QUESTION 1 Start a NEW page.	Mark
 a) Show that 1-2i is a zero of the polynomial P(x) = x³-5x²+11x-15. Hence resolve P(x) into irreducible factors over the field of i) complex numbers, ii) real numbers. 	6
b) Find the roots of x ⁴ -6x ³ +12x ² -10x+3 given that it has a root of multiplicity 3.	4
QUESTION 2 Start a NEW page.	
a) Find the equation of the locus of z if	
i) $\left \frac{z-i}{z+2} \right = 1$	3
ii) $\operatorname{arg}\left(\frac{z-i}{z+2}\right) = \frac{\pi}{2}$	4
b) If $\frac{z^2}{z-1}$ is always real, show that the locus of the point representing z consists of the real axis and a circle.	3
QUESTION 3 Start a NEW page.	
The ellipse E has cartesian equation $\frac{x^2}{4} + \frac{y^2}{3} = 1$	
(a) Write down its eccentricity, the co-ordinates of its foci S and S ¹ , and the equation of each directrix.	3
(b) Sketch the curve and indicate on your diagram the foci and directrices.	1
 (c) P is an arbitrary point on E. (i) Prove that the sum of the distances SP, S¹P is independent of P. 	2
(ii) Derive the equation of the normal line to E at P.	4

QUESTION 4 Start a NEW page.	Marks
With respect to the x and y axes, the line x=1 is a directrix, and the point (2,0) a focus of a conic of eccentricity $\sqrt{2}$.	
(a) Find the equation of the conic, show that it is a rectangular hyperbola, and sketch the curve, indicating its asymptotes, foci and directrices.	4
(b) Find the equation of the normal to the curve at any point P on it.	3
The normal to the curve at P meets the x and y axes at $(X,0)$ and $(0,Y)$ respectively, and T is the point (X,Y) . Show that as P varies on the curve, T always lies on the hyperbola $x^2 - y^2 = 8$.	3
QUESTION 5 Start a NEW page. (a) P (asec θ , btan θ) lies in the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.	A.
The tangent at P meets the tangents at the ends of the major axis at Q and R. Show that QR subtends a right angle at either focus.	4
(b) Deduce that if P is the point (5, $\frac{4}{3}$) on the hyperbola	6
$\frac{x^2}{9} - y^2 = 1$ with foci S and S ¹ , then Q,R,S, S ¹ are concyclic,	
and find the equation of the circle through theses points.	
QUESTION 6 Start a NEW page	
(a) α , β , γ are non-zero and the roots of the cubic equation $x^3 + px + q = 0$. Find the equation whose roots are $\frac{\alpha}{\beta \gamma}$, $\frac{\beta}{\alpha \gamma}$, $\frac{\gamma}{\alpha \beta}$.	5
(b) (i) Show that if α is a multiple root of the polynomial f(x) = 0 then f(α) = f'(a) = 0.	1
(ii) The polynomial $\alpha x^{n+1} + \beta x^n + 1$ is divisible by $(x-1)^2$. Show that $\alpha = n$ and $\beta = -(1+n)$.	2
(iii) Prove that $1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$ has no multiple roots for any	2

 $n \ge 1$.