2009 SEMESTER 1 EXAMINATION

Stud	lent N	lum	ber	

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 75

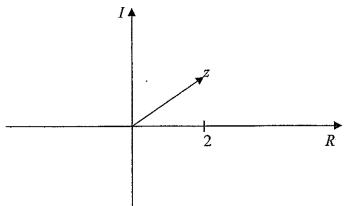
- Attempt questions 1-5
- All questions are of equal value

Q́υ	est	ion 1 (15 marks) Start a new writing booklet.	Marks
(a)		State the domain and range of the function $g(x) = \frac{1}{2}\cos^{-1}\left(\frac{x}{2}\right)$.	2
(b)		Find $\frac{d}{dx}(3x^2\cos^{-1}x)$.	2
(c)		Differentiate $\ln(\sin^{-1} 2x)$.	2
(d)		Evaluate exactly $\cos^{-1}\left(\frac{1}{2}\right) - \sin^{-1}\left(-\frac{1}{2}\right)$.	2
(e)	(i)	For what values of x is $\sin^{-1} x$ defined?	1
	(ii)	Find the maximum value of $2x(1-x)$.	2
	(ili)	Find the range of the function f given by $f(x) = \sin^{-1} \{ 2x(1-x) \}$ with domain $0 \le x \le 1$.	2
(f)		$\int \frac{2x}{\sqrt{1-x^4}} dx$	2

End of Question 1

Qu	ıest	ion 2 (15 marks) Start a new writing booklet	Warks
(a)		A complex number z is given by $1 + \sqrt{3} i$.	
	(i)	Write down \overline{z} .	1
	(ii)	Verify that $z\overline{z}$ is real.	1
	(iii)	Find $\frac{1}{z}$ in the form $a+ib$, where a and b are real.	1
(b)		Express $1+i$ in modulus argument form, and hence simplify $(1+i)^6$, giving your answer in the form $a+ib$	2

(c) A point z on the Argand Diagram is given below:



Copy this diagram into your examination booklet and use it to plot the following points.

Clearly label each point.

(i) <u>Z</u>

1.

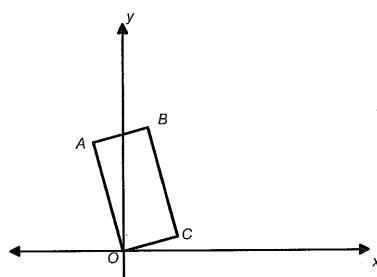
(ii) 2*iz*

1

(iii) <u>1</u>

1

(d)



The points OABC are the vertides of a rectangle on the Argand diagram with |OA|=2 |OC|. If OC represents the complex number p+iq, write down the complex numbers represented by:

(i) OA

1

(ii) OB

1

(iii) BC

1

(iv) AC

1

(e)

(i) If
$$P(x) = x^4 + x^3 - 3x^2 - 5x - 2$$
, show that $P(x) = 0$ has a multiple root, find this root and its multiplicity.

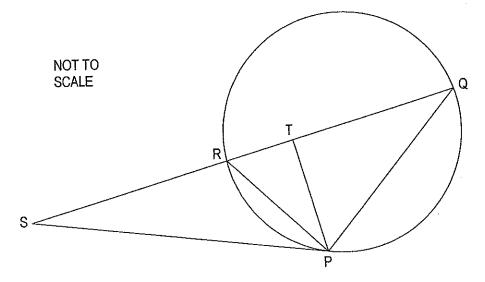
2

(ii) Hence factorise
$$P(x) = x^4 + x^3 - 3x^2 - 5x - 2$$
 into its linear factors.

End of Question 2

Question 3 (15 marks) Start a new writing booklet...

Marks



QR is the diameter of the circle. The tangent to the circle at P meets QR produced

T is situated on QR such that PR bisects ∠TPS.

COPY OR TRACE THE DIAGRAM ONTO YOUR PAGE

Give a reason why $\angle RPS = \angle PQR$ (i)

1

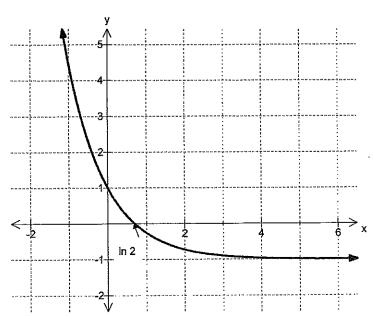
Hence, show that $PT \perp QR$ (ii)

3

Find the equation of the tangent to the curve $\cos 2x + \sin y = 1$ at the point (b) $x=\frac{\pi}{6}$.

3

(c)



The diagram shows the graph of $y = 2e^{-x} - 1$. On separate diagrams sketch the following graphs, showing the intercepts on the axes and the equations of any asymptotes:

(i)
$$y = |f(x)|$$

1

(ii)
$$y = \{f(x)\}^2$$

1

(iii)
$$y = \frac{1}{f(x)}$$

2

(iv)
$$y = \ln \{f(x)\}$$

.

(d) Given $|z+i| \le 2$ and $0 \le \arg(z+1) \le \frac{\pi}{4}$. Sketch the region in an Argand diagram which contains the point P representing z.

3

End of Question 3

Ωu	ıest	ion 4 (15 marks) Start a new writing booklet	Marks
(a)		The roots of $x^3-3x^2-2x+4=0$ are α , β and γ . Answer the following without finding the actual values of α , β and γ .	
	(i)	Find a cubic equation whose roots are α^2 , β^2 and γ^2	2
	(ii)	Hence or otherwise find the value of $\alpha^2 + \beta^2 + \gamma^2$	1
	(ili)	Determine the value of $\alpha^3 + \beta^3 + \gamma^3$	2
(b)	(i)	Given $z = \cos\theta + i \sin\theta$, prove $Z^n + \frac{1}{z^n} = 2 \cos n\theta$	2
	(ii)	Hence by considering the expansion $\left(z + \frac{1}{z}\right)^4$ show that	
		$\cos^4 \theta = \frac{1}{8} \cos 4 \theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$	3
	(iii)	Hence evaluate $\int_0^{\frac{\pi}{2}} \cos^4 \theta \ d\theta$.	2
(c)		The roots of the polynomial $P(x) = x^3 + ax^2 + bx + c = 0$ are three consecutive terms of an arithmetic series. Prove that the relationship between the coefficients is given by	
		$2a^3 - 9ab + 27c = 0$	3
		Hint: make an appropriate choice for the roots in arithmetic progression	Ū
		End of Question 4	

Quest	ion 5 (15 marks) Start a new writing booklet $z_1 = 1 + i$ and $z_2 = \sqrt{3} - i$	Warks
(i)	Find $\frac{Z_1}{Z_2}$ in the form $a+ib$ where a and b are real.	1
(ii)	Write Z_1 and Z_2 in modulus – argument form.	2
(iii)	By equating equivalent expressions for $\frac{\dot{z}_1}{z_2}$ write $\cos \frac{5\pi}{12}$ as a surd.	1
(iv)	Explain why there is no positive integer n such $Z_1(Z_2)^n$ is real.	2

(b)

(i) Prove that $y = \frac{1}{x}$ is concave up for all x > 0.

- 3
- (ii) Sketch $y = \frac{1}{x}$ for x > 0. Suppose 0 < a < b and consider the points $A\left(a, \frac{1}{a}\right)$ and $B\left(b, \frac{1}{b}\right)$ on the graph of $y = \frac{1}{x}$.
- 1

(iii) Plot two such points on your sketch.

- 1
- (iv) Find the coordinates of the point *P* that divides the line segment *AB* in the ratio 2:1.
- 2

2

(v) With reference to areas and by careful argument, deduce that

$$\ln \frac{b}{a} < \frac{b^2 - a^2}{2ab}$$

End of Paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \sin^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_a x$, x > 0