

BAULKHAM HILLS HIGH SCHOOL

2017 YEAR 12 HALF YEARLY HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Black pen is preferred
- Board-approved calculators may be used
- A reference sheet is provided at the back of this paper
- All relevant mathematical reasoning and/or calculations must be shown

Total marks – 70

Section I (Pages 2-4) 10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Section II (Pages 5-9) 60 marks

Attempt Questions 11-14 Allow about 1 hours 45 minutes for this section

Section I

10 marks **Attempt Questions 1-10** Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 to 10.

1 For the ellipse with the equation $\frac{x^2}{16} + \frac{y^2}{25} = 1$. What is the eccentricity of the ellipse?

- 9 25 (A)
- 3 5 1 5 (B)
- (C)
- $\frac{1}{\sqrt{5}}$ (D)
- If $w = \sqrt{3}(\cos \pi + i \sin \pi)$, then w^4 is equal to: 2
 - (A) -9
 - **(B)** 9
 - (C) 81
 - (D) -81
- The polynomial $P(z) = z^3 + (1+i)z^2 + (1+i)z + 1$ has a real zero z = -1 and a complex zero 3 $z = \alpha$. The third root is:
 - $\frac{1}{\alpha}$ (A)
 - (B) $\bar{\alpha}$
 - (C) $-\alpha$
 - 1α (D)

What is the multiplicity of the root x = 1 of the equation $3x^5 - 5x^4 + 5x - 3 = 0$? 4

- (A) 1
- (B) 2
- (C) 3
- (D) 4

- 5 z and w are two complex numbers. Which of the following statements is ALWAYS TRUE?
 - (A) $|z+w| \ge |z-w|$
 - $(B) \qquad |z+w| \le |z-w|$
 - (C) $|z| |w| \ge |z + w|$
 - (D) $|z| + |w| \ge |z w|$
- 6 The polynomial $P(x) = x^4 + ax^3 + bx^2 + cx + d$ has real coefficients and P(2i) = P(2 + i) = 0. What is the value of a + b + c + d?
 - (A) 0
 - (B) 6
 - (C) 9
 - (D) 49
- 7 The diagram below shows the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ where a > b > 0. The points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \alpha, b \tan \alpha)$ lie on the hyperbola and the chord PQ subtends a right angle at the origin.

Which of the following is true?

- (A) $\tan \theta \tan \alpha = -\frac{a^2}{b^2}$
- (B) $\tan \theta \tan \alpha = \frac{a^2}{b^2}$
- (C) $\sin\theta\sin\alpha = -\frac{a^2}{b^2}$

(D)
$$\sin\theta\sin\alpha = \frac{a^2}{b^2}$$

- 8 If $x^2 + 3xy = 5y^2$, which of the following is an expression for $\frac{dy}{dx}$?
 - $(A) \qquad \frac{2x+3y}{10y-3x}$
 - (B) $\frac{2x}{10y-9xy}$

(C)
$$\frac{2x+3y}{\sqrt{5(x^2+3xy)}}$$

(D)
$$\frac{2x+3y}{10y}$$

- **9** Seven travellers arrive in a town where there are 4 hotels. If two of the travellers want to stay in the same hotel, how many different accommodation arrangements are there?
 - $(A) \qquad \frac{6!}{2!2!} \times 2$
 - (B) $\frac{7!}{2!2!2!} \times 2$
 - (C) $4^6 \times 2$
 - (D) 4⁶
- 10 The graph shows a part of the hyperbola $xy = c^2$

Which pair of parametric equations precisely describes the sections of the hyperbola shown?

(A)
$$x = c(t^2 + 1), y = \frac{c}{t^2 + 1}$$

(B)
$$x = c(1 - t^2), y = \frac{c}{1 - t^2}$$

(C)
$$x = c\sqrt{1-t^2}, y = \frac{c}{\sqrt{1-t^2}}$$

(D)
$$x = c \sin t$$
, $y = \frac{c}{\sin t}$

End of Section I

Section II

90 marks Attempt questions 11 -14 Allow about 1 hours 45 minutes for this section

Answer each question on the appropriate page of your answer booklet In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Que	estion 11 (15 marks)	Marks
(a)	Let $z = 2 + i$ and $w = i - 1$. Find, in the form $x + iy$:	
	(i) $3z + iw$	1
	(ii) $z\overline{w}$	2
(b)	(i) Express $\sqrt{3} + i$ in modulus argument form.	1
	(ii) If $z = \sqrt{3} + i$, hence show that $z^7 + 64z = 0$.	2
(c)	Consider the hyperbola with the equation $\frac{x^2}{16} - \frac{y^2}{9} = 1$.	
	(i) Find the eccentricity of the hyperbola.	1
	(ii) Find the coordinates of the foci and the <i>x</i> -intercepts.	2
	(iii) Find the equations of the directrices and the equations of the asymptotes.	2
(d)	Sketch the region in the complex plane where the inequalities $ z + \overline{z} \le 1$ and $ z - i \le 1$ hold simultaneously.	2
(e)	Let ω be one of the complex roots of the equation $z^3 - 64 = 0$.	
	(i) Show that $\omega^2 = -4(\omega + 4)$.	1
	(ii) Hence evaluate $(\omega + 4)^3$.	1
	End of Question 11	

Question 12 (15 marks)

- (a) The roots of $x^3 + 6x^2 + 5x 2 = 0$ are α, β and γ .
 - (i) Find the monic polynomial with roots α^2 , β^2 and γ^2 .
 - (ii) Find the value of $\alpha^3 + \beta^3 + \gamma^3$. 3
- (b) Find a possible polynomial equation P(x), of smallest degree that satisfies the following 3 conditions:
 - The polynomial P(x) has rational coefficients.
 - Two of its roots are $1 + \sqrt{5}$ and -6i.
 - When y = P(x) is drawn on a Cartesian plane, there are four x-intercepts.
- (c) A complex number ω is such that $|\omega| = 1$.

If
$$z = \frac{1+\omega}{1-\omega}$$
, find the locus of z as ω moves on the complex number plane.

(d) The point *P* lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > bThe chord through *P* and the focus S(ae, 0) meets the ellipse again at *Q*. The tangents to the ellipse at *P* and *Q* meet at the point $T(x_0, y_0)$. The equation of *PQ* is $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$. [DO NOT PROVE THIS]

(i) Show that *T* lies on the directrix.

The point *P* is now chosen so that *T* lies on the x-axis.

- (ii) What is the value of the ratio *PS*: *ST*? 1
- (iii) Show that $\angle PTQ$ is acute.
- (iv) Show that the area of the triangle PQT is $b^2 \left(\frac{1}{e} e\right)$. 2

End of Question 12

Marks

2

2

1

1

Question 13 (15 marks)

(a) In the diagram below, TP is the tangent of the circle at P, and TQ is a secant cutting the circle at R.

SQ is a chord of the circle such PX and SY are perpendicular to SQ and PQ respectively.

Copy the diagram in your answer booklet.

(i)	Prove that $\angle TRP = \angle TPQ$.	2
(ii)	Explain why SPYX is a cyclic quadrilateral and state the diameter of the circle SPYX.	2
(iii)	Prove $\angle PYX = \angle PRQ$.	2

Question 13 continues on the next page

(b) $P(8p, 4p^2)$ is a point on the parabola $x^2 = 16y$. The tangent to the parabola at *P* cuts the hyperbola xy = 4 at two distinct points *R* and *T*.

- (i) *M* is the midpoint of *RT*, show that *M* has coordinates $(2p, -2p^2)$. You may assume the tangent to the parabola at *P* is $y = px - 4p^2$. [DO NOT PROVE THIS]
- (ii) Find the equation of the locus of *M*, as *P* moves on the parabola $x^2 = 16y$, stating 3 any restrictions.

(c) Let z = x + iy be any non-zero complex number.

(i) Show
$$z + \frac{1}{z} = x + \frac{x}{x^2 + y^2} + i\left(y - \frac{y}{x^2 + y^2}\right)$$
. 1

- (ii) Given that $z + \frac{1}{z} = k$, where k is real, show that y = 0 or $x^2 + y^2 = 1$.
- (iii) Show also that if y = 0 then $|k| \ge 2$ and that if $x^2 + y^2 = 1$ then $|k| \le 2$. 2

End of Question 13

Question 14 (15 marks)

(a) The diagram below shows the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > b. The point $P(a \cos \theta, b \sin \theta)$ lies on the ellipse.

The normal to the ellipse at P meets the major and minor axes of the ellipse at G and G' respectively. N and N' are the feet of the perpendiculars from P to the major axes and minor axes respectively.

	(i)	Show that the equation of the normal at <i>P</i> is $ax \sec \theta - by \csc \theta = a^2 - b^2$.	2
	(ii)	Show that the ratio of $OG: ON = e^2: 1$.	2
	(iii)	Given that $\Delta PN'G'///\Delta PNG$, find the ratio of the area of $\Delta PN'G': \Delta PNG$.	1
)	(i)	Prove $4\cos\frac{\theta}{2}\cos\frac{\theta}{4}\sin\frac{\theta}{4} = \sin\theta$	1
	(ii)	Prove by Mathematical Induction that for any positive integer n	3
		$\sin\theta = 2^n \cos\frac{\theta}{2} \cos\frac{\theta}{4} \dots \cos\frac{\theta}{2^n} \sin\frac{\theta}{2^n}$	

(iii) Explain why

(b)

$$\lim_{n \to \infty} \left(\frac{\sin \frac{\theta}{2^n}}{\theta} \times 2^n \right) = 1$$

(iv) Hence using (ii), (iii) and choosing a suitable value for
$$\theta$$
, show: 3

$$\frac{2}{\pi} = \cos\frac{\pi}{4} \times \cos\frac{\pi}{8} \times \cos\frac{\pi}{16} \times \dots \dots$$

(v) Show that
$$\pi = 2\left(\frac{2}{\sqrt{2}} \times \frac{2}{\sqrt{2+\sqrt{2}}} \times \dots\right)$$
 2

End of Exam

Marks

	Solutions	Mks Co	mments
1	$b^2 = a^2(1 - e^2)$		
	$16 = 25(e^2 - 1)$	1	В
	$e = \frac{3}{5}$		D
	$e - \overline{5}$		
2	$w^4 = \sqrt{3}^4 cis(4 \times \pi)$		
	$w^4 = 9cis 4\pi$	1	П
	$w^4 = 9cis 0$	1	В
	$w^4 = 9$		
3	Let the roots be $\alpha, \beta, -1$		
6	Product of roots $= -\frac{b}{a}$		
	Finduct of foots $= -\frac{1}{a}$	1	А
	$\alpha \times \beta \times -1 = -1$		$\mathbf{\Lambda}$
	$\beta = \frac{1}{-}$		
4	$\alpha \times \beta \times -1 = -1$ $\beta = \frac{1}{\alpha}$ Let $P(x) = 3x^5 - 5x^4 + 5x - 3$		
4	Let $P(x) = 3x^3 - 5x^4 + 5x - 3$		
	P(1) = 0		
	$P'(x) = 15x^4 - 20x^3 + 5$		
	P'(1) = 0		C
	$P''(x) = 60x^3 - 60x^2$	1	С
	P''(1) = 5		
	$P'''(x) = 180x^2 - 120x$		
	P'''(1) = 60		
~	$\therefore P(x)$ has multiplicity 3		
5	Triangular inequality	1	D
6	The roots are $2i, -2i, 2+i, 2-i$		
U			
	$P(x) = (x^2 + 4)(x^2 - 4x + 5)$		a
	$P(x) = x^4 - 4x^3 + 9x^2 - 16x + 20$	1	С
	a+b+c+d = -4+9-16+20		
	= 9		
7	h tan A h tan a		
	$m_{OP} = \frac{b \tan \theta}{a \sec \theta} \qquad \qquad m_{OQ} = \frac{b \tan \theta}{a \sec \alpha}$		
	$m_{OP} \times m_{OQ} = -1$		
	$\frac{b\tan\theta}{a\sec\theta} \times \frac{b\tan\alpha}{a\sec\alpha} = -1$	1	C
	$a \sec \theta = a \sec \alpha$	1	C
	$\frac{\cos^2\theta}{\cos^2\theta} \times \frac{b^2\tan\theta}{a^2\sec\theta} \times \frac{\tan\alpha}{\sec\alpha} = -1$		
	$\sin\theta\sin\alpha = -\frac{a^2}{b^2}$		
	~		
8	Derive both side implicitly:		
	$2x + \left(3 \times y + \frac{dy}{dx} \times 3x\right) = 10y \times \frac{dy}{dx}$		
	$2x + 3y = \frac{dy}{dx}(10y - 3x)$	1	٨
		1	А
	$\frac{dy}{dx} = \frac{2x + 3y}{10y - 3x}$		
	$\frac{1}{dx} = \frac{1}{10y - 3x}$		
9	If two particular people are together, then there are 6 entities,		
	ie (AB)CDEFG.		
	(\overrightarrow{AB}) will have 4 rooms to choose from		
	C will have 4 rooms to choose from	1	D
	G will have 4 rooms to choose from		
	\therefore there are 4 ⁶ ways to place 6 entities.		

	Solutions	Mks	Comments
10	(A) False as x is positive, and there are x-ordiantes that are negative (B) False as $t \to \infty, x \to -\infty$ (C) False as x is positive, and there are x-ordiantes that are negative (D) True as $-1 \le \sin t \le 1, -c \le c \sin t \le c$, ie $-c \le x$ - ordinate $\le c$	1	D
11a(i)	3(2+i) + i(i-1) = 6 + 3i - 1 - i = 5 + 2i (2+i)(-1-i) = -1 - 3i	1	1 mark• correct answer.
11a(ii)	(2+i)(-1-i) = -1 - 3i	2	 2 mark • correct solution. 1 mark • correct conjugate • correct multiplication with a wrong expression of the conjugate.
11b(i)	$z = 2\left[\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right]$	1	1 mark• correct answer.
11b(ii)	$z^{7} - 64z = z(z^{6} - 64)$ $z^{6} = 2^{6} \left(\cos \frac{6\pi}{6} + i \sin \frac{6\pi}{6} \right)$ $z^{6} = 64$ $z^{7} - 64z = z(64 - 64)$ $= 0$ $9 = -16(1 - e^{2})$	2	 2 mark • correct solution. 1 mark • correct use of DM's Thm
11c(i)	$9 = -16(1 - e^{2})$ $e = \frac{5}{4}$	1	1 mark• correct answer
11c(ii)	$\therefore foci are (\pm 5,0)$ $x - \text{ int when } y = 0$ $\frac{x^2}{16} = 1$ $x \text{-intercepts are } (\pm 4,0)$	2	 2 mark • correct solution. 1 mark • correct foci • correct intercept
11c(iii)	Directricies: $x = \pm \frac{16}{5}$ Eqn of asymptote: $y = \pm \frac{3}{4}x$		 2 mark correct solution. 1 mark correct directrices correct asyptote
11d	$\begin{vmatrix} z + \bar{z} \le 1 \\ 2x \le 1 \\ -\frac{1}{2} \le x \le \frac{1}{2} \\ \hline -\frac{1}{2} \le x \le \frac{1}{2} \\ \hline -\frac{1}{2} \\ \hline -\frac{1}{2} \\ \hline \\ -\frac{1}{2} \\ \hline \\ \\ \hline \\ \\ -\frac{1}{2} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	2	2 mark • correct solution. 1 mark • Shows region inside circle at centre (0,1) • Shows region bewtween the lines $-\frac{1}{2} \le x \le \frac{1}{2}$ • Correct boundaries with incorrect region.
11e(i)	$\omega^{3} - 64 = 0$ $(\omega - 4)(\omega^{2} + 4\omega + 16) = 0$ Since ω is a complex root so $\omega \neq 4$ $\omega^{2} + 4\omega + 16 = 0$ $\omega^{2} = -4\omega - 16$ $\omega^{2} = -4(\omega + 4)$	1	 1 mark • correct solution.

11e(ii) 12a(i) L	$(\omega + 4)^3 = \left(\frac{\omega^2}{-4}\right)^3$ $= \frac{(\omega^3)^2}{-64}$ $= \frac{(64)^2}{-64}$ $= -64$	1	 1 mark • correct solution.
12a(i) L	$=\frac{(64)^2}{-64}$	1	
12a(i) L	-04		
12a(i) L	= -64		
12a(i) L			
	Let $A = x^2$, where $x = \alpha, \beta$ and γ		2 mark
	$x = \sqrt{A}$		• correct solution.
1	$\sqrt{A}^{3} + 6\sqrt{A}^{2} + 5\sqrt{A} - 2 = 0$		1 mark • substitutes $x\sqrt{A}$
	$A\sqrt{A} + 5\sqrt{A} = 2 - 6A$		• substitutes $x \gamma A$
S	Square both sides $11000 - 2$	2	
	$A(A+5)^2 = (2-6A)^2$		
	$A^3 - 26A^2 + 49A - 4 = 0$		
	$\therefore x^3 - 26x^2 + 49x - 4 = 0$		
12a(ii)	$\alpha^3 + 6\alpha^2 + 5\alpha - 2 = 0$		3 mark
	$\beta^3 + 6\beta^2 + 5\beta - 2 = 0$		• correct solution. 2 mark
	$\gamma^3 + 6\gamma^2 + 5\gamma - 2 = 0$		• significant progress to finding
	$\alpha^{3} + \beta^{3} + \gamma^{3} + 6(\alpha^{2} + \beta^{2} + \gamma^{2}) + 5(\alpha + \beta + \gamma) - 2 \times 3 = 0$	3	$\alpha^3 + \beta^3 + \gamma^3$ 1 mark
	$\alpha^3 + \beta^3 + \gamma^3 + 6(26) + 5(-6) - 2 \times 3 = 0$		• Finds $\alpha^2 + \beta^2 + \gamma^2$
	$a^3 + \beta^3 + \gamma^3 = -120$		and $\alpha + \beta + \gamma$
			• Forms a polynomial with $a^2 = a^2$ and a^2
12b It	If the polynomial has rational coefficients, then the roots must be		with α^2 , β^2 and γ^2 3 mark
	$-6i, 6i, 1 + \sqrt{5}, 1 - \sqrt{5}$		• correct solution. 2 mark
	As the equation		• Two conditions met.
	$(x^2 + 36)(x^2 - 2x - 4)$ has two x-intercepts, it needs any two factors to have 4 x intercepts. The smallest degree must be 6.	3	1 markOne condition met
A	A possible equation is $x(x - 1)(x^2 + 36)(x^2 - 2x - 4)$		
12c	$z - z\omega = 1 + \omega$		2 mark
	$z - 1 = \omega(1 + z)$		• correct solution.
	$ z - 1 = \omega \times 1 + z $		1 mark
		2	 eliminates ω simplifies z using
В	But $ \omega = 1$		$ \omega = 1$
	z - 1 = z + 1		
	\therefore locus is $x = 0$		
12d (i) P	PQ passes through S(ae, 0)		1 mark
	$\frac{ae x_0}{a^2} + \frac{0 \times y_0}{b^2} = 1$	1	• correct solution
	$\therefore x_0 = \frac{a}{\rho}$	1	
C	So $T(x_0, y_0)$ lies on the directrix $x = \frac{a}{c}$		

	Solutions	Mks	Comments
12d (ii)	Since <i>T</i> is on the <i>x</i> -axis,		1 mark
	We know that $\frac{PS}{PN} = e$ by the definition of		• correct solution
	the ellipse.		
		1	
	Since $PSTN$ is a rectangle, $PN = ST$		
	$\therefore \frac{PS}{ST} = e$		
	ST		
12d(iii)	PS		1 mark
	$\tan \angle PTS = \frac{PS}{PT}$		• correct solution
	= e < 1	1	
	$\angle PTS < 45^{\circ}$ $\angle PTQ = 2\angle PTS < 90^{\circ}$		
	ZFIQ = ZZFIS < 90		
	Sub $x = ae$ into $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$		2 mark
12d(iv)	$\operatorname{Sub} x - ue \operatorname{Into} \frac{1}{a^2} + \frac{1}{b^2} - 1$		• correct solution.
	$Area \Delta PQT = PS \times ST$		1 mark
	$e^2 + \frac{y^2}{h^2} = 1$ Area $\Delta PQT = PS \times ST$ PS		• Finds PS^2 or PS
	$e^{2} + \frac{y}{b^{2}} = 1$ $y^{2} = b^{2}(1 - e^{2})$ $PS^{2} = b^{2}(1 - e^{2})$ $= \frac{b^{2}(1 - e^{2})}{e}$ $= b^{2}\left(\frac{1}{e} - e\right)$	2	• Correct area using
	$PS^{2} = b^{2}(1 - e^{2}) = \frac{b^{2}(1 - e^{2})}{e^{2}}$		the wrong value of PS.
	$=b^{2}\left(\frac{1}{-}-e\right)$		
13a(i)	Let $\angle TRP = \theta$	2	2 marks
154(1)	$\angle TRP = \angle PSQ = \theta$ (Exterior angle of cyclic quad = interior		• correct solution.
	opposite angle)		1 mark
	$\angle PSQ = \angle TPQ = \theta$ (alternate segment theorem)		 significant progress
	$\therefore \angle TPQ = \angle TRP = \theta$		towards a correct
			solution.
13a(ii)	$\angle SXP = \angle SYP = 90^{\circ}$ (angle in a semi circle)	2	2 marks
		_	• correct solution.
	SPYX is a cyclic quad with SP as a diameter.		1 mark
			• Explains SPYX is a
			cyclic quad
			• States SP is a
13a(iii)	$\angle PYX + \angle PSX = 180^{\circ}$ (opposite angles of a cyclic quad <i>SPYX</i>)	2	diameter. 2 mark
	$\angle PYX = 180^{\circ} - \theta$		• correct solution.
	$\angle PRQ + \angle PRT = 180^{\circ}$ (angles on a straight line)	1	1 mark
	$\therefore \ \angle PRQ = 180^\circ - \theta$	1	• significant progress
	$\angle PYX = \angle PRQ = 180^{\circ} - \theta$	1	towards solution
		1	
13b(i)	$y = px - 4p^2 (1)$	1	2 marks
	xy = 4 (2)	1	• correct solution.
	Let the intersection of the hyperbola and the parabola be $R(\alpha, y_R)$ and $T(\beta, y_T)$,	1	
	$x(px-4p^2) = 4$	1	1 mark
	$px^2 - 4p^2x - 4 = 0 \qquad \qquad y_M = p(2p) - 4p^2$	1	• finds x_M
	$4n^2$	2	
	$\alpha + \beta = \frac{4p}{p}$ $y_M = -2p^2$ $M = (2p, -p^2)$	1	
	$M = (2p, -p^2)$	1	
		1	
	$x_M = 2p$	1	
	I	1	1

	Solutions		Mks	Comments
13b(iii)	Sub $p = \frac{x}{x}$	$\frac{M}{2}$ into y_M		3 marks
	4	4		• correct solution.
	$y_M = -2$	$\times \left(\frac{-m}{2}\right)$		2 mark
	\therefore The locus of M	lies on $y = -\frac{x^2}{2}$		• finds any part of the
		-		correct restriction
	At $(0,0)$ the tangent at <i>P</i> does not touch	$\neq 0$		• correct inequality and solves.
	Since <i>P</i> and <i>Q</i> is distinct, $P \neq Q$	<i>4</i> 0		
		4		1 mark
		$\Rightarrow y = \frac{4}{x}$		• finds the equation of M lies on $y = -\frac{x^2}{2}$
	$sub(2) \rightarrow (1)$	$\frac{4}{x} = px - 4p^2$	3	• finds
	$px^2 - 4p^2$	λ		$16p(p^3 + 1) > 0$
				10p(p + 1) > 0
	$16p^4 - 4 \times$	$p \times -4 > 0$		
	1 4	(+1) > 0		
		or $p^3 < -1$		
	4x > 0 o	$r \frac{x}{2} < -1$		
		x < -2		
		or $x > 0$		
13c(i)	$z + \frac{1}{z} = x + iy + \frac{1}{x}$	1	1	1 mark
		+ iy		• correct solution
	$= x + iy + \frac{x}{x}$	$\frac{z-iy}{z-i}$		
		. 9		
	$=x+\frac{x}{x^2+x}$	$\frac{1}{2}+i\left(y-\frac{y}{x^2+y^2}\right)$		
10 (")	~ ,	- (x - + y -)		
13c(ii)	If k is real then	1\	1	1 mark• correct solution
	Im (z	$\left(z+\frac{1}{z}\right)=0$		concer solution
	v —	$\frac{y}{1+y^2} = 0$		
		$y^{2} - y = 0$ $y^{2} - 1 = 0$		
	$y(x^2 + y^2)$ y = 0 or x			
13c(iii)	y = 0 or x	$If x^2 + y^2 = 1$	2	2 mark
		$\begin{array}{c} x + y = 1 \\ x + x = k \end{array}$	-	• correct solution.
	$x + \frac{x}{x^2 + 0^2} = k$	$x = \frac{k}{2}$		1 mark
	1			• finds one inequality for <i>k</i>
	$x + \frac{1}{x} = k$	Since $x^2 + y^2 = 1$,		
	$x^2 + 1 = kx$	The <i>x</i> -ordinate must be ≤ 1 $ x \leq 1$		
	$x^2 - kx + 1 = 0$	$ x \le 1$ $ k \le 2$		
	$\Delta \ge 0$			
	$\frac{1}{k^2 - 4} \ge 0$			
	$k^2 \ge 4$			
	$ k \ge 2$			

	Solutions	Mks	Comments
14a(i)	Differentiating both sides:		2 mark
	$\frac{2x}{a^2} + \frac{2y}{b^2} \times \frac{dy}{dx} = 0$ $\frac{dy}{dx} = -\frac{b^2 x}{a^2 y}$ $m_T = -\frac{b}{a} \cot \theta$ $m_N = \frac{a}{b} \tan \theta$		 correct solution. 1 mark finds m_N
	Equation of normal:	2	
	$y - b\sin\theta = \frac{a}{b}\tan\theta (x - a\cos\theta)$	2	
	$by\cos\theta - b^2\sin\theta\cos\theta = ax\sin\theta - a^2\sin\theta\cos\theta$		
	Multiply both sides by $b \cos \theta$		
	$by\cos\theta - b^2\sin\theta\cos\theta = ax\sin\theta - a^2\sin\theta\cos\theta$		
	$\sin\theta\cos\theta(a^2-b^2)=ax\sin\theta-by\cos\theta$		
	$a^2 - b^2 = ax \sec \theta - by \csc \theta$		
14a(ii)	<i>G</i> occurs at the xint $a^{2} - b^{2} = ax \sec \theta$ $x = \frac{a^{2} - b^{2}}{a \sec \theta}$ $OG = \frac{a^{2} - b^{2}}{a \sec \theta}$ $ON = a \cos \theta (x - ordinate of P)$ $\frac{OG}{ON} = \frac{a^{2} - b^{2}}{a \sec \theta} \times \frac{1}{a \cos \theta}$ $but b^{2} = a^{2}(1 - e^{2})$ $b^{2} - a^{2} = a^{2}e^{2}$ $\frac{OG}{ON} = e^{2}$ $OG: ON = e^{2}: 1$	2	2 mark • correct solution. 1 mark • finds m _N
14a(iii)	Since ΔPNG and $\Delta PN'G'$ are similar triangles and $OG: ON = e^2$ $OG = e^2 \times ON$ $OG = e^2 \times PN'$ $GN = PN'(1 - e^2)$ $\therefore Area \Delta PN'G': Area \Delta PNG$ $= 1: (1 - e^2)^2$	1	 1 mark • correct ratio.

	Solutions	Mk	s Comments
14b(i)	$LHS = \cos\frac{\theta}{2}\cos\frac{\theta}{4}\sin\frac{\theta}{4}$		1 mark• correct proof.
	$= \cos\frac{\theta}{2} \left(2 \times \cos\frac{\theta}{4}\sin\frac{\theta}{4} \right) \times \frac{1}{2}$ $\theta \theta 1 1$		
	$= \cos\frac{\theta}{2}\sin\frac{\theta}{2} \times 2 \times \frac{1}{2} \times \frac{1}{2}$	1	
	$=\frac{1}{4}\sin\theta$		
	= RHS		
14b(ii)	Let $n = 1$		3 mark
140(11)	Let $n = 1$ LHS = sin θ		• correct solution.
	$RHS = 2^1 \cos \frac{\theta}{2^1} \sin \frac{\theta}{2^1}$		 2 mark Completes all of the conditions below. 1 mark
	$= \sin \theta$ (double angle formula)		• Completes one of the
	Assume true for $n = k$ $\sin \theta = 2^k \cos \frac{\theta}{2} \cos \frac{\theta}{4} \dots \cos \frac{\theta}{2^k} \sin \frac{\theta}{2^k}$		conditions below. Conditions: (A) Tests for $n = 1$,
	Prove true for $n = k + 1$		and writes the correct
	AIM: $\sin \theta = 2^{k+1} \cos \frac{\theta}{2} \cos \frac{\theta}{4} \dots \cos \frac{\theta}{2^{k+1}} \sin \frac{\theta}{2^{k+1}}$		assumption (B) Shows the use of
			the assumption in a correct expression of
	$RHS = 2^{k+1} \cos\frac{\theta}{2} \cos\frac{\theta}{4} \dots \cos\frac{\theta}{2^k} \cos\frac{\theta}{2^{k+1}} \sin\frac{\theta}{2^{k+1}}$	3	n = k + 1
	$= 2^k \cos\frac{\theta}{2} \cos\frac{\theta}{4} \dots \cos\frac{\theta}{2^k} \times 2\cos\frac{\theta}{2^{k+1}} \sin\frac{\theta}{2^{k+1}}$		
	$= 2^k \cos\frac{\theta}{2} \cos\frac{\theta}{4} \dots \cos\frac{\theta}{2^k} \times \sin\frac{\theta}{2^k} \text{ (double angle formula)}$		
	$= \sin \theta$ (if the assumption is true)		
	= LHS		
	: If it is true for $n = k + 1$, if it is true for $n = k$		
	Since it is also true for $n = 1$, then it is true for positive integer of n by Mathematical Induction.		
14b(iii)	$\lim_{n \to \infty} \left(\frac{\sin\left(\frac{\theta}{2^n}\right)}{\theta} \times 2^n \right) = \lim_{n \to \infty} \left(\frac{\sin\left(\frac{\theta}{2^n}\right)}{\left(\frac{\theta}{2^n}\right)} \right)$		1 mark • Correct proof and <u>must explain</u> $\frac{\theta}{2^n}$ is a
	if $n \to \infty$, $\frac{\theta}{2^n} \to 0$, so $\frac{\theta}{2^n}$ is a very small angle		small angle.
	$\lim_{n \to \infty} \left(\frac{\sin\left(\frac{\theta}{2^n}\right)}{\left(\frac{\theta}{2^n}\right)} \right) = \lim_{\left(\frac{\theta}{2^n}\right) \to 0} \left(\frac{\sin\left(\frac{\theta}{2^n}\right)}{\left(\frac{\theta}{2^n}\right)} \right) = 1$	1	

	Solutions	Mks	Comments
14b(iv)	Using the expression in part (ii), divide both side by θ $\frac{\sin \theta}{\theta} = 2^n \cos \frac{\theta}{2} \cos \frac{\theta}{4} \dots \cos \frac{\theta}{2^n} \frac{\sin \frac{\theta}{2^n}}{\theta}$ As $n \to \infty$, ans using (iii) $\lim_{n \to \infty} \left(\frac{\sin \theta}{\theta}\right) = \lim_{n \to \infty} \left(\cos \frac{\theta}{2} \cos \frac{\theta}{4} \dots \cos \frac{\theta}{2^n} \frac{\sin \frac{\theta}{2^n}}{\theta} \times 2^n\right)$ $\frac{\sin \theta}{\theta} = \cos \frac{\theta}{2} \cos \frac{\theta}{4} \dots \dots \times 1$ By substituting $\theta = \frac{\pi}{2}$ $\frac{\sin \frac{\pi}{2}}{\frac{\pi}{2}} = \cos \frac{\left(\frac{\pi}{2}\right)}{2} \cos \frac{\left(\frac{\pi}{2}\right)}{4} \cos \frac{\left(\frac{\pi}{2}\right)}{8} \dots$ $\frac{2}{\pi} = \cos \frac{\pi}{4} \cos \frac{\pi}{8} \cos \frac{\pi}{16} \dots$	3	3 mark • correct solution 2 mark • Completes two of the conditions below. 1 mark • Completes one of the conditions below. Conditions: (A) Uses $\theta = \frac{\pi}{2}$ (B) Manipulates expression to use the limit in (iii) (C) Uses (ii) and divides both sides by θ
14b(v)	$\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$ we know: $\cos 2A = 2\cos^2 A - 1$ $\cos A = \sqrt{\frac{\cos 2A + 1}{2}}$ $\cos \frac{\pi}{8} = \sqrt{\frac{\cos \frac{\pi}{4} + 1}{2}}$ $= \sqrt{\frac{\sqrt{2}}{2} + 1}$ $= \sqrt{\frac{\sqrt{2}}{2} + 2}$ $= \sqrt{\frac{\sqrt{2} + 2}{4}}$ $= \sqrt{\frac{\sqrt{2} + 2}{2}}$ $= \sqrt{\frac{\sqrt{2} + 2}{2}}$ $= \sqrt{\frac{\sqrt{\sqrt{2} + 2} + 2}{2}}$ $\therefore \frac{\pi}{2} = \frac{2}{\sqrt{2}} \times \frac{2}{\frac{\sqrt{\sqrt{2} + 2}}{2}} \times \frac{2}{\sqrt{\sqrt{\sqrt{2} + 2} + 2}} \dots \dots$ $\therefore \pi = 2\left(\frac{2}{\sqrt{2}} \times \frac{2}{\frac{\sqrt{\sqrt{2} + 2}}{2}} \times \frac{2}{\sqrt{\sqrt{2} + 2} + 2} \dots \dots\right)$	2	2 mark • correct solution, showing upto $\cos \frac{\pi}{8}$. 1 mark • Finds the exact value of $\cos \frac{\pi}{4}$ and attempt to use the double angle to find $\cos \frac{\pi}{8}$