HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS

2005

YEAR 12

ASSESSMENT TASK 2

HALF YEARLY EXAMINATION

MATHEMATICS

EXAMINERS ~ S. GEE, P. BIZCO, H. CAVANAGH, S. FAULDS, R. YEN

GENERAL INSTRUCTIONS

- Reading Time 5 minutes.
- Working Time 2 hours.
- Attempt **all** questions.
- Questions are of equal value.
- All necessary working should be shown in every question.
- This paper contains ten (10) questions.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators and MathAids may be used.
- Each question is to be started in a new answer booklet.
- This examination paper must **NOT** be removed from the examination room

STUDENT NAME: _____

TEACHER:_____

QUE	ESTION ONE 8 marks Start a SEPARATE booklet	Marks
(a)	Find the value of $\sqrt{\frac{19}{4\pi}}$ correct to 2 decimal places	1
(b)	Simplify $\frac{m+3}{2} - \frac{m+2}{3}$	2
(c)	Factorise $3k^2 - 8k - 3$	2
(d)	A 2.5% increase in the annual Council rates increased the charge by \$28. What was the <i>original</i> charge?	1
(e)	Factorise $a^3 - 27$	2
QUE	ESTION TWO. 8 marks Start a NEW booklet.	
(a)	Solve the following equation for $0^\circ \le \theta \le 360^\circ$:	
	$\sqrt{3} \tan \theta = -1$	3
(b)	Prove the identity: $5 - 5\sin^2 \theta = 5\cos^2 \theta$	2
(c)	A ship is travelling due west at 20 knots. From a point A, a lighthouse is sighted on a bearing of 300°. Two hours later, at point B, the lighthouse can be seen on a bearing of 345°.	
	(i) Draw a neat diagram which illustrates the information given above.	1
	(ii) How far is the point B from the lighthouse? Give your answer to the nearest nautical mile.	2

In the diagram, *OABC* is a trapezium with *OA* \parallel *CB*. The coordinates of *O*, *A* and *B* are (0, 0), (-1, 1) and (4, 6) respectively.

(a)	Calculate the length of OA.	1
(b)	Write down the gradient of the line OA.	1
(c)	Find the equation of the line <i>BC</i> .	1
(d)	Find the coordinates of <i>C</i> .	1
(e)	Show that the perpendicular distance from <i>O</i> to the line <i>BC</i> is $5\sqrt{2}$.	2
(f)	Hence, or otherwise, calculate the area of the trapezium OABC.	2
QUES	TION FOUR. 8 marks Start a NEW booklet. Consider the curve given by $y = \frac{1}{4}x^4 - x^3$.	
(a)	Find any turning points and determine their nature.	3
(b)	Find any points of inflexion.	2
(c)	Sketch the curve for $-1 \le x \le 4$.	1
(d)	For what values of <i>x</i> is the curve concave down?	2

Prove that AB and CD are parallel. (iii)

(b)

(i)	Prove that $\angle CAB = 2x^o$	2

If $\angle ABD = 120^\circ$, find the value of *x*. (ii)

2

1

1

2

QUE	STION SIX 8 marks Start a SEPARATE booklet	Marks
(a)	Three consecutive terms of a sequence are $2x + 5$, T ₂ and $8x + 19$. Find T ₂ in terms of <i>x</i> if the sequence is to be arithmetic.	2
(b)	For the sequence 3, $\frac{11}{2}$, 8, find:	
	(i) the 37th term	2
	(ii) the sum of 37 terms.	2
(c)	Does the sequence $\frac{3}{4}$, 1, $\frac{4}{3}$, have a limiting sum? Explain your answer, stating S_{∞} if it exists.	2
QUE	CSTION SEVEN 8 marks Start a SEPARATE booklet	
(a)	Show the equation of a parabola is $x^2 - 2x - 2y - 13 = 0$ is also given by $(x-1)^2 = 2(y+7)$.	1
	Find:	
	(i) the coordinates of its vertex	1
	(ii) the focal length	1
	(iii) the equation of its directrix	1
(b)	A(1, 0) and $B(4, 0)$ are points on the number plane. The point $P(x, y)$ moves such that the length of <i>PB</i> is twice the length of <i>PA</i> .	
	(i) Write a formula for the length of <i>PB</i> .	1
	(ii) Prove that the locus of P is a circle and determine its centre and radius.	3
QUE	STION EIGHT 8 marks Start a SEPARATE booklet	
(a)	If $2x^2 - 7x + 4 = a(x+2)^2 + b(x+2) + c$ for all values of <i>x</i> , find <i>a</i> , <i>b</i> and <i>c</i> .	2
(b)	Find all values of k for which the quadratic equation $x^2 + (k-3)x + k = 0$ has real roots	3
(c)	Find all real numbers x which satisfy the equation $x^4 = 4(x^2 + 8)$	3

(a)

- For the function $y = x + \frac{900}{x}$ (i) Find $\frac{dy}{dx}$ 1
 - (ii) Show that y has a relative minimum value of 60.
- (b) In the triangle ABC, AB = 20m, BC = 15m and angle $ABC = 90^{\circ}$. BPQR is a rectangle inscribed in ABC, as shown, with PQ = x metres.

(i)	Prove that $\triangle APQ \parallel \mid \triangle ABC$	1
(ii)	Find the length of AP in terms of x and hence show that the area of the	2
	rectangle BPQR is given by $x(20-\frac{4x}{3})$ m ²	

If the curve passes through the point Q(2,3), find its equation.

(d) Find the domain for which $y = \frac{1}{x^2 + 1}$ is a decreasing function. 2

2