

BAULKHAM HILLS HIGH SCHOOL
2017
YEAR 12 HALF YEARLY
HIGHER SCHOOL CERTIFICATE
EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Black pen is preferred
- Board-approved calculators may be used
- A reference sheet is provided at the back of this paper
- All relevant mathematical reasoning and/or calculations must be shown

Total marks - 70
Section I (Pages 2-4)
10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Section II (Pages 5-9)
60 marks
Attempt Questions 11-14
Allow about 1 hours 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1 to 10.
1 For the ellipse with the equation $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$. What is the eccentricity of the ellipse?
(A) $\frac{9}{25}$
(B) $\frac{3}{5}$
(C) $\frac{1}{5}$
(D) $\frac{1}{\sqrt{5}}$

2 If $w=\sqrt{3}(\cos \pi+i \sin \pi)$, then w^{4} is equal to:
(A) $\quad-9$
(B) 9
(C) 81
(D) $\quad-81$

3 The polynomial $P(z)=z^{3}+(1+i) z^{2}+(1+i) z+1$ has a real zero $z=-1$ and a complex zero $z=\alpha$. The third root is:
(A) $\frac{1}{\alpha}$
(B) $\bar{\alpha}$
(C) $\quad-\alpha$
(D) $1-\alpha$

4 What is the multiplicity of the root $x=1$ of the equation $3 x^{5}-5 x^{4}+5 x-3=0$?
(A) 1
(B) 2
(C) 3
(D) 4
$5 \quad z$ and w are two complex numbers. Which of the following statements is ALWAYS TRUE?
(A) $|z+w| \geq|z-w|$
(B) $\quad|z+w| \leq|z-w|$
(C) $|z|-|w| \geq|z+w|$
(D) $\quad|z|+|w| \geq|z-w|$

6 The polynomial $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ has real coeffiecients and $P(2 i)=P(2+i)=0$. What is the value of $a+b+c+d$?
(A) 0
(B) 6
(C) 9
(D) 49

7 The diagram below shows the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ where $a>b>0$.
The points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \alpha, b \tan \alpha)$ lie on the hyperbola and the chord $P Q$ subtends a right angle at the origin.

Which of the following is true?
(A) $\tan \theta \tan \alpha=-\frac{a^{2}}{b^{2}}$
(B) $\tan \theta \tan \alpha=\frac{a^{2}}{b^{2}}$
(C) $\sin \theta \sin \alpha=-\frac{a^{2}}{b^{2}}$
(D) $\sin \theta \sin \alpha=\frac{a^{2}}{b^{2}}$

8 If $x^{2}+3 x y=5 y^{2}$, which of the following is an expresion for $\frac{d y}{d x}$?
(A) $\frac{2 x+3 y}{10 y-3 x}$
(B) $\frac{2 x}{10 y-9 x y}$
(C) $\frac{2 x+3 y}{\sqrt{5\left(x^{2}+3 x y\right)}}$
(D) $\frac{2 x+3 y}{10 y}$

9 Seven travellers arrive in a town where there are 4 hotels. If two of the travellers want to stay in the same hotel, how many different accommodation arrangements are there?
(A) $\frac{6!}{2!2!} \times 2$
(B) $\frac{7!}{2!2!2!} \times 2$
(C) $4^{6} \times 2$
(D) 4^{6}

10 The graph shows a part of the hyperbola $x y=c^{2}$

Which pair of parametric equations precisely describes the sections of the hyperbola shown?
(A) $\quad x=c\left(t^{2}+1\right), y=\frac{c}{t^{2}+1}$
(B) $\quad x=c\left(1-t^{2}\right), y=\frac{c}{1-t^{2}}$
(C)
C) $x=c \sqrt{1-t^{2}}, y=\frac{c}{\sqrt{1-t^{2}}}$
(D) $x=c \sin t, y=\frac{c}{\sin t}$

Section II

90 marks

Attempt questions 11-14

Allow about $\mathbf{1}$ hours $\mathbf{4 5}$ minutes for this section

Answer each question on the appropriate page of your answer booklet
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

(a) Let $z=2+i$ and $w=i-1$. Find, in the form $x+i y$:
(i) $3 z+i w$
(ii) $z \bar{w}$
(b) (i) Express $\sqrt{3}+i$ in modulus argument form.
(ii) If $z=\sqrt{3}+i$, hence show that $z^{7}+64 z=0$.
(c) Consider the hyperbola with the equation $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$.
(i) Find the eccentricity of the hyperbola.
(ii) Find the coordinates of the foci and the x-intercepts.
(iii) Find the equations of the directrices and the equations of the asymptotes.
(d) Sketch the region in the complex plane where the inequalities
(e) Let ω be one of the complex roots of the equation $z^{3}-64=0$.
(i) Show that $\omega^{2}=-4(\omega+4)$.
(ii) Hence evaluate $(\omega+4)^{3}$.
(a) The roots of $x^{3}+6 x^{2}+5 x-2=0$ are α, β and γ.
(i) Find the monic polynomial with roots α^{2}, β^{2} and γ^{2}.
(ii) Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(b) Find a possible polynomial equation $P(x)$, of smallest degree that satisfies the following conditions:

- The polynomial $P(x)$ has rational coefficients.
- Two of its roots are $1+\sqrt{5}$ and -6 i.
- When $y=P(x)$ is drawn on a Cartesian plane, there are four x-intercepts.
(c) A complex number ω is such that $|\omega|=1$.

If $z=\frac{1+\omega}{1-\omega}$, find the locus of z as ω moves on the complex number plane.
(d) The point P lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $a>b$

The chord through P and the focus $S(a e, 0)$ meets the ellipse again at Q.
The tangents to the ellipse at P and Q meet at the point $T\left(x_{0}, y_{0}\right)$.
The equation of $P Q$ is $\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}=1$. [DO NOT PROVE THIS]

(i) Show that T lies on the directrix.

The point P is now chosen so that T lies on the x-axis.
(ii) What is the value of the ratio $P S: S T$?
(iii) Show that $\angle P T Q$ is acute.
(iv) Show that the area of the triangle $P Q T$ is $b^{2}\left(\frac{1}{e}-e\right)$.

End of Question 12

(a) In the diagram below, $T P$ is the tangent of the circle at P, and $T Q$ is a secant cutting the circle at R.
$S Q$ is a chord of the circle such $P X$ and $S Y$ are perpendicular to $S Q$ and $P Q$ respectively.

Copy the diagram in your answer booklet.
(i) Prove that $\angle T R P=\angle T P Q$.
(ii) Explain why $S P Y X$ is a cyclic quadrilateral and state the diameter of the circle $S P Y X$.
(iii) Prove $\angle P Y X=\angle P R Q$.
(b) $\quad P\left(8 p, 4 p^{2}\right)$ is a point on the parabola $x^{2}=16 y$.

The tangent to the parabola at P cuts the hyperbola $x y=4$ at two distinct points R and T.

(i) $\quad M$ is the midpoint of $R T$, show that M has coordinates $\left(2 p,-2 p^{2}\right)$.

You may assume the tangent to the parabola at P is

$$
y=p x-4 p^{2} . \quad \text { [DO NOT PROVE THIS] }
$$

(ii) Find the equation of the locus of M, as P moves on the parabola $x^{2}=16 y$, stating any restrictions.
(c) Let $z=x+i y$ be any non-zero complex number.
(i) Show $z+\frac{1}{z}=x+\frac{x}{x^{2}+y^{2}}+i\left(y-\frac{y}{x^{2}+y^{2}}\right)$.
(ii) Given that $z+\frac{1}{z}=k$, where k is real, show that $y=0$ or $x^{2}+y^{2}=1$.
(iii) Show also that if $y=0$ then $|k| \geq 2$ and that if $x^{2}+y^{2}=1$ then $|k| \leq 2$.

End of Question 13

(a) The diagram below shows the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $a>b$.

The point $P(a \cos \theta, b \sin \theta)$ lies on the ellipse.

The normal to the ellipse at P meets the major and minor axes of the ellipse at G and G^{\prime} respectively. N and N^{\prime} are the feet of the perpendiculars from P to the major axes and minor axes respectively.
(i) Show that the equation of the normal at P is $a x \sec \theta-b y \operatorname{cosec} \theta=a^{2}-b^{2}$.
(ii) Show that the ratio of $O G: O N=e^{2}: 1$.
(iii) Given that $\triangle P N^{\prime} G^{\prime} / / / \Delta P N G$, find the ratio of the area of $\Delta P N^{\prime} G^{\prime}: \triangle P N G$.
(b) (i) Prove $4 \cos \frac{\theta}{2} \cos \frac{\theta}{4} \sin \frac{\theta}{4}=\sin \theta$
(ii) Prove by Mathematical Induction that for any positive integer n

$$
\sin \theta=2^{n} \cos \frac{\theta}{2} \cos \frac{\theta}{4} \ldots \cos \frac{\theta}{2^{n}} \sin \frac{\theta}{2^{n}}
$$

(iii) Explain why

$$
\lim _{n \rightarrow \infty}\left(\frac{\sin \frac{\theta}{2^{n}}}{\theta} \times 2^{n}\right)=1
$$

(iv) Hence using (ii), (iii) and choosing a suitable value for θ, show:

$$
\frac{2}{\pi}=\cos \frac{\pi}{4} \times \cos \frac{\pi}{8} \times \cos \frac{\pi}{16} \times \ldots \ldots
$$

(v) Show that $\pi=2\left(\frac{2}{\sqrt{2}} \times \frac{2}{\sqrt{2+\sqrt{2}}} \times \ldots \ldots\right)$

End of Exam

	Solutions	Mks Comments	
1	$\begin{gathered} b^{2}=a^{2}\left(1-e^{2}\right) \\ 16=25\left(e^{2}-1\right) \\ e=\frac{3}{5} \end{gathered}$	1	B
2	$\begin{gathered} w^{4}=\sqrt{3}^{4} \operatorname{cis}(4 \times \pi) \\ w^{4}=9 \operatorname{cis} 4 \pi \\ w^{4}=9 \operatorname{cis} 0 \\ w^{4}=9 \end{gathered}$	1	B
3	$\begin{aligned} & \text { Let the roots be } \alpha, \beta,-1 \\ & \text { Product of roots }=-\frac{b}{a} \\ & \qquad \begin{aligned} & \alpha \times \beta \times-1=-1 \\ & \beta=\frac{1}{\alpha} \end{aligned} \end{aligned}$	1	A
4	$\text { Let } \begin{aligned} P(x) & =3 x^{5}-5 x^{4}+5 x-3 \\ P(1) & =0 \\ P^{\prime}(x) & =15 x^{4}-20 x^{3}+5 \\ P^{\prime}(1) & =0 \\ P^{\prime \prime}(x) & =60 x^{3}-60 x^{2} \\ P^{\prime \prime}(1) & =5 \\ P^{\prime \prime \prime}(x) & =180 x^{2}-120 x \\ P^{\prime \prime \prime}(1) & =60 \\ \therefore P(x) & \text { has multiplicity } 3 \end{aligned}$	1	C
5	Triangular inequality	1	D
6	$\begin{aligned} & \text { The roots are } 2 i,-2 i, 2+i, 2-i \\ & \qquad \begin{aligned} & P(x)=\left(x^{2}+4\right)\left(x^{2}-4 x+5\right) \\ & P(x)=x^{4}-4 x^{3}+9 x^{2}-16 x+20 \\ & a+b+c+d=-4+9-16+20 \\ &=9 \end{aligned} \end{aligned}$	1	C
7	$\begin{aligned} m_{O P}=\frac{b \tan \theta}{a \sec \theta} \quad m_{O Q} & =\frac{b \tan \alpha}{a \sec \alpha} \\ m_{O P} \times m_{O Q} & =-1 \\ \frac{b \tan \theta}{a \sec \theta} \times \frac{b \tan \alpha}{a \sec \alpha} & =-1 \\ \frac{\cos ^{2} \theta}{\cos ^{2} \theta} \times \frac{b^{2} \tan \theta}{a^{2} \sec \theta} \times \frac{\tan \alpha}{\sec \alpha} & =-1 \\ \sin \theta \sin \alpha & =-\frac{a^{2}}{b^{2}} \end{aligned}$	1	C
8	Derive both side implicitly: $\begin{gathered} 2 x+\left(3 \times y+\frac{d y}{d x} \times 3 x\right)=10 y \times \frac{d y}{d x} \\ 2 x+3 y=\frac{d y}{d x}(10 y-3 x) \\ \frac{d y}{d x}=\frac{2 x+3 y}{10 y-3 x} \end{gathered}$	1	A
9	If two particular people are together, then there are 6 entities, ie $(A B) C D E F G$. $(A B)$ will have 4 rooms to choose from C will have 4 rooms to choose from G will have 4 rooms to choose from \therefore there are 4^{6} ways to place 6 entities.	1	D

Solutions	Mks	Comments	
10	(A) False as x is positive, and there are x-ordiantes that are negative (B) False as $t \rightarrow \infty, x \rightarrow-\infty$ (C) False as x is positive, and there are x-ordiantes that are negative (D) True as $-1 \leq \sin t \leq 1,-c \leq c \sin t \leq c$, ie $-c \leq x-$ ordinate $\leq c$	$\mathbf{1}$	D

11a(i)	$\begin{aligned} \hline \hline 3(2+i)+i(i-1) & =6+3 i-1-i \\ & =5+2 i \end{aligned}$	1	1 mark - correct answer.
11a(ii)	$(2+i)(-1-i)=-1-3 i$	2	2 mark - correct solution. 1 mark - correct conjugate - correct multiplication with a wrong expression of the conjugate.
11b(i)	$z=2\left[\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)\right]$	1	1 mark - correct answer.
11b(ii)	$\begin{aligned} & z^{7}-64 z=z\left(z^{6}-64\right) \\ & z^{6}=2^{6}\left(\cos \frac{6 \pi}{6}+i \sin \frac{6 \pi}{6}\right) \\ & z^{6}=64 \\ & z^{7}-64 z=z(64-64) \\ &=0 \end{aligned}$	2	2 mark - correct solution. 1 mark - correct use of DM's Thm
11c(i)	$\begin{aligned} & 9=-16\left(1-e^{2}\right) \\ & e=\frac{5}{4} \end{aligned}$	1	1 mark
11c(ii)	$\begin{gathered} \therefore \text { foci are }(\pm 5,0) \\ x-\text { int when } y=0 \\ \frac{x^{2}}{16}=1 \\ x \text {-intercepts are }(\pm 4,0) \end{gathered}$	2	2 mark - correct solution. 1 mark - correct foci - correct intercept
11c(iii)	Directricies: $x= \pm \frac{16}{5}$ Eqn of asymptote: $y= \pm \frac{3}{4} x$	2	2 mark - correct solution. 1 mark - correct directrices - correct asyptote
11d	$\begin{gathered} \|z+\bar{z}\| \leq 1 \\ \|2 x\| \leq 1 \\ -\frac{1}{2} \leq x \leq \frac{1}{2} \end{gathered}$	2	2 mark - correct solution. 1 mark - Shows region inside circle at centre $(0,1)$ - Shows region bewtween the lines $-\frac{1}{2} \leq x \leq \frac{1}{2}$ - Correct boundaries with incorrect region.
11e(i)	$\begin{array}{r} \omega^{3}-64=0 \\ (\omega-4)\left(\omega^{2}+4 \omega+16\right)=0 \end{array}$ Since ω is a complex root so $\omega \neq 4$ $\begin{gathered} \omega^{2}+4 \omega+16=0 \\ \omega^{2}=-4 \omega-16 \\ \omega^{2}=-4(\omega+4) \end{gathered}$	1	1 mark - correct solution.

Solutions			Comments
11e(ii)	$\begin{aligned} (\omega+4)^{3} & =\left(\frac{\omega^{2}}{-4}\right)^{3} \\ & =\frac{\left(\omega^{3}\right)^{2}}{-64} \\ & =\frac{(64)^{2}}{-64} \\ & =-64 \end{aligned}$	1	1 mark - correct solution.
12a(i)	Let $A=x^{2}$, where $x=\alpha, \beta$ and γ $\begin{gathered} x=\sqrt{A} \\ \sqrt{A}^{3}+6 \sqrt{A}^{2}+5 \sqrt{A}-2=0 \\ A \sqrt{A}+5 \sqrt{A}=2-6 A \end{gathered}$ Square both sides $\begin{gathered} A(A+5)^{2}=(2-6 A)^{2} \\ A^{3}-26 A^{2}+49 A-4=0 \\ \therefore x^{3}-26 x^{2}+49 x-4=0 \end{gathered}$	2	2 mark - correct solution. 1 mark - substitutes $x \sqrt{A}$
12a(ii)	$\begin{gathered} \alpha^{3}+6 \alpha^{2}+5 \alpha-2=0 \\ \beta^{3}+6 \beta^{2}+5 \beta-2=0 \\ \gamma^{3}+6 \gamma^{2}+5 \gamma-2=0 \\ \alpha^{3}+\beta^{3}+\gamma^{3}+6\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+5(\alpha+\beta+\gamma)-2 \times 3=0 \\ \alpha^{3}+\beta^{3}+\gamma^{3}+6(26)+5(-6)-2 \times 3=0 \\ a^{3}+\beta^{3}+\gamma^{3}=-120 \end{gathered}$	3	3 mark - correct solution. 2 mark - significant progress to finding $\alpha^{3}+\beta^{3}+\gamma^{3}$ 1 mark - Finds $\alpha^{2}+\beta^{2}+\gamma^{2}$ and $\alpha+\beta+\gamma$ - Forms a polynomial with α^{2}, β^{2} and γ^{2}
12b	If the polynomial has rational coefficients, then the roots must be $-6 i, 6 i, 1+\sqrt{5}, 1-\sqrt{5}$ As the equation $\left(x^{2}+36\right)\left(x^{2}-2 x-4\right)$ has two x-intercepts, it needs any two factors to have 4 x intercepts. The smallest degree must be 6 . A possible equation is $x(x-1)\left(x^{2}+36\right)\left(x^{2}-2 x-4\right)$	3	3 mark - correct solution. 2 mark - Two conditions met. 1 mark - One condition met
12c	$\begin{gathered} z-z \omega=1+\omega \\ z-1=\omega(1+z) \\ \|z-1\|=\|\omega\| \times\|1+z\| \end{gathered}$ But $\|\omega\|=1$ $\begin{aligned} & \|z-1\|=\|z+1\| \\ & \therefore \text { locus is } x=0 \end{aligned}$	2	2 mark - correct solution. 1 mark - eliminates ω - simplifies z using $\|\omega\|=1$
12d (i)	$\begin{array}{r} P Q \text { passes through } S(a e, 0) \\ \qquad \begin{array}{c} \frac{a e x_{0}}{a^{2}}+\frac{0 \times y_{0}}{b^{2}}=1 \\ \therefore x_{0}=\frac{a}{e} \end{array} \end{array}$ So $T\left(x_{0}, y_{0}\right)$ lies on the directrix $x=\frac{a}{e}$	1	1 mark - correct solution

	Solutions	Mks	Comments
12d (ii)	Since T is on the x-axis, We know that $\frac{P S}{P N}=e$ by the definition of the ellipse. Since $P S T N$ is a rectangle, $P N=S T$ $\therefore \frac{P S}{S T}=e$	1	1 mark - correct solution
12d(iii)	$\begin{aligned} & \tan \angle P T S=\frac{P S}{P T} \\ &=e<1 \\ & \angle P T S<45^{\circ} \\ & \angle P T Q=2 \angle P T S<90^{\circ} \end{aligned}$	1	1 mark - correct solution
12d(iv)	Sub $x=a e$ into $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ $\begin{aligned} e^{2}+\frac{y^{2}}{b^{2}} & =1 \\ y^{2} & =b^{2}\left(1-e^{2}\right) \\ P S^{2} & =b^{2}\left(1-e^{2}\right) \end{aligned}$ $\text { Area } \begin{aligned} \triangle P Q T & =P S \times S T \\ & =P S \times \frac{P S}{e} \\ & =\frac{b^{2}\left(1-e^{2}\right)}{e} \\ & =b^{2}\left(\frac{1}{e}-e\right) \end{aligned}$	2	2 mark - correct solution. 1 mark - Finds $P S^{2}$ or $P S$ - Correct area using the wrong value of PS.
13a(i)	Let $\angle T R P=\theta$ $\angle T R P=\angle P S Q=\theta$ (Exterior angle of cyclic quad = interior opposite angle) $\angle P S Q=\angle T P Q=\theta$ $\therefore \angle T P Q=\angle T R P=\theta$	2	2 marks - correct solution. 1 mark - significant progress towards a correct solution.
13a(ii)	$\angle S X P=\angle S Y P=90^{\circ}$ (angle in a semi circle) $S P Y X$ is a cyclic quad with $S P$ as a diameter.	2	2 marks - correct solution. 1 mark - Explains $S P Y X$ is a cyclic quad - States $S P$ is a diameter.
13a(iii)	$\begin{aligned} & \angle P Y X+\angle P S X=180^{\circ} \text { (opposite angles of a cyclic quad } S P Y X \text {) } \\ & \angle P Y X=180^{\circ}-\theta \\ & \angle P R Q+\angle P R T=180^{\circ} \text { (angles on a straight line) } \\ & \therefore \angle P R Q=180^{\circ}-\theta \\ & \angle P Y X=\angle P R Q=180^{\circ}-\theta \end{aligned}$	2	2 mark - correct solution. 1 mark - significant progress towards solution
13b(i)	$\begin{gathered} y=p x-4 p^{2}---(1) \\ x y=4---(2) \end{gathered}$ Let the intersection of the hyperbola and the parabola be $R\left(\alpha, y_{R}\right)$ and $T\left(\beta, y_{T}\right)$, $\begin{gathered} x\left(p x-4 p^{2}\right)=4 \\ p x^{2}-4 p^{2} x-4=0 \\ \alpha+\beta=\frac{4 p^{2}}{p} \\ x_{M}=\frac{4 p}{2} \\ x_{M}=2 p \end{gathered}$ $\begin{gathered} y_{M}=p(2 p)-4 p^{2} \\ y_{M}=-2 p^{2} \\ M=\left(2 p,-p^{2}\right) \end{gathered}$	2	2 marks - correct solution. 1 mark - finds x_{M}

	Solutions	Mks	Comments
13b(iii)	$\begin{gathered} \text { Sub } p=\frac{x_{M}}{2} \text { into } y_{M} \\ y_{M}=-2 \times\left(\frac{x_{M}}{2}\right)^{2} \end{gathered}$ \therefore The locus of M lies on $y=-\frac{x^{2}}{2}$ At $(0,0)$ the tangent at P does not touch the hyperbola. $\therefore x \neq 0$ Since P and Q is distinct, $P \neq Q$ $(2) \rightarrow y=\frac{4}{x}$ $\operatorname{sub}(2) \rightarrow(1)$ $\begin{gathered} p x^{2}-4 p^{2} x-4=0 \\ \Delta>0 \\ 16 p^{4}-4 \times p \times-4>0 \\ 16 p\left(p^{3}+1\right)>0 \\ 16 p \geq 0 \text { or } p^{3}<-1 \\ 4 x>0 \text { or } \frac{x}{2}<-1 \\ x>0 \text { or } x<-2 \\ \therefore x<-2 \text { or } x>0 \end{gathered}$		3 marks - correct solution. 2 mark - finds any part of the correct restriction - correct inequality and solves. 1 mark - finds the equation of M lies on $y=-\frac{x^{2}}{2}$ - finds $16 p\left(p^{3}+1\right)>0$
13c(i)	$\begin{aligned} z+\frac{1}{z} & =x+i y+\frac{1}{x+i y} \\ & =x+i y+\frac{x-i y}{x^{2}+y^{2}} \\ & =x+\frac{x}{x^{2}+y^{2}}+i\left(y-\frac{y}{x^{2}+y^{2}}\right) \end{aligned}$	1	1 mark - correct solution
13c(ii)	If k is real then $\begin{array}{r} \operatorname{Im}\left(z+\frac{1}{z}\right)=0 \\ y-\frac{y}{x^{2}+y^{2}}=0 \\ y\left(x^{2}+y^{2}\right)-y=0 \\ y\left(x^{2}+y^{2}-1\right)=0 \\ y=0 \text { or } x^{2}+y^{2}=1 \end{array}$	1	1 mark - correct solution
13c(iii)		2	2 mark - correct solution. 1 mark - finds one inequality for k

Solutions

14a(i) Differentiating both sides:

Equation of normal:

$$
y-b \sin \theta=\frac{a}{b} \tan \theta(x-a \cos \theta)
$$

$$
b y \cos \theta-b^{2} \sin \theta \cos \theta=a x \sin \theta-a^{2} \sin \theta \cos \theta
$$

Multiply both sides by $b \cos \theta$

$$
\begin{gathered}
b y \cos \theta-b^{2} \sin \theta \cos \theta=a x \sin \theta-a^{2} \sin \theta \cos \theta \\
\sin \theta \cos \theta\left(a^{2}-b^{2}\right)=a x \sin \theta-b y \cos \theta \\
a^{2}-b^{2}=a x \sec \theta-b y \operatorname{cosec} \theta
\end{gathered}
$$

14a(ii) G occurs at the x int

$$
O N=a \cos \theta \quad(x-\text { ordinate of } P)
$$

14a(iii) Since $\triangle P N G$ and $\triangle P N^{\prime} G^{\prime}$ are similar triangles and

$$
\begin{gathered}
O G: O N=e^{2} \\
O G=e^{2} \times O N \\
O G=e^{2} \times P N^{\prime} \\
G N=P N^{\prime}\left(1-e^{2}\right) \\
G^{\prime} N^{\prime}=P N \times\left(1-e^{2}\right)
\end{gathered}
$$

\therefore Area $\triangle P N^{\prime} G^{\prime}$: Area $\triangle P N G$

$$
=1:\left(1-e^{2}\right)^{2}
$$

$$
\begin{gathered}
\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \times \frac{d y}{d x}=0 \\
\frac{d y}{d x}=-\frac{b^{2} x}{a^{2} y} \\
m_{T}=-\frac{b}{a} \cot \theta \\
m_{N}=\frac{a}{b} \tan \theta
\end{gathered}
$$

$$
\begin{gathered}
a^{2}-b^{2}=a x \sec \theta \\
x=\frac{a^{2}-b^{2}}{a \sec \theta} \\
O G=\frac{a^{2}-b^{2}}{a \sec \theta}
\end{gathered}
$$

Mks Comments

2 mark

- correct solution.

1 mark

- finds m_{N}

2
\qquad
\qquad
\qquad
\qquad

2 mark

- correct solution.

1 mark

- finds m_{N}

$$
\frac{O G}{O N}=\frac{a^{2}-b^{2}}{a \sec \theta} \times \frac{1}{a \cos \theta}
$$

2

$$
\text { but } b^{2}=a^{2}\left(1-e^{2}\right)
$$

-

$$
b^{2}-a^{2}=a^{2} e^{2}
$$

$$
\frac{O G}{O N}=\frac{a^{2} e^{2}}{a^{2}}
$$

$$
\frac{O G}{O N}=e^{2}
$$

$$
O G: O N=e^{2}: 1
$$

(

	Solutions	Mks	Comments
14b(i)	$\begin{aligned} \text { LHS } & =\cos \frac{\theta}{2} \cos \frac{\theta}{4} \sin \frac{\theta}{4} \\ & =\cos \frac{\theta}{2}\left(2 \times \cos \frac{\theta}{4} \sin \frac{\theta}{4}\right) \times \frac{1}{2} \\ & =\cos \frac{\theta}{2} \sin \frac{\theta}{2} \times 2 \times \frac{1}{2} \times \frac{1}{2} \\ & =\frac{1}{4} \sin \theta \\ & =\text { RHS } \end{aligned}$	1	1 mark - correct proof.
14b(ii)	Let $n=1$ LHS $=\sin \theta$ $\begin{aligned} \text { RHS } & =2^{1} \cos \frac{\theta}{2^{1}} \sin \frac{\theta}{2^{1}} \\ & =\sin \theta \quad \text { (double angle formula) } \end{aligned}$ Assume true for $n=k$ $\sin \theta=2^{k} \cos \frac{\theta}{2} \cos \frac{\theta}{4} \ldots \cos \frac{\theta}{2^{k}} \sin \frac{\theta}{2^{k}}$ Prove true for $n=k+1$ $\text { AIM: } \sin \theta=2^{k+1} \cos \frac{\theta}{2} \cos \frac{\theta}{4} \ldots \cos \frac{\theta}{2^{k+1}} \sin \frac{\theta}{2^{k+1}}$ $\begin{aligned} \text { RHS } & =2^{k+1} \cos \frac{\theta}{2} \cos \frac{\theta}{4} \ldots \cos \frac{\theta}{2^{k}} \cos \frac{\theta}{2^{k+1}} \sin \frac{\theta}{2^{k+1}} \\ & =2^{k} \cos \frac{\theta}{2} \cos \frac{\theta}{4} \ldots \cos \frac{\theta}{2^{k}} \times 2 \cos \frac{\theta}{2^{k+1}} \sin \frac{\theta}{2^{k+1}} \\ & =2^{k} \cos \frac{\theta}{2} \cos \frac{\theta}{4} \ldots \cos \frac{\theta}{2^{k}} \times \sin \frac{\theta}{2^{k}} \text { (double angle formula) } \\ & =\sin \theta \quad \text { (if the assumption is true) } \\ & =\text { LHS } \end{aligned}$ \therefore If it is true for $n=k+1$, if it is true for $n=k$ Since it is also true for $n=1$, then it is true for positive integer of n by Mathematical Induction.	3	3 mark - correct solution. 2 mark - Completes all of the conditions below. 1 mark - Completes one of the conditions below. Conditions: (A) Tests for $n=1$, and writes the correct assumption (B) Shows the use of the assumption in a correct expression of $n=k+1$
14b(iii)	$\lim _{n \rightarrow \infty}\left(\frac{\sin \left(\frac{\theta}{2^{n}}\right)}{\theta} \times 2^{n}\right)=\lim _{n \rightarrow \infty}\left(\frac{\sin \left(\frac{\theta}{2^{n}}\right)}{\left(\frac{\theta}{2^{n}}\right)}\right)$ if $n \rightarrow \infty, \frac{\theta}{2^{n}} \rightarrow 0$, so $\frac{\theta}{2^{n}}$ is a very small angle $\lim _{n \rightarrow \infty}\left(\frac{\sin \left(\frac{\theta}{2^{n}}\right)}{\left(\frac{\theta}{2^{n}}\right)}\right)=\lim _{\left(\frac{\theta}{2^{n}}\right) \rightarrow 0}\left(\frac{\sin \left(\frac{\theta}{2^{n}}\right)}{\left(\frac{\theta}{2^{n}}\right)}\right)=1$	1	1 mark - Correct proof and must explain $\frac{\theta}{2^{n}}$ is a small angle.

	Solutions		Comments
14b(iv)	Using the expression in part (ii), divide both side by θ $\frac{\sin \theta}{\theta}=2^{n} \cos \frac{\theta}{2} \cos \frac{\theta}{4} \ldots \cos \frac{\theta}{2^{n}} \frac{\sin \frac{\theta}{2^{n}}}{\theta}$ As $n \rightarrow \infty$, ans using (iii) $\begin{aligned} \lim _{n \rightarrow \infty}\left(\frac{\sin \theta}{\theta}\right) & =\lim _{n \rightarrow \infty}\left(\cos \frac{\theta}{2} \cos \frac{\theta}{4} \ldots \cos \frac{\theta}{2^{n}} \frac{\sin \frac{\theta}{2^{n}}}{\theta} \times 2^{n}\right) \\ \frac{\sin \theta}{\theta} & =\cos \frac{\theta}{2} \cos \frac{\theta}{4} \ldots \ldots \times 1 \end{aligned}$ By substituting $\theta=\frac{\pi}{2}$ $\begin{aligned} \frac{\sin \frac{\pi}{2}}{\frac{\pi}{2}} & =\cos \frac{\left(\frac{\pi}{2}\right)}{2} \cos \frac{\left(\frac{\pi}{2}\right)}{4} \cos \frac{\left(\frac{\pi}{2}\right)}{8} \cdots \\ \frac{2}{\pi} & =\cos \frac{\pi}{4} \cos \frac{\pi}{8} \cos \frac{\pi}{16} \cdots \end{aligned}$		3 mark - correct solution 2 mark - Completes two of the conditions below. 1 mark - Completes one of the conditions below. Conditions: (A) Uses $\theta=\frac{\pi}{2}$ (B) Manipulates expression to use the limit in (iii) (C) Uses (ii) and divides both sides by θ
14b(v)	$\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}$ we know: $\cos 2 A=2 \cos ^{2} A-1$	2	2 mark - correct solution, showing upto $\cos \frac{\pi}{8}$. 1 mark - Finds the exact value of $\cos \frac{\pi}{4}$ and attempt to use the double angle to find $\cos \frac{\pi}{8}$

