

GOSFORD HIGH SCHOOL

2006

YEAR 12 HALF YEARLY HIGHER SCHOOL CERTIFICATE

MATHEMATICS EXTENSION 2

General Instructions:

- Reading time 5minutes
 Working time 3 hours

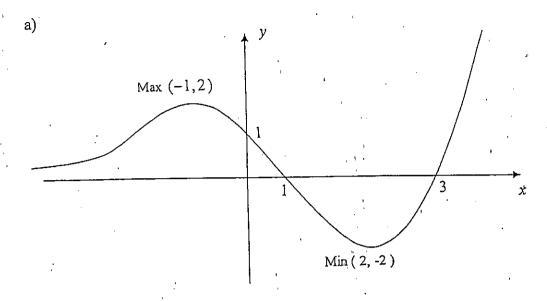
- Write using black or blue pen.Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question.

Total marks: - 105

• Attempt Questions 1 -7

• All questions are of equal value.

Question 1.



The graph above shows the curve y = f(x). Without the use of calculus sketch the following curves on the answer sheet provided. Show any intercepts, asymptotes, end points and turning points.

$$i) y = |f(x)|$$

$$ii) y = \frac{1}{f(x)}$$

iii)
$$y = \sqrt{f(x)}$$

$$iv) y = \ln f(x)$$
 2.

$$y = f(2x) 2.$$

$$vi) |y| = f(x)$$

b) By using implicit differentiation show that the equation of the normal to the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a and b constants) at the point $(a\cos\theta, b\sin\theta)$ is given by $\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2$.

Question 2.

a) i) Find
$$\int \frac{5}{(x+3)(2x+1)} dx.$$

2.

ii) Find
$$\int x \cos x \ dx$$
.

2.

b) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate
$$\int_0^{\frac{\pi}{2}} \frac{2}{5 + 3\cos x} dx$$
.

2.

c) i) Use the substitution
$$u = \frac{\pi}{4} - x$$
 to show that

$$\int_{0}^{\frac{\pi}{4}} \ln(1+\tan x) dx = \int_{0}^{\frac{\pi}{4}} \ln\left[\frac{2}{1+\tan x}\right] dx$$

3.

ii) Hence find the exact value of
$$\int_0^{\frac{\pi}{4}} \ln(1 + \tan x) dx$$

2.

d) i) If
$$I_n = \int_1^e x^3 (\ln x)^n dx$$
 for $n = 0, 1, 2, ...$
show that $I_n = \frac{e^4}{4} - \frac{n}{4} I_{n-1}$ for $n = 1, 2, 3, ...$

2.

ii) Hence find the value of
$$\int_{1}^{e} x^{3} (\ln x)^{2} dx$$

2.

Question 3.

- a) If $Z = \frac{4+3i}{1-2i}$ determine
 - i) |Z|
- ii) Re(Z)
- iii) $Z.\overline{Z}$
- iv) $\arg Z$
- b) i) Solve $z^5 1 = 0$. Show that the roots form the vertices of a regular pentagon in the argand plane.
 - ii) Hence prove that $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} + \frac{1}{2} = 0$
- c) i) Express 1+i in modulus argument form.

1.

2.

3.

- ii) Given that $(1+i)^n = x+iy$ where x and y are real and n is an integer, prove that $x^2 + y^2 = 2^n$.
- d) Represent the locus on an Argand diagram for which the inequality $2|z-i| \le |z-\overline{z}|$ is satisfied.

Question 4.

a) Factorise $x^4 + 3x^2 + 2$ over the complex field.

- 2.
- b) The roots of the polynomial equation $2x^3 8x^2 + 3x + 5 = 0$ are α, β, γ .
- i) Find the polynomial equation with roots $\alpha^2, \beta^2, \gamma^2$.
- 2.

ii) Find the value of $\alpha^2 + \beta^2 + \gamma^2$

- 2.
- c) i) If α is a multiple root of the polynomial equation P(x) = 0, prove that $P'(\alpha) = 0$.
- 2.
- ii) The polynomial equation $Q(x) = x^4 + 2x^3 ax^2 + bx + 12$ has a double root at x = -2. Find the values of a and b.
- 2.
- d) i) Show that if $z = (\cos \theta + i \sin \theta)$ then $z^n + z^{-n} = 2 \cos n\theta$.
- 2.

ii) Hence or otherwise solve $z^4 + 2z^3 + 3z^2 + 2z + 1 = 0$.

3.

Question 5.

- a) By taking slices perpendicular to the axis of rotation use the method of slicing to find the volume of the solid obtained by rotating the region bounded by the curve $y = x^2$, the x axis and the line x = 1 through one complete revolution about the line y = 1.
- b) i) Sketch the curve $y = \sin^{-1} x$, for $-1 \le x \le 1$

3.

3.

- ii) By taking slices perpendicular to the axis of rotation use the method of slicing to find the volume of the solid generated by rotating the region bounded by the curve $y = \sin^{-1} x$, the 'x' axis and the ordinate x = 1 about the 'y' axis.
- c) Find $\int \frac{dx}{\sqrt{9+16x-4x^2}}$ 3.
- d) i) Show that $\int_{-a}^{a} f(x).dx = \int_{0}^{a} \{f(x) + f(-x)\}dx$.
 - ii) Hence deduce that $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^x}{1 + e^x} \sin^2 x dx = \frac{\pi}{4}$ 3.

Question 6.

a)If
$$y = \frac{1}{2}(e^x - e^{-x})$$

i) show that
$$x = \log_e y + \sqrt{y^2 + 1}$$

ii) Show that
$$\left(\frac{dy}{dx}\right)^2 - y^2 = 1$$

b) Let
$$z = \cos \theta + i \sin \theta$$

(i) Show that
$$z^n - z^{-n} = 2i \sin n\theta$$

(ii) Expand
$$(z - z^{-1})^3$$

(iii) Hence show that
$$\sin^3 \theta = \frac{1}{4} (3 \sin \theta - \sin 3\theta)$$

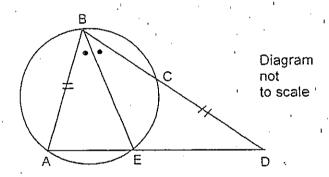
(iv) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \sin^3 \theta . d\theta$$

Question 7.

a) Prove by mathematical induction that for every positive integer n $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$ is an integer. (You may use the expansion $(A+B)^5 = A^5 + 5A^4B + 10A^3B^2 + 10A^2B^3 + 5AB^4 + B^5$)

a) Sketch (without using calculus) the curve $y = \frac{x+1}{x^2 + 2x}$ showing all asymptotes.

c)



In the diagram BE bisects $\angle ABD$, and CD = AB

- i) Prove that triangle CED is congruent to triangle BAE.
- ii) Prove that $\angle BEA = 2 \times \angle EDB$ 2.
- d) If ω is one of the non-real cube roots of unity find the value of $(2-\omega)(2-\omega^2)(2-\omega^4)(2-\omega^5)$.