

GIRRAWEEN HIGH SCHOOL HALF YEARLY EXAMINATIONS 2018
 MATHEMATICS
 EXTENSION 2
 Time Allowed: Two hours
 (Plus 5 minutes reading time)
 Total Marks: 95

Instructions:

- There are 11 questions in this paper. All questions are compulsory.
- Use blue or black pen.
- Write all your answers in the Answer Booklets provided.
- For Questions $1-5$, fill in the circle corresponding to the correct answer in your answer booklet.
- For Questions 6 - 11, start each question on a new page.
- Write on both sides of the paper.
- Show all necessary working.
- Board-approved calculators may be used.
- Mathematics reference sheets are provided.
- Marks may be deducted for careless or badly arranged work.
- Write 'End of Solutions' at the conclusion of your solutions to the task.

Questions 1-5 (5 marks)
Fill in the circle corresponding to the correct answer in your answer booklet.

1 What is the value of $\frac{6}{i z}$ if $z=-1+i$?
(A) $-3-3 i$
(B) $-3+3 i$
(C) $3-3 i$
(D) $3+3 i$

2 If ω is an imaginary cube root of unity, then $\left(1+\omega-\omega^{2}\right)^{2017}$ is equal to:
(A) $-2^{2017} \omega$
(B) $\quad 2^{2017} \omega$
(C) $-2^{2017} \omega^{2}$
(D) $\quad 2^{2017} \omega^{2}$

3 The equation $24 x^{3}-12 x^{2}-6 x+1=0$ has roots α, β and γ. What is the value of α if $\alpha=\beta+\gamma$.
(A) $-\frac{1}{2}$
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) 1

4 The equations of the asymptotes of the hyperbola $9 x^{2}-4 y^{2}=36$ are:
(A) $x= \pm \frac{3}{2} y$
(B) $y= \pm \frac{3}{2} x$
(C) $x= \pm \frac{9}{4} y$
(D) $y= \pm \frac{9}{4} x$

5 The foci of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ are:
(A) $(0, \pm \sqrt{7})$
(B) $(\pm \sqrt{7}), 0)$
(C) $\left(0, \pm \frac{\sqrt{7}}{4}\right)$
(D) $\left(\pm \frac{\sqrt{7}}{4}, 0\right)$

Question 6 (28 marks)
a. Let $\omega_{1}=8-2 i$ and $\omega_{2}=-5+3 i$. Find the value of:
(i) $\omega_{1} \omega_{2}$
(ii) $\omega_{1}+\overline{\omega_{2}}$
b. Reduce the complex expression $\frac{(2-i)(8+3 i)}{3+i}$ to the form $a+i b$ where a and b are real numbers.
c. (i) Express $\sqrt{3}-i$ in modulus-argument form.
(ii) Hence evaluate $(\sqrt{3}-i)^{6}$.
d. Sketch the region defined by:
$|z-(3+i)| \leq 3$ and $\frac{\pi}{4}<\arg [z-(1+i)] \leq \frac{\pi}{2}$ are satisfied.
e. If $z=\cos \theta+i \sin \theta$
(i) Show that $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$.
(ii) Hence show that $\cos ^{4} \theta=\frac{1}{8}(\cos 4 \theta+4 \cos 2 \theta+3)$.
f. (i) Show that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.
(ii) Using the equation $8 x^{3}-6 x-1=0$ and letting $x=\cos \theta$,

$$
\begin{equation*}
\text { deduce that } \cos 3 \theta=\frac{1}{2} \text {. } \tag{2}
\end{equation*}
$$

(iii) Find the roots of $8 x^{3}-6 x-1=0$ in terms of $\cos \theta$.
(iv) Hence evaluate $\cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{4 \pi}{9}$.

Question 7 (20 marks)
a. The equation $x^{3}-4 x^{2}+5 x+2=0$ has roots α, β and γ.

Find (i) $\alpha+\beta+\gamma$
(ii) $\alpha \beta+\beta \gamma+\gamma \alpha$
(iii) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(iv) $(2+\alpha)(2+\beta)(2+\gamma)$
b. (i) Find a and b such that $x=2$ is a double root of $f(x)=x^{4}+a x^{3}+x^{2}+b$.
(ii) For the values of a and b above, factorise $f(x)$ over the real numbers.
c. Let α, β and γ be the roots of the equation $x^{3}-5 x^{2}+5=0$.
(i) Find a polynomial equation with integer coefficients whose roots are $\alpha-1, \beta-1$ and $\gamma-1$.
(ii) Find a polynomial equation with integer coefficients whose roots are α^{2}, β^{2} and γ^{2}.
(iii) Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
d. Given that $2+3 i$ is a solution to $x^{4}-6 x^{3}+26 x^{2}-46 x+65=0$
(i) State why $2-3 i$ is also a solution.
(ii) Hence, completely solve $x^{4}-6 x^{3}+26 x^{2}-46 x+65=0$

Question 8 (12 marks)
a. Point $P\left(x_{0}, y_{0}\right)$ is on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.
(i) Find the coordinates of the foci and the equations of the directrices.
(ii) Sketch the ellipse, clearly showing all important features.
(iii) Show that the equation of the tangent at P is $\frac{x x_{0}}{25}+\frac{y y_{0}}{9}=1$.
(iv) Let the tangent at P meet a directrix at a point Q.

Show that $\angle P S Q$ is a right angle, where S is the corresponding focus.
b. Describe the locus of z, stating its equation, if $|z+3|+|z-3|=10$.

Question 9 (7 marks)
Consider the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$.
(i) Sketch the graph of the hyperbola, clearly showing:

- any intercepts made with the axes
- the coordinates of the foci
- the equations of the directrices
- the equations of the asymptotes.
(ii) $T\left(x_{1}, y_{1}\right)$ is a point on the hyperbola.

The equation of the tangent to the hyperbola at T is

$$
\frac{x x_{1}}{4}-\frac{y y_{1}}{12}=1 \text { [Do not prove this]. }
$$

$P(4,6)$ and $Q(14,24)$ are two points on the hyperbola.
M is the midpoint of $P Q$ and O is the origin.
The tangents to the hyperbola at P and Q intersect at the point R.
Show that the points R, O and M are collinear.

Question 10 (15 marks)
a. $P\left(2 p, \frac{2}{p}\right)$ and $Q\left(2 q, \frac{2}{q}\right)$ are points on the rectangular hyperbola $x y=4$.
M is the midpoint of the chord $P Q . P$ and Q move on the hyperbola so that the chord $P Q$ always passes through the point $R(4,2)$.

(i) Show that the equation of the chord $P Q$ is $x+p q y=2(p+q)$.
(ii) Show that $p q=p+q-2$.
(iii) Hence find the equation of the locus of M, as P and Q move on the curve $x y=4$.
b. $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ are points on the rectangular hyperbola $x y=c^{2}$.

Tangents to the hyperbola at P and Q intersect at the point R.
(i) Show that the tangent to the rectangular hyperbola at the point $\left(c t, \frac{c}{t}\right)$ has the equation $x+t^{2} y=2 c t$.
(ii) Show that $R=\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)$
(iii) If P and Q are variable points on the rectangular hyperbola which move so that $p^{2}+q^{2}=2$, find the equation of the locus of R.

Question 11 (8 marks)
In the diagram, $P Q$ is a diameter of the circle. The chords $Q R$ and $P S$ intersect at X. The point C lies on $P Q$ such that $X C$ is perpendicular to $P Q$. The point B is the intersection of $P R$ produced and $C X$ produced.

(i) Trace or copy the diagram into your booklet and show that $\angle P B C=\angle P Q R$.
(ii) Show that SBRX is a cyclic quadrilateral.
(iii) Show that the points B, S and Q are collinear.

EXTENSION 2
MY 2018 SOLUTIONS
$M C$

$$
\text { 1. } \begin{aligned}
\frac{6}{i}=\frac{6}{i(-1+i)} & =\frac{6}{-1-i} \times \frac{-1+i}{-1+i} \\
& =\frac{6(-1+i)}{2} \\
& =-3+3 i B
\end{aligned}
$$

2.

$$
\begin{aligned}
& \left(1+\omega-\omega^{2}\right)^{2017} \\
& =\left(1+\omega+\omega^{2}-2 \omega^{2}\right)^{2017} \\
& =\left(-2 \omega^{2}\right)^{2017} \\
& =(-2)^{2017} \cdot \omega^{4034} \\
& =(-2)^{2017} \cdot \omega^{2} \cdot \omega^{3032} \\
& \left.=(-2)^{2017} \cdot \omega^{2} \cdot\left(\omega^{3}\right)^{1344}=0\right] \\
& =-2^{2017} \omega^{2} \\
& =\left[\omega^{3}=1\right]
\end{aligned}
$$

3. sim of root: $\alpha+\beta+\gamma=\frac{-(-12)}{24}=\frac{1}{2}$

$$
\begin{aligned}
\alpha+\alpha & =\frac{1}{2} \\
2 \alpha & =\frac{1}{2} \\
\alpha & =\frac{1}{4}
\end{aligned}
$$

B
4. $9 x^{2}-4 y^{2}=36$

$$
\begin{aligned}
& \frac{x^{2}}{4}-\frac{y^{2}}{9}=1 \\
& a=2, b=3
\end{aligned}
$$

Asymptotes: $y= \pm \frac{b}{a} x$

$$
y= \pm \frac{3}{2} x
$$

5. $\quad \frac{x^{2}}{9}+\frac{y^{2}}{16}=1 \quad a=3, b=4$ major axis along y-axis
Fou i (0, 土be)

$$
=(0, \pm \sqrt{7})
$$

$$
\begin{aligned}
e^{2} & =1-\frac{a^{2}}{b^{2}} \\
& =\frac{7}{16} \\
e & =\frac{\sqrt{7}}{4}
\end{aligned}
$$

Question 6
a) $\omega_{1}=8-2 i ; \omega_{2}=-5+3 i$
(i) $\omega_{1} \omega_{2}$

$$
\begin{aligned}
& =(8-2 i)(-5+3 i) \\
& =-40+24 i+10 i+6 \\
& =-34+34 i
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{(2-i)(8+3 i)}{3+i} \\
& =\frac{16+6 i-8 i+3}{3+i} \\
& =\frac{19-2 i}{3+i} \times \frac{3-i}{3-i} \\
& =\frac{55-25 i}{10} \\
& =\frac{11}{2}-\frac{5 i}{2}
\end{aligned}
$$

$$
\arg (\sqrt{3}-i)=\tan ^{-1}\left(\frac{-1}{\sqrt{3}}\right)
$$

$$
=\frac{-\pi}{6}
$$

$$
\sqrt{3}-i=2 \operatorname{cis}\left(\frac{-\pi}{6}\right)
$$

d)

$$
\begin{aligned}
& \text { e) (i) } z=\cos \theta+i \sin \theta \\
& z^{n}=\cos n \theta+i \sin n \theta \quad\left(\begin{array}{l}
\text { marne } \\
z^{-n}
\end{array}\right. \\
&=\cos (-n \theta)+i \sin (-n \theta) \\
&=\cos n \theta-i \sin n \theta \quad\left(\begin{array}{c}
\sin \text { odd } \\
\cos \text { evez }
\end{array}\right. \\
& \therefore z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \\
&(i i)\left(z+\frac{1}{z}\right)^{4}=z^{4}+4 z^{2}+6+\frac{4}{z^{2}}+\frac{1}{z^{4}} \\
&(2 \cos \theta)^{4}=\left(z^{4}+\frac{1}{z^{4}}\right)+4\left(4^{z}+\frac{1}{z^{2}}\right)+6 \\
& 16 \cos ^{4} \theta=2 \cos 4 \theta+8 \cos 2 \theta+6
\end{aligned}
$$

C)
(i) $\sqrt{3}-i$

$$
|\sqrt{3}-i|=\sqrt{3+1}=2
$$

$$
\begin{aligned}
(\sqrt{3}-i)^{6} & =\left(2 c i s-\frac{\pi}{6}\right)^{6} \\
& =64 \operatorname{cis}(-\pi) \\
& =64(\cos (-\pi)+i \sin (-\pi)) \\
& =-64
\end{aligned}
$$

f) i) $\cos 3 \theta+i \sin 3 \theta$

$$
\begin{array}{lr}
=(\cos \theta+i \sin \theta)^{3} & 16 \cos ^{4} \theta=2 \cos 4 \theta+8 \cos 2 \theta+6 \\
=\cos ^{3} \theta+3 i \sin \theta \cos ^{2} \theta-3 \cos \theta \sin ^{2} \theta & \cos ^{4} \theta=\frac{1}{8}(\cos 4 \theta+4 \cos 2 \theta+3)
\end{array}
$$

Equating veal parb,

$$
\begin{aligned}
\cos 3 \theta & =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \\
& =\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =\cos ^{3} \theta-3 \cos \theta+3 \cos ^{3} \theta \\
& =4 \cos ^{3} \theta-3 \cos \theta
\end{aligned}
$$

f(ii) $8 x^{3}-6 x-1=0$.

$$
\Rightarrow \quad 4 x^{3}-3 x=\frac{1}{2}
$$

Ct $x=\cos \theta$

$$
4 \cos ^{3} \theta-3 \cos \theta=\frac{1}{2}
$$

$$
\therefore \cos 3 \theta=\frac{1}{2}
$$

(iii) $\cos 3 \theta=\frac{1}{2}$

$$
\begin{aligned}
3 \theta & =\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3} \\
\theta & =\frac{\pi}{9}, \frac{5 \pi}{9}, \frac{7 \pi}{9} \\
\therefore x & =\cos \frac{\pi}{9}, \cos \frac{5 \pi}{4}, \cos \frac{7 \pi}{9} \\
& =\cos \frac{\pi}{9},-\cos \frac{4 \pi}{9},-\cos \frac{2 \pi}{9}
\end{aligned}
$$

iv) Product of roots:

$$
\begin{aligned}
& \left(\cos \frac{\pi}{9}\right)\left(-\cos \frac{4 \pi}{9}\right)\left(-\cos \frac{2 \pi}{9}\right)=\frac{1}{8} \\
& \therefore \cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{4 \pi}{9}=\frac{1}{8}
\end{aligned}
$$

Question 7

$$
a \cdot x^{3}-4 x^{2}+5 x+2=0
$$

1) $\alpha+\beta+\gamma=4$
ii) $\alpha \beta+\beta \gamma+\gamma \alpha=5$
iii)

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha) \\
& =4^{2}-2(5) \\
& =6
\end{aligned}
$$

iv)

$$
\begin{aligned}
& (2+\alpha)(2+\beta)(2+\gamma) \\
& =8+2(\alpha \beta+\alpha \gamma+\beta \gamma)+4(\alpha+\beta+\gamma)+\alpha \beta \gamma \\
& =8+2(5)+4(4)+(-2) \\
& =32
\end{aligned}
$$

Q7(cont)
b. (i)

$$
\begin{aligned}
& f(x)=x^{4}+a x^{3}+x^{2}+b \\
& f^{\prime}(x)=4 x^{3}+3 a x^{2}+2 x
\end{aligned}
$$

$x=2$ is a double root

$$
\therefore f(2)=0 \$ f^{\prime}(2)=0
$$

$1 e$

$$
\begin{aligned}
16+8 a+4+b & =0 \quad \& 32+12 a+4=0 \\
20+8 a+b & =0 \\
20-24+b & =0 \\
b=4 & =-36 \\
2 & =-3 \\
\therefore a & =-3, b=4
\end{aligned}
$$

ii)

$$
\begin{aligned}
f(x) & =x^{4}-3 x^{3}+x^{2}+4 \\
& =(x-2)^{2} \cdot Q(x) \\
& =(x-2)^{2}\left(x^{2}+x+1\right)
\end{aligned}
$$

c. $x^{3}-5 x^{2}+5=0$
i) Let $y=x-1 \Rightarrow x=y+1$

E: $(y+1)^{3}-5(y+1)^{2}+5=0$

$$
y_{3}^{3}-2 y_{2}^{2}-7 y+1=0
$$

$$
x^{3}-2 x^{2}-7 x+1=0
$$

iii Let $y=x^{2} \Rightarrow x=\sqrt{y}$

$$
\begin{aligned}
& E: \quad(\sqrt{y})^{3}-5(\sqrt{y})^{2}+5=0 \\
& y \sqrt{y}-5 y+5=0 \\
& y \sqrt{y}=5 y-5 \quad \text { squaring Both sides } \\
& y^{3}=25 y^{2}-50 y+25 \\
& y^{3}-25 y^{2}+50 y-25=0
\end{aligned}
$$

(OR) $x^{3}-25 x^{2}+50 x-25=0$
iii) If $\alpha, \beta \neq \gamma$ are roots $\gamma x^{3}-5 x^{2}+5=0$, then

$$
\begin{align*}
& \alpha^{3}-5 \alpha^{2}+5=0 \tag{1}\\
& \beta^{3}-5 \beta^{2}+5=0 \\
& \gamma^{3}-5 \gamma^{2}+5=0 \tag{3}
\end{align*}
$$

Adding
(1) (2)

$$
\begin{aligned}
& \gamma^{3}-5 \gamma^{2}+5=0 \\
& \alpha^{3}+\beta^{3}+\gamma^{3}-5\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+15=0 \\
& \alpha^{3}+\beta^{3}+\gamma^{3}=5\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-15 \quad\left[\begin{array} { l }
{ \text { sum of rood } } \\
{ \text { from (ii) } } \\
{ } \\
{ } \\
{ = } \\
{ } \\
{ } \\
{ = 1 1 0 }
\end{array} \quad \left[\alpha^{2}+\beta^{2}+\gamma^{2}=25\right.\right.
\end{aligned}
$$

Q7 (cont)
d. $\quad x^{4}-6 x^{3}+26 x^{2}-46 x+65=0$
i) Pdynomials with real coefficients have conoplex roots in conjugate pairs
$\therefore 2-3 i$ i also a solution.
ii) $2+3 i, 2-3 i$

Let $z=2+3 i$

$$
\begin{aligned}
\bar{z} & =2-3 i \\
z+\bar{z} & =4 ; z \bar{z}=13
\end{aligned}
$$

$$
\begin{aligned}
\therefore(x-z)(x-\bar{z}) & =x^{2}-(z+\bar{z}) x+z \bar{z} \\
& =x^{2}-4 x+13
\end{aligned}
$$

$$
\begin{array}{r}
x ^ { 2 } - 4 x + 1 3 \longdiv { x ^ { 2 } - 2 x + 5 } \\
-\frac{x^{4}-4 x^{3}+26 x^{2}-46 x+65}{-2 x^{3}+13 x^{2}-46 x} \\
\frac{-2 x^{3}+8 x^{2}-26 x}{5 x^{2}-20 x+65} \\
-5 x^{2}-20 x+65
\end{array}
$$

$$
\begin{aligned}
x^{2}-2 x+5 & =0 \\
x^{2}-2 x^{+1} & =-5^{+1} \\
(x-1)^{2} & =-4 \\
x-1 & = \pm \sqrt{4 i^{2}} \\
x-1 & = \pm 2 i \\
x & =1+2 i
\end{aligned}
$$

\therefore Roots $: 2+3 i, 2-3 i, 1+2 i, 1-2 i$

Question 8

$$
\begin{aligned}
& \text { i) } P\left(x_{0}, y_{0}\right) ; \frac{x^{2}}{25}+\frac{y^{2}}{9}=1 \\
& a=5, b=3 \\
& b^{2}=a^{2}\left(1-e^{2}\right) \\
& 9=25\left(1-e^{2}\right) \\
& e=\frac{4}{5}
\end{aligned}
$$

Foci: (tale, 0) Directuces:

$$
=(\pm 4,0)
$$

$$
\begin{aligned}
& x= \pm \frac{a}{e} \\
& x= \pm \frac{25}{4}
\end{aligned}
$$

iii) $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

By implicit differentiation,

$$
\begin{array}{r}
\frac{2 x}{25}+\frac{2 y}{9} \frac{d y}{d x}=0 \\
\frac{d y}{d x}=\frac{-9 x}{25 y}
\end{array}
$$

At $P\left(x_{0}, y_{0}\right), m_{\text {tangent }}=\frac{-9 x_{0}}{-25 y_{0}}$

$$
E_{\text {tangent }}: \quad y-y_{0}=\frac{-9 x_{0}}{25 y_{0}}\left(x-x_{0}\right) .
$$

$$
\begin{aligned}
& 25 y_{0} y-25 y_{0}^{2}=-9 x_{0} x+9 x_{0}^{-2} \\
& 9 x_{0} x+25 y_{0} y=9 x_{0}^{2}+25 y_{0}^{2} \\
& (\div 225) \\
& \frac{x x_{0}}{25}+\frac{y y_{0}}{9}=\frac{x_{0}^{2}}{25}+\frac{y_{0}^{2}}{9} \\
& \therefore E_{\text {tangent }}: \frac{x x_{0}}{25}+\frac{y y_{0}}{9}=1 \\
& \text { (Since } \mathrm{O}_{0}, y_{0} \text {) hes on } \\
& \frac{\mathcal{H}_{0}^{2}}{25}+\frac{y_{0}^{2}}{9}=1
\end{aligned}
$$

Q8 cont
iv) Q on directrix in $x=\frac{25}{4}$

Q lies on tangent

$$
\begin{aligned}
& \therefore \frac{\frac{25}{4} x_{0}}{25}+\frac{y y_{0}}{9}=1 \\
& \frac{y y_{0}}{9}=1-\frac{x_{0}}{4} \\
& \frac{y_{0}}{9}=\frac{\frac{4-x_{0}}{4}}{y}=\frac{9\left(4-x_{0}\right)}{4 y_{0}} \\
& \therefore Q\left(\frac{25}{4}, \frac{9\left(4-x_{0}\right)}{4 y_{0}}\right) \\
& m_{Q S}= \\
& \frac{\frac{9\left(4-x_{0}\right)}{4 y_{0}}-0}{\frac{25}{4}-4} \\
& =\frac{4-x_{0}}{y_{0}}=\frac{y_{0}-0}{x_{0}-4} \\
& m
\end{aligned}
$$

$\therefore \quad<P S$ is a right angle.
b. i) The equation $|z+3|+|z-3|=10$ describes a point z moving in the complex plane such that the sum of its distances to the points $(3,0)$ \& $(-3,0)$ in a constant (10)

$$
2 a=10 \Rightarrow a=5
$$ ie. an ellipse

Foci $s(3,0), s^{\prime}(-3,0)$

$$
a e=3 \quad \therefore e=\frac{3}{5} \quad ; b^{2}=5^{2}\left(1-\left(\frac{3}{5}\right)^{2}\right)
$$

Equation $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$

Question 9

$$
\frac{x^{2}}{4}-\frac{y^{2}}{12}=1
$$

(i)

$$
\begin{aligned}
& a^{2}=4, \quad b^{2}=12 \\
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& e^{2}=4 \\
& e=2
\end{aligned}
$$

Foci: (\pm ace, 0)

$$
=(\pm 4,0)
$$

Directrice: $x= \pm \frac{a}{e}$

$$
x= \pm 1
$$

Asymptotes: $y= \pm \frac{b}{a} x$

$$
\begin{aligned}
& = \pm \frac{\sqrt{12}}{\sqrt{4}} x \\
y & = \pm \sqrt{3} x
\end{aligned}
$$

ii) $P(4,6) ; Q(14,24)$

$$
\therefore M_{P Q}=(9,15)
$$

Tangent at $p: \frac{4 x}{4}-\frac{6 y}{12}=1$

$$
\begin{aligned}
& x-\frac{y}{2}=1 \\
& 2 x-y=2
\end{aligned}
$$

Tangentat $Q: \frac{14 x}{4}-\frac{24 y}{12}=1$

$$
\begin{aligned}
& \frac{7 x}{2}-2 y=1 \\
& 7 x-4 y=2
\end{aligned}
$$

Tangents in tersect at R Solving (1) \& 2 simultaneoosly,

$$
\begin{align*}
& 2 x-y=2 \\
& 7 x-4 y=2 \tag{2}\\
& 8 x-4 y=8 \tag{3}
\end{align*}
$$

(3) - (1)
$\begin{aligned} & 2(6)-y=2 \\ & y=10 \\ & \therefore R(6,10) \\ & \text { Gradient of OM }=\frac{15}{9}=\frac{5}{3} \\ & \text { Gradient of OR }=\frac{10}{6}=\frac{5}{3} \\ & \therefore R, O \text { and } M \text { are collineiar. }\end{aligned}$

$$
2(6)-y=2
$$

$$
y=10
$$

$$
\therefore R(6,10)
$$

Question 10
a. $P\left(2 p,-\frac{2}{p}\right), Q\left(2 q, \frac{2}{q}\right), x y=4$
i)

$$
\begin{aligned}
m_{p-p} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{\frac{2}{q}-\frac{2}{p}}{2 q-2 p} \\
& =\frac{2 p-2 q}{p q} \\
& =-\frac{1}{p q}
\end{aligned}
$$

$$
\begin{array}{r}
E_{p Q}: y-\frac{2}{p}=-\frac{1}{p q}(x-2 p) \\
p q y-2 q=-x+2 p \\
x+p q y=2(p+q)
\end{array}
$$

ii) P_{Q} passes through $R(4,2)$

$$
\begin{aligned}
\therefore 4+p q(2) & =2(p+q) \\
2(2+p q) & =2(p+q) \\
2+p q & =p+q \\
p q & =p+q=2
\end{aligned}
$$

iii) M is the midpoint of $P Q$

$$
\begin{aligned}
& \therefore M=\left(p+q, \frac{p+q}{p q}\right) \\
& x=p+q \quad ; \quad y=\frac{p+q}{p q} \\
& \therefore y=\frac{x}{p q} \\
&=\frac{x}{p+q-2} \quad(\text { from ii) }) \\
&(x=p+q)
\end{aligned}
$$

$$
y=\frac{x}{x-2} \text { is the locus of } M \text {. }
$$

Q10 $\left(\operatorname{con}^{2} t\right)$
b. $p\left(c p, \frac{c}{p}\right) ; Q\left(c q, \frac{c}{q}\right) ; x y=c^{2}$
i) At $\left(c t, \frac{c}{t}\right)$

$$
y=\frac{c^{2}}{x}=c^{2} x^{-1}
$$

$$
\begin{aligned}
m_{\text {tangent }} & =\frac{-c^{2}}{c^{2} t^{2}} \\
& =-\frac{1}{t^{2}}
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{-c^{2}}{x^{2}}
$$

$E_{\text {tangent }}: y-\frac{c}{t}=\frac{-\ddot{i}}{t^{2}}(x-c t)$

$$
\begin{gather*}
y t^{2}-c t=-x+c t \\
\therefore \quad x+t^{2} y=2 c t \tag{1}
\end{gather*}
$$

ii) $E_{\text {tangent at } p} \therefore x+p^{2} y=2 c p$
$E_{\text {tangent } a t \varphi: \quad x+q^{2} y=2 c q, ~}$
Tangents at P and Q in erect where

$$
\begin{aligned}
&\left(p^{2}-q^{2}\right) y=2 c(p-q) \\
&(p-q)(p+q) y=2 c(p-q) \\
& y=\frac{2 c}{p+q}
\end{aligned}
$$

substituig into (1)

$$
\begin{aligned}
x+p^{2}\left(\frac{2 c}{p+q}\right) & =2 c p \\
x(p+q)+2 c p^{2} & =2 c p(p+q) \\
x(p+q)+2 c p^{2} & =2 c p^{2}+2 c p q \\
x(p+q) & =2 c p q \\
x & =\frac{2 c p q}{p+q} \\
\therefore X=\frac{2 c p q}{p+q} ; Y & =\frac{2 c}{p+q} \quad(p \neq q)
\end{aligned}
$$

Q10 cont
iii)

$$
\begin{aligned}
& p^{2}+q^{2}=(p+q)^{2}-2 p q \\
& \left(p^{2}+q^{2}=2\right) \\
& \therefore(p+q)^{2}=2+2 p q \\
& (p+q)^{2}=2(1+p q)
\end{aligned}
$$

At R

$$
\begin{array}{ll}
X=\frac{2 c p q}{p+q} & , Y=\frac{2 c}{p+q} \\
p q=\frac{X(p+q)}{2 c} &
\end{array}
$$

\therefore the locus of R has equation

$$
\begin{aligned}
\left(\frac{2 c}{y}\right)^{2} & =2\left(1+\frac{x}{y}\right) \\
\frac{4 c^{2}}{y^{2}} & =2\left(1+\frac{x}{y}\right) \\
2 c^{2} & =y^{2}\left(1+\frac{x}{y}\right) \\
2 c^{2} & =y^{2}+x y \\
\text { or } y^{2} & +x y=2 c^{2}
\end{aligned}
$$

Question 11 (8 marks)

i) In $\triangle S B C P$ and " $P R Q$,

$$
\angle P R Q=90^{\circ}(<\text { in a semi-circle) }
$$

$\angle B P C$ is common
$\therefore \triangle B \angle P \| \triangle Q R P$ (equiangular)

$$
\therefore \angle P B C=\angle P Q R(\text { matching s } \angle s \text { in }\| \| \Delta s)
$$

ii) Join $S R$
$\angle R S P=\angle R Q P(\angle S$ at the circumference standing on same arc RP) $\angle R B C=\angle R S P$ (both equal to $\angle R Q P$)
$\therefore S B R X$ is a cyclic quadrilateral (Interval $R X$ subtends equal $\angle S$ on same side)
iii) Join $B S$ and $S Q$
$\angle P S Q=90^{\circ}$ (\angle in a semi-curde)
$\angle P R X=\angle B S \times$ (exterior \angle of cyclic quadrilateral $=$ interior opposite \leq)
Since $\angle P R X=90^{\circ}, \quad \angle B S X=90^{\circ}$

$$
\begin{aligned}
\angle B S Q & =\angle B S X+\angle X S Q \\
& =90^{\circ}+90^{\circ} \\
& =180^{\circ}
\end{aligned}
$$

$\therefore \angle B S Q$ is a straight \angle and B, S and Q are collinear.

