HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS - EXTENSION 2 2006

YEAR 12

HALF YEARLY EXAMINATION

Examiners ~ Z Pethers, G Rawson
General Instructions

- Reading Time -5 minutes.
- Working Time -2 HOURS.
- Attempt all questions.
- All necessary working should be shown in every question.
- This paper contains five (5) questions.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators may be used.
- Each question is to be started in a new booklet.
- This examination paper must NOT be removed from the examination room.

Student Name: \qquad
TEACHER: \qquad

Question 1 (15 marks) Start a NEW answer booklet
Marks
(a) Find all pairs of integers x and y that satisfy $(x+i y)^{2}=33+56 i$
(b) (i) Let $z=\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}$. Find z^{8}.
(ii) Plot on the Argand diagram, all complex numbers that are solutions of $z^{8}=-1$.
(c) Find all the roots of the equation $5 z^{3}-31 z^{2}+56 z-10=0$, given that $(3+i)$ is one of the roots.
(d) (i) If $z_{1}=2+4 i$, sketch the locus of
(α) $\left|z-z_{1}\right|=3$
(β) $\arg \left(z-z_{1}\right)=\frac{\pi}{4}$
(ii) Find the area specified by $\left|z-z_{1}\right| \leq 3$ and $\arg \left(z-z_{1}\right) \leq \frac{\pi}{4}$
(iii) If $\left|z-z_{1}\right|=3$, find the greatest value of $|z-7|$.

Question 2 (15 marks) Start a NEW answer booklet
Marks
(a) (i) Suppose the polynomial $P(x)$ has a double root at $x=\alpha$.

Prove that $P^{\prime}(x)$ also has a root at $x=\alpha$.
(ii) The polynomial $P(x)=x^{4}+a x^{3}+b x+21$ has a double root at $x=1$.

Find the values of a and b.
(iii) Factorise the polynomial $P(x)=x^{4}+a x^{3}+b x+21$ over the real numbers.
(b) If $\frac{2 x+31}{(x-1)^{3}(x+2)}=\frac{a}{(x-1)}+\frac{b}{(x-1)^{2}}+\frac{c}{(x-1)^{3}}+\frac{d}{(x+2)}$, find the values of a, b, c, d.
(c) The equation $x^{4}+3 x^{3}+5 x^{2}-7 x+2=0$ has roots $\alpha, \beta, \gamma, \delta$.

Find the equation with roots $\alpha^{2}, \beta^{2}, \gamma^{2}, \delta^{2}$.
(d) The equation $x^{3}-4 x^{2}+5 x+2=0$ has roots α, β, γ.

Find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.

Question 3 (15 marks) Start a NEW answer booklet

Consider the hyperbola: $x^{2}-3 y^{2}=6$.
(a) Find the eccentricity of the hyperbola.
(b) Find the coordinates of the foci and the equations of the directrices and asymptotes
of the hyperbola.

3
(c) Sketch the graph of the hyperbola showing clearly all of the above features and the intercepts on the coordinate axes.
(d) Use differentiation to derive the equations of the tangent and normal to the hyperbola at the point $P(3,-1)$.
(e) The tangent meets the transverse axis in M and normal meets the conjugate axis in N . Find the distance $M N$.
(f) Determine the angle between the asymptotes.
(g) Find the equations of the tangents to $x^{2}-3 y^{2}=6$ which are parallel to the line $2 x-y=7$.

Marks

Question 4 (15 marks) Start a NEW answer booklet
(a) (i) Find the equation of the ellipse with parametric equations $x=2 \cos \theta$ and $y=\sin \theta$.

2
(b) Using differentiation, find the equation of the normal to the curve whose parametric equations are $x=2 \sec \theta$ and $y=3 \tan \theta$ at the point P where $\theta=\frac{\pi}{3}$.
(c) Prove that the condition for the line $y=m x+c$ to be a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $c^{2}=a^{2} m^{2}+b^{2}$.
(d) $P(a \cos \theta, b \sin \theta)$ lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with centre O.

$O P$ produced meets a directrix in M, and the perpendicular from the corresponding focus onto $O M$ meets the same directrix in N. If R is the foot of the directrix, prove that the product of $R M$ and $R N$ is independent of the position of P.

Question 5 (15 marks) Start a NEW answer booklet
(a) Consider the polymonial equation $x^{4}+a x^{3}+b x^{2}+c x+d=0$, where a, b, c, and d are all integers. Suppose the equation has a root of the form $k i$, where k is real, and $k \neq 0$.
(i) State why the conjugate $-k i$ is also a root.
(ii) Show that $c=k^{2} a$.
(iii) Show that $c^{2}+a^{2} d=a b c$.
(iv) If 2 is also a root of the equation, and $b=0$, show that c is even.
(b) Let $\rho=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}$.

The complex number $\alpha=\rho+\rho^{2}+\rho^{4}$ is a root of the quadratic equation $x^{2}+a x+b=0$, where a and b are real.
(i) Prove that $1+\rho+\rho^{2}+\ldots \rho^{6}=0$.
(ii) The second root of the quadratic equation is β. Express β in terms of positive powers of ρ. Justify your answer.
(iii) Find the values of the coefficients of a and b.
(iv) Deduce that $-\sin \frac{\pi}{7}+\sin \frac{2 \pi}{7}+\sin \frac{3 \pi}{7}=\frac{\sqrt{7}}{2}$.

E3 uses the relationship between algebraic and geometric representations of conic sections
E4 uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving conic sections

Outcome	Solutions	Marking Guidelines
$\begin{gathered} (\mathbf{a}) \\ \mathrm{E} 3, \mathrm{E} 4 \end{gathered}$	$\begin{aligned} & x^{2}-3 y^{2}=6 \\ & \frac{x^{2}}{6}-\frac{y^{2}}{2}=1 b^{2} \\ &=a^{2}\left(e^{2}-1\right) \\ & e=\sqrt{\frac{b^{2}}{a^{2}}+1} \\ &=\sqrt{\frac{2}{6}+1} \\ &=\frac{2}{\sqrt{3}} \end{aligned}$	1 mark : correct answer
$\begin{gathered} \text { (b) } \\ \text { E3, E4 } \end{gathered}$	Foci Directrices Asymptotes $(\pm a e, 0)$ $x= \pm \frac{a}{e}$ $y= \pm \frac{b}{a} x$ $=\left(\pm \sqrt{6} \times \frac{2}{\sqrt{3}}, 0\right)$ $x= \pm \frac{\sqrt{6} \times \sqrt{3}}{2}$ $y= \pm \frac{\sqrt{2}}{\sqrt{6}} x$ $=(\pm 2 \sqrt{2}, 0)$ $x= \pm \frac{3 \sqrt{2}}{2}$ $y= \pm \frac{1}{\sqrt{3}} x$	```3 marks : all correct OR 2 marks : 2 correct OR 1 mark : 1 correct```
$\begin{gathered} \text { (c) } \\ \text { E3, E4 } \end{gathered}$		2 marks : correct diagram with x intercepts OR 1 mark : correct diagram, but partially labelled
$\begin{gathered} \text { (d) } \\ \text { E3, } 4 \end{gathered}$	$\begin{array}{\|l\|r\|} x^{2}-3 y^{2} & =6 \\ 2 x-6 y \cdot \frac{d y}{d x} & =0 \\ \frac{d y}{d x} & =\frac{x}{3 y} \\ & =\frac{3}{-3} \\ & =-1 \text { at } P(3,-1) \end{array} \begin{array}{c\|c} \text { Eq' } \mathrm{n} \text { of tangent } \\ y+1=-1(x-3) \\ x+y=2 \end{array}$	3 marks : correct solution OR $\underline{2 \text { marks : substantially correct }}$ OR 1 mark : partially correct

(e)

E3, E4

At M,
$y=0$ and $x+y=2$ ie $x=2$

At N,

$$
x=0 \text { and } x-y=4
$$

$$
\text { ie } y=-4
$$

so M is $(2,0)$
so N is $(0,-4)$

$$
\text { Thus } \begin{aligned}
M N & =\sqrt{2^{2}+4^{2}} \\
& =2 \sqrt{5} \text { units }
\end{aligned}
$$

(f)

Required equations have $m=2$, ie they are of form $y=2 x+k$

Solving simultaneously with $x^{2}-3 y^{2}=6$

$$
x^{2}-3(2 x+k)^{2}=6
$$

Gives

$$
\begin{aligned}
x^{2}-3\left(4 x^{2}+4 k x+k^{2}\right)-6 & =0 \\
11 x^{2}+12 k x+3\left(k^{2}+2\right) & =0
\end{aligned}
$$

Which must have equal roots for tangent
i.e. $\quad(12 k)^{2}-4.11 .3\left(k^{2}+2\right)=0$

$$
\begin{aligned}
12 k^{2}-11\left(k^{2}+2\right) & =0 \\
k^{2} & =22 \\
k & = \pm \sqrt{22}
\end{aligned}
$$

So equations of required tangents are $y=2 x \pm \sqrt{22}$

1 mark : correct solution

2 marks : correct solution OR
1 mark : substantially correct

3 marks : correct solution

OR

2 marks : substantially correct
$O R$
1 mark : partially correct

Year 12	Mathematics Extension 2	HY Examination 2006
Question No. 4	Solutions and Marking Guidelines	
Outcomes Addressed in this Question		
E3 \quad uses the relationship between algebraic and geometric representations of conic sections		
E4 \quaduses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving conic sections		

Outcome	Solutions	Marking Guidelines
(a)(i) E3, E4 (a)(ii) E3, E4 (b) E3, E4	$\left.\begin{array}{l} x=2 \cos \theta \\ y=\sin \theta \end{array}\right\} \Rightarrow a=2, b=1$ so ellipse has equation $\frac{x^{2}}{4}+y^{2}=1$ $b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{1}{4}}=\frac{\sqrt{3}}{2}$ foci: $(\pm a e, 0) \Rightarrow\left(\pm 2 \times \frac{\sqrt{3}}{2}, 0\right)$ ie $(\pm \sqrt{3}, 0)$ directrices: $x= \pm \frac{a}{e}= \pm \frac{2}{\frac{\sqrt{3}}{2}}= \pm \frac{4}{\sqrt{3}}$ equation of auxiliary circle is $x^{2}+y^{2}=4$ $\begin{array}{rlrl} x & =2 \sec \theta & y & =3 \tan \theta \\ \frac{d x}{d \theta} & =2 \sec \theta \tan \theta \quad & \frac{d y}{d \theta}=3 \sec ^{2} \theta \\ \frac{d y}{d x} & =\frac{d y}{\frac{d y}{d \theta}}=\frac{3 \sec ^{2} \theta}{2 \sec \theta \tan \theta}=\frac{3}{2 \sin \theta} \end{array}$	$\underline{2 \text { marks : correct solution }}$ OR 1 mark : substantially correct 2 marks : correct diagram with auxiliary circle OR 1 mark : correct ellipse, partially labelled

Q. 4 pg2

Now, when $\theta=\frac{\pi}{3}$
Normal has

$$
\begin{aligned}
& m=-\frac{2 \sin \theta}{3} \\
& =-\frac{2 \cdot \frac{\sqrt{3}}{2}}{3} \\
& =-\frac{\sqrt{3}}{3} \\
& x=2 \sec \theta \\
& y=3 \tan \theta \\
& =3 \tan \frac{\pi}{3} \\
& =3 \sqrt{3} \\
& =2 \sec \frac{\pi}{3} \\
& =2 \times 2 \\
& =4
\end{aligned}
$$

$$
\begin{aligned}
x & =2 \sec \theta \\
& =2 \sec \frac{\pi}{3} \\
& =2 \times 2 \\
& =4
\end{aligned}
$$

3 marks : correct solution
OR
2 marks : substantially correct
OR

1 mark : partially correct

3 marks : correct solution
OR
2 marks : substantially correct

OR

1 mark : partially correct

Alternate solution:
Solving $\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1$ and $y=m x+c$ gives:

$$
\begin{aligned}
\frac{x^{2}}{a^{2}}+\frac{(m x+c)^{2}}{b^{2}} & =1 \\
b^{2} x^{2}+a^{2} m^{2} x^{2}+2 a^{2} m c x+a^{2} c^{2}-a^{2} b^{2} & =0
\end{aligned}
$$

which must have one solution for tangent, ie $\Delta=0$.

$$
\begin{gathered}
\Delta=4 a^{4}-4\left(a^{2} m^{2}+b^{2}\right)\left(a^{2} c^{2}-a^{2} b^{2}\right)=0 \\
\Downarrow \\
c^{2}=a^{2} m^{2}+b^{2}
\end{gathered}
$$

Year 12	Mathematics Extension 2	HY Examination 2006		
Question No. 5	Solutions and Marking Guidelines			
Outcomes Addressed in this Question				
E2	chooses appropriate strategies to construct arguments and proofs in both concrete and abstract settings E4uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving polynomials			
E9 \quadcommunicates abstract ideas and relationships using appropriate notation and logical argument				

$b=0 \Rightarrow P(x)=x^{4}+a x^{3}+c x+d=0$
roots are $k i,-k i, 2, \alpha$

$$
\begin{aligned}
\sum \alpha=2+\alpha & =-a & \sum \alpha \beta & =k^{2}+2 \alpha=0 \\
\alpha & =-(a+2) & k^{2} & =2 \alpha
\end{aligned}
$$

$$
\text { Noting } k^{2}=\frac{c}{a} \Rightarrow \begin{aligned}
& \frac{c}{a}=-2 \alpha \\
& c=-2 \alpha
\end{aligned}
$$

$$
c=2 a(a+2)
$$

a is an integer, $\therefore c$ is even
OR..

$$
\begin{gathered}
P(2)=0 \quad \Rightarrow \quad 16+8 a+4 b+2 c+d=0 \\
\text { since } b=0: \quad 16+8 a+2 c+d=0 \\
\text { Now, } c^{2}+a^{2} d=a b c \\
b=0 \quad a^{2} d=-c^{2} \\
d=\frac{-c^{2}}{a^{2}} \\
\therefore 16+8 a+2 c-\frac{c^{2}}{a^{2}}=0 \\
c^{2}-2 a^{2} c-16 a^{2}-8 a^{3}=0
\end{gathered}
$$

Quadratic Formula gives

$$
c=2 a(a+2) \quad \text { or } \quad c=-4 a
$$

which are both even
(b)(i)

$$
\begin{aligned}
\rho & =\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7} \\
\rho^{7} & =\left(\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}\right)^{7} \\
& =\cos 2 \pi+i \sin 2 \pi \\
& =1
\end{aligned}
$$

$\therefore \rho$ is a root of $x^{7}-1=0 \quad$ i.e. ρ is a root of
$(x-1)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)=0$
but $x \neq 0$, so ρ satisfies
$x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1=0$
i.e. $1+\rho+\rho^{2}+\rho^{3}+\rho^{4}+\rho^{5}+\rho^{6}=0$

OR...
$1+\rho+\rho^{2}+\ldots+\rho^{6}$ is a GP with $a=1$

$$
\begin{aligned}
& r=\rho \\
& n=7
\end{aligned}
$$

so, $1+\rho+\rho^{2}+\ldots+\rho^{6}=\frac{1\left(\rho^{7}-1\right)}{\rho-1}$

$$
\begin{aligned}
& =\frac{\left(\operatorname{cis} \frac{2 \pi}{7}\right)^{7}}{\rho-1} \\
& =\frac{\cos 2 \pi+i \sin 2 \pi-1}{\rho-1}=0
\end{aligned}
$$

2 marks : correct solution

OR

1 mark : substantially correct

2 marks : correct solution
OR
1 mark : substantially correct
Note: this must be proven/shown. Marks not awarded for using calculator
(b)(ii) Since the coefficients of $x^{2}+a x+b=0$ are real, and
$\alpha=\rho+\rho^{2}+\rho^{4}$ is a complex root, then $\bar{\alpha}$ must also be a root.
$\therefore \beta=\bar{\alpha}=\overline{\rho+\rho^{2}+\rho^{4}}$
$=\bar{\rho}+\overline{\rho^{2}}+\overline{\rho^{4}}$
$=\rho^{6}+\rho^{5}+\rho^{3}$
Since $\bar{\rho}=\rho^{6}, \overline{\rho^{2}}=\rho^{5}$ and $\overline{\rho^{4}}=\rho^{3}$ (see diagram)

2 marks : correct solution
OR
1 mark : substantially correct

2 marks : correct solution (both a and b correct)

$$
O R
$$

1 mark : partially correct
(either a or b correct)
(b)(iv)

E2
from (iii), the quadratic equation is:

$$
\begin{aligned}
x^{2}+x+2 & =0 \\
\text { so } \ldots \quad x & =\frac{-1 \pm \sqrt{1-8}}{2} \\
& =\frac{-1 \pm i \sqrt{7}}{2}
\end{aligned}
$$

$\therefore \operatorname{Im}(\alpha)=\frac{ \pm \sqrt{7}}{2}, \quad$ but $\alpha=\rho+\rho^{2}+\rho^{4}$
and $\operatorname{Im}(\alpha)>0$, from diagram in (ii)
$\therefore \operatorname{Im}(\alpha)=\frac{\sqrt{7}}{2}$

