HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS

2005

YEAR 12

ASSESSMENT TASK 2

HALF YEARLY EXAMINATION

MATHEMATICS

Examiners ~ S. Gee, P. Bizco, H. Cavanagh, S. Faulds, R. Yen

General Instructions

- Reading Time - 5 minutes.
- Working Time -2 hours.
- Attempt all questions.
- Questions are of equal value.
- All necessary working should be shown in every question.
- This paper contains ten (10) questions.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators and MathAids may be used.
- Each question is to be started in a new answer booklet.
- This examination paper must NOT be removed from the examination room
\qquad
Teacher: \qquad

QUESTION ONE 8 marks Start a SEPARATE booklet
(a) Find the value of $\sqrt{\frac{19}{4 \pi}}$ correct to 2 decimal places
(b) Simplify $\frac{m+3}{2}-\frac{m+2}{3}$
(c) Factorise $3 k^{2}-8 k-3$
(d) A 2.5% increase in the annual Council rates increased the charge by $\$ 28$.

What was the original charge?
(e) Factorise $a^{3}-27$

2

QUESTION TWO. 8 marks Start a NEW booklet.
(a) Solve the following equation for $0^{\circ} \leq \theta \leq 360^{\circ}$:

$$
\sqrt{3} \tan \theta=-1
$$

(b) Prove the identity:

$$
5-5 \sin ^{2} \theta \equiv 5 \cos ^{2} \theta
$$

(c) A ship is travelling due west at 20 knots.

From a point A, a lighthouse is sighted on a bearing of 300°.
Two hours later, at point B , the lighthouse can be seen on a bearing of 345°.
(i) Draw a neat diagram which illustrates the information given above.
(ii) How far is the point B from the lighthouse?

Give your answer to the nearest nautical mile.

QUESTION THREE. 8 marks Start a NEW booklet.

In the diagram, $O A B C$ is a trapezium with $O A \| C B$. The coordinates of O, A and B are $(0,0),(-1,1)$ and $(4,6)$ respectively.
(a) Calculate the length of $O A$.
(b) Write down the gradient of the line $O A$.
(c) Find the equation of the line $B C$.
(d) Find the coordinates of C.
(e) Show that the perpendicular distance from O to the line $B C$ is $5 \sqrt{2}$.
(f) Hence, or otherwise, calculate the area of the trapezium $O A B C$.

QUESTION FOUR. 8 marks Start a NEW booklet.
Consider the curve given by $y=\frac{1}{4} x^{4}-x^{3}$.
(a) Find any turning points and determine their nature.
(b) Find any points of inflexion.
(c) Sketch the curve for $-1 \leq x \leq 4$.
(d) For what values of x is the curve concave down?
(a)

$\angle \mathrm{DAB}=\angle \mathrm{CBD}$
(NOT TO SCALE)
(i) Prove triangles ABD and BDC are similar.
(ii) Find the length of CD.
(iii) Prove that AB and CD are parallel.
(b)

$$
\mathrm{AB}=\mathrm{BC}=\mathrm{CD} ; \quad \angle \mathrm{BDC}=x^{o}
$$

(i) Prove that $\angle \mathrm{CAB}=2 x^{\circ}$
(ii) If $\angle \mathrm{ABD}=120^{\circ}$, find the value of x.

QUESTION SIX 8 marks Start a SEPARATE booklet

(a) Three consecutive terms of a sequence are $2 x+5, \mathrm{~T}_{2}$ and $8 x+19$. Find T_{2} in terms of x if the sequence is to be arithmetic.
(b) For the sequence $3, \frac{11}{2}, 8, \ldots$ find:
(i) the 37th term
(ii) the sum of 37 terms.
(c) Does the sequence $\frac{3}{4}, 1, \frac{4}{3}, \ldots$ have a limiting sum?

Explain your answer, stating S_{∞} if it exists.

QUESTION SEVEN 8 marks Start a SEPARATE booklet

(a) Show the equation of a parabola is $x^{2}-2 x-2 y-13=0$ is also given by $(x-1)^{2}=2(y+7)$.

1

Find:
(i) the coordinates of its vertex
(ii) the focal length 1
(iii) the equation of its directrix

1
(b) $\quad A(1,0)$ and $B(4,0)$ are points on the number plane.

The point $P(x, y)$ moves such that the length of $P B$ is twice the length of $P A$.
(i) Write a formula for the length of $P B$.
(ii) Prove that the locus of P is a circle and determine its centre and radius.

QUESTION EIGHT 8 marks Start a SEPARATE booklet

(a) If $2 x^{2}-7 x+4=a(x+2)^{2}+b(x+2)+c$ for all values of x, find a, b and c.
(b) Find all values of k for which the quadratic equation $x^{2}+(k-3) x+k=0$ has real roots
(c) Find all real numbers x which satisfy the equation $x^{4}=4\left(x^{2}+8\right)$
(a) For the function $y=x+\frac{900}{x}$
(i) Find $\frac{d y}{d x}$
(ii) Show that y has a relative minimum value of 60 .
(b) In the triangle $\mathrm{ABC}, \mathrm{AB}=20 \mathrm{~m}, \mathrm{BC}=15 \mathrm{~m}$ and angle $\mathrm{ABC}=90^{\circ} . \mathrm{BPQR}$ is a rectangle inscribed in ABC , as shown, with $\mathrm{PQ}=x$ metres.

(i) Prove that $\triangle \mathrm{APQ}\|\| \Delta \mathrm{ABC}$
(ii) Find the length of AP in terms of x and hence show that the area of the rectangle BPQR is given by $x\left(20-\frac{4 x}{3}\right) \mathrm{m}^{2}$
(iii) Hence find the maximum possible area of the rectangle BPQR

QUESTION TEN 8 marks Start a SEPARATE booklet

(a) Find the primitive of $x^{2}+2 x-3$.
(b) Expand and simplify $\left(x^{2}+2\right)^{2}$.

Hence find the primitive of $\left(x^{2}+2\right)^{2}$.
(c) The curve $y=f(x)$ has a gradient function

$$
\frac{d y}{d x}=3 x^{2}-2 x+1
$$

If the curve passes through the point $\mathrm{Q}(2,3)$, find its equation.
(d) Find the domain for which $y=\frac{1}{x^{2}+1}$ is a decreasing function.

