a focus of the hyperbola $\frac{y^{2}}{4}-\frac{x^{2}}{10}=1$
(A) $(\sqrt{14}, 0)$
(B) $(0, \sqrt{14})$
(C) $\left(\sqrt{\frac{28}{5}}, 0\right)$
(D) $\left(0,-\sqrt{\frac{28}{5}}\right)$
5. The equation $|z-4|+|z+4|=10$ defines an ellipse. What is the length of its semi-minor axis?
(A) 2.4 units
(B) 3 units
(C) 4 units
(D) 5 units
6. The roots of the polynomial $P(x)=4 x^{3}+4 x-5$ are α, β and γ. Find the value of $(\alpha+\beta-3 \gamma)(\beta+\gamma-3 \alpha)(\alpha+\gamma-3 \beta)$
(A) -80
(B) -16
(C) 16
(D) 80
7. The polynomial equation $P(x)=0$ has real coefficients and has roots which include $x=-2+i$ and $x=2$. What is the minimum possible degree of $P(x)$?
(A) 1
(B) 2
(C) 3
(D) 4
8.

The size of θ in the diagram is:
(A) 50°
(B) 55°
(C) 60°
(D) 65°
9. The cubic equation $P(x)=0$ has roots α, β and γ.

Which of the following cubic equations has roots $2 \alpha+1,2 \beta+1$ and $2 \gamma+1$?
(A) $P(2 x)+1=0$
(B) $P(2 x+1)=0$
(C) $P\left(\frac{x}{2}+1\right)=0$
(D) $P\left(\frac{x-1}{2}\right)=0$
10.

The Argand diagram above shows the complex number z.
Which diagram below best represents the complex number $\frac{i}{z}$?

(C)

(B)

(D)

Section II - Extended Response

Attempt questions 11-14. Show all necessary working.
Answer each question on a SEPARATE PAGE Clearly indicate question number.
Each piece of paper must show your BOS number.
All necessary working should be shown in every question.

Question 11 (15 marks)
(a) Let $z=\sqrt{3}-i$ and $w=1-i$, find:
(i) $i \bar{z}+w$
(ii) $\frac{z}{w}$ in modulus argument form
(b) (i) Sketch the region on the Argand diagram where both of the following inequalities apply:

$$
\begin{gathered}
|z-2-2 i| \leq 2 \\
0 \leq \arg (z-2-2 i) \leq \frac{\pi}{4}
\end{gathered}
$$

(ii) State the range of values for $|z|$ in this region.
(c) (i) Solve the equation $z^{5}=-1$. (You may leave your answer in modulus-argument form).
(ii) Hence factorise $z^{5}+1$ over the real field.
(iii) Hence or otherwise, prove that $\cos \frac{\pi}{5} \cos \frac{2 \pi}{5}=\frac{1}{4}$

End of Question 11

a) The polynomial $P(x)=4 x^{3}-3 x-1$ has a double zero which is real.

Find the value of this zero.
b) Find a polynomial $P(x)$ with real coefficients having $2 i$ and $1-3 i$ as zeroes.

Express your answer as the product of two real quadratic factors.
(c) $\quad \omega$ is a non-real root of $z^{3}=1$.
(i) Show that $1+\omega+\omega^{2}=0$.
(ii) Evaluate $(1+\omega)^{3}\left(3+3 \omega^{2}\right)$, expressing your answer in simplest form.
(d) The point $P\left(c t, \frac{c}{t}\right)$ lies on the hyperbola $x y=c^{2}$. The point T lies at the foot of the perpendicular drawn from the origin to the tangent at P.

(i) Show that the tangent at P has equation $x+t^{2} y=2 c t$
(ii) Show that the locus of T is given by $\left(x^{2}+y^{2}\right)^{2}=4 c^{2} x y$
e) The point $P(a \cos \theta, b \sin \theta)$ lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

The tangent at P cuts the y-axis at B, and M is the foot of the perpendicular from P to the y-axis.
(i) Show that the equation of the tangent to the ellipse at point P is given by

$$
\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1
$$

(ii) Show that $O M \times O B=b^{2}$

End of Question 12

a) For the hyperbola $16 x^{2}-9 y^{2}=144$
(i) Find the eccentricity
(ii) Neatly sketch the hyperbola clearly showing the foci, directrices, asymptotes and intercepts with the coordinate axes.
b) The curves $y=x^{2}-4$ and $y=\frac{1}{x}$ intersect at the points P, Q and R where $x=\alpha$, $x=\beta$ and $x=\gamma$ respectively.

(i) Explain why α, β and γ are the roots of $x^{3}-4 x-1=0$.
(ii) Find a polynomial equation with integer coefficients whose roots are α^{2}, β^{2} and γ^{2}
(iii) Find a polynomial equation with integer coefficients whose roots are $\frac{1}{\alpha^{2}}, \frac{1}{\beta^{2}}$ and $\frac{1}{\gamma^{2}}$.
(iv) Hence find the numerical value of $O P^{2}+O Q^{2}+O R^{2}$
a) $\quad x$ and y are real numbers such that $\frac{x}{i}-\frac{y}{1+i}=-1-3 i$.

Find the values of x and y.
b) (i) Given $z+\bar{z}=2 \operatorname{Re}(z)$ and $|z|^{2}=z \bar{Z} \quad$ (you do not need to prove these results), prove that:

$$
|\alpha|^{2}+|\beta|^{2}-|\alpha-\beta|^{2}=2 \operatorname{Re}(\alpha \bar{\beta})
$$

where α and β are complex numbers.
(ii) The diagram below shows the angle θ between the complex numbers α and β on the Argand diagram.

$$
\frac{\cos x-\cos (x+2 y)}{2 \sin y}=\sin (x+y)
$$

(ii) Prove by induction that

$$
\sin A+\sin 3 A+\sin 5 A+\cdots+\sin (2 n-1) A=\frac{1-\cos 2 n A}{2 \sin A}
$$

for all positive integers n.
(iii) Simplify $\sin 5 A+\sin 7 A+\sin 9 A+\cdots+\sin 19 A$, expressing your answer as a single fraction.

End of Question 14

End of Paper

