HURLSTONE AGRICULTURAL HIGH SCHOOL

$\frac{\text{MATHEMATICS} - \text{EXTENSION 2}}{2006}$

YEAR 12

HALF YEARLY EXAMINATION

Examiners ~ Z Pethers, G Rawson GENERAL INSTRUCTIONS

- Reading Time 5 minutes.
- Working Time 2 HOURS.
- Attempt **all** questions.
- All necessary working should be shown in every question.
- This paper contains five (5) questions.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators may be used.
- Each question is to be started in a new booklet.
- This examination paper must **NOT** be removed from the examination room.

STUDENT NAME: _____

TEACHER: _____

Question 1 (15 marks) Start a NEW answer booklet

(a) Find all pairs of integers x and y that satisfy $(x+iy)^2 = 33+56i$

(b) (i) Let
$$z = \cos \frac{\pi}{8} + i \sin \frac{\pi}{8}$$
. Find z^8 . 2

(ii) Plot on the Argand diagram, all complex numbers that are solutions of
$$z^8 = -1$$
. 2

- (c) Find all the roots of the equation $5z^3 31z^2 + 56z 10 = 0$, given that (3+i) is one of the roots.
- (d) (i) If $z_1 = 2 + 4i$, sketch the locus of (a) $|z z_1| = 3$ 1

$$(\beta) \quad \arg(z-z_1) = \frac{\pi}{4}$$

(ii) Find the area specified by
$$|z - z_1| \le 3$$
 and $\arg(z - z_1) \le \frac{\pi}{4}$ 2

(iii) If
$$|z-z_1|=3$$
, find the greatest value of $|z-7|$.

Marks

2

3

Question 2 (15 marks) Start a NEW answer booklet

Marks

(a)	(i)	Suppose the polynomial $P(x)$ has a double root at $x = \alpha$. Prove that $P'(x)$ also has a root at $x = \alpha$.	2
	(ii)	The polynomial $P(x) = x^4 + ax^3 + bx + 21$ has a double root at $x = 1$. Find the values of a and b.	3
	(iii)	Factorise the polynomial $P(x) = x^4 + ax^3 + bx + 21$ over the real numbers.	2
(b) If	$\frac{2x}{(x-1)}$	$\frac{a}{a^{3}(x+2)} = \frac{a}{(x-1)} + \frac{b}{(x-1)^{2}} + \frac{c}{(x-1)^{3}} + \frac{d}{(x+2)}, \text{ find the values of } a, b, c, d.$	3

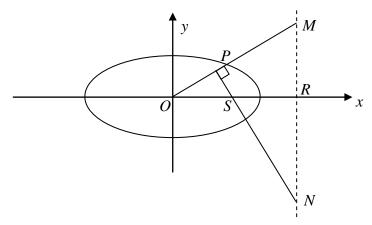
- (c) The equation $x^4 + 3x^3 + 5x^2 7x + 2 = 0$ has roots α , β , γ , δ . Find the equation with roots α^2 , β^2 , γ^2 , δ^2 . **3**
- (d) The equation $x^3 4x^2 + 5x + 2 = 0$ has roots α , β , γ . Find the value of $\alpha^2 + \beta^2 + \gamma^2$.

Question 3 (15 marks) Start a NEW answer booklet

Marks

Consider the hyperbola: $x^2 - 3y^2 = 6$.

(a)	Find the eccentricity of the hyperbola.	1
(b)	Find the coordinates of the foci and the equations of the directrices and asymptotes of the hyperbola.	3
(c)	Sketch the graph of the hyperbola showing clearly all of the above features and the intercepts on the coordinate axes.	2
(d)	Use differentiation to derive the equations of the tangent and normal to the hyperbola at the point $P(3, -1)$.	3
(e)	The tangent meets the transverse axis in M and normal meets the conjugate axis in N. Find the distance MN .	1
(f)	Determine the angle between the asymptotes.	2
(g)	Find the equations of the tangents to $x^2 - 3y^2 = 6$ which are parallel to the line $2x - y = 7$.	3


Marks

3

(a) (i) Find the equation of the ellipse with parametric equations x = 2cosθ and y = sinθ.
(ii) Sketch the ellipse, showing its foci and directrices. Show the auxillary circle on your sketch and state its equation.
(b) Using differentiation, find the equation of the normal to the curve whose parametric

equations are
$$x = 2\sec\theta$$
 and $y = 3\tan\theta$ at the point *P* where $\theta = \frac{\pi}{3}$. **3**

- (c) Prove that the condition for the line y = mx + c to be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $c^2 = a^2m^2 + b^2$.
- (d) $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with centre O.

OP produced meets a directrix in M, and the perpendicular from the corresponding focus onto OM meets the same directrix in N. If R is the foot of the directrix, prove that the product of RM and RN is independent of the position of P.

(a) Consider the polymonial equation $x^4 + ax^3 + bx^2 + cx + d = 0$, where *a*, *b*, *c*, and *d* are all integers. Suppose the equation has a root of the form *ki*, where *k* is real, and $k \neq 0$.

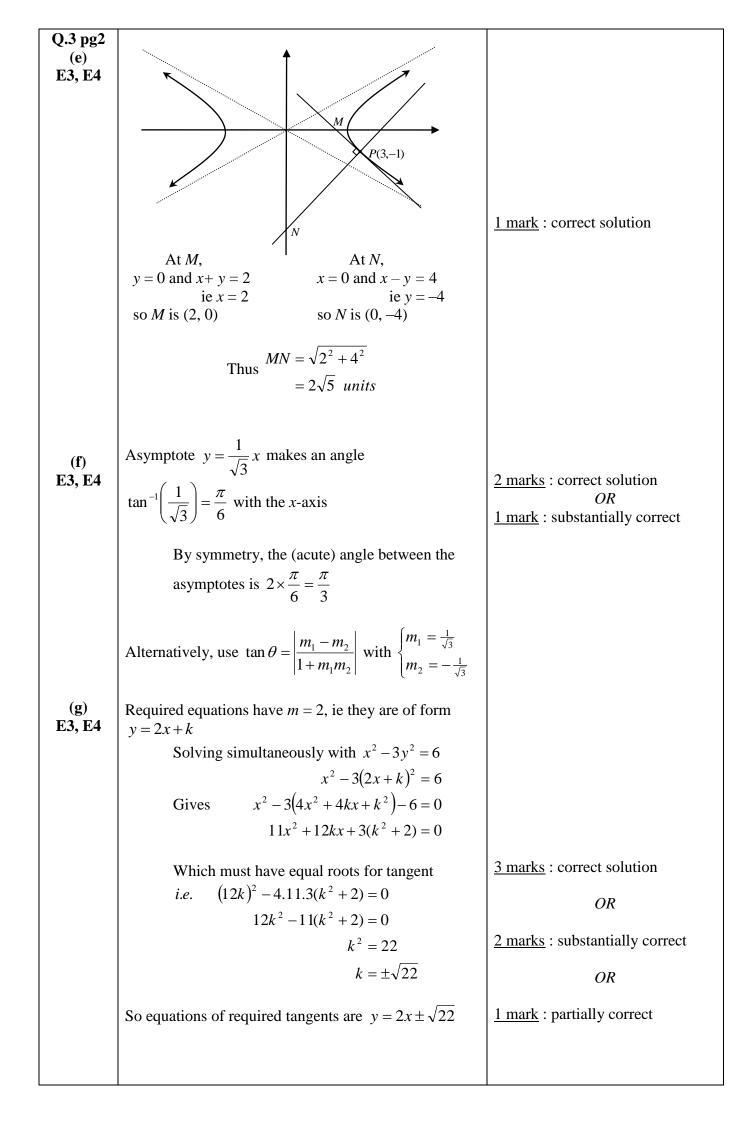
(i)State why the conjugate
$$-ki$$
 is also a root.1(ii)Show that $c = k^2 a$.2(iii)Show that $c^2 + a^2 d = abc$.2(iv)If 2 is also a root of the equation, and $b = 0$, show that c is even.2

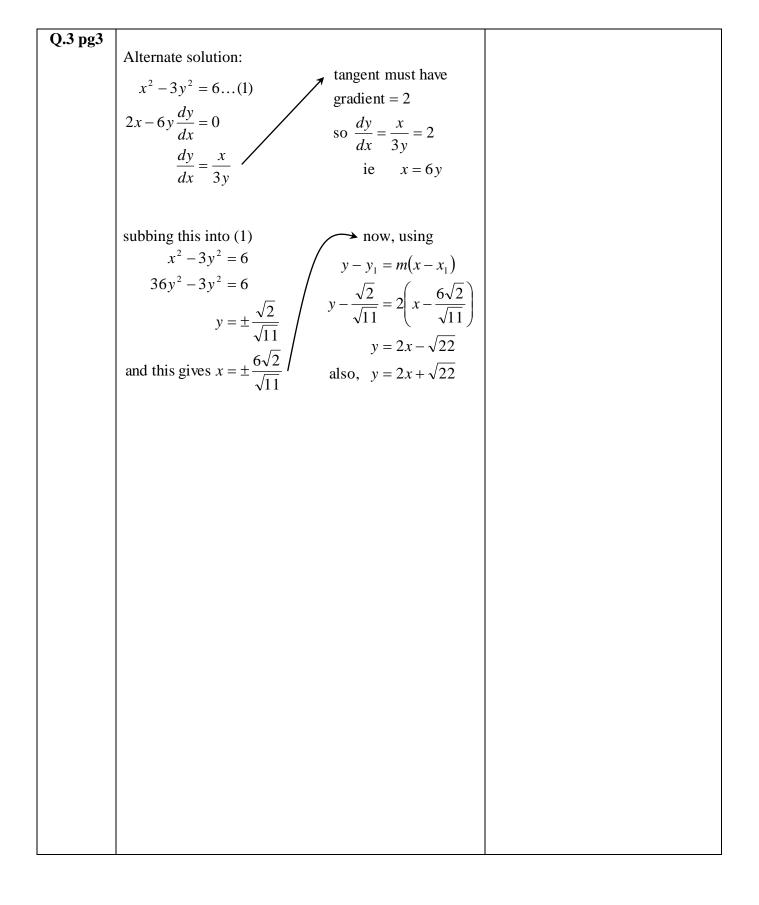
(b) Let
$$\rho = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$$
.

The complex number $\alpha = \rho + \rho^2 + \rho^4$ is a root of the quadratic equation $x^2 + ax + b = 0$, where *a* and *b* are real.

(i) Prove that
$$1 + \rho + \rho^2 + \dots \rho^6 = 0$$
. 2

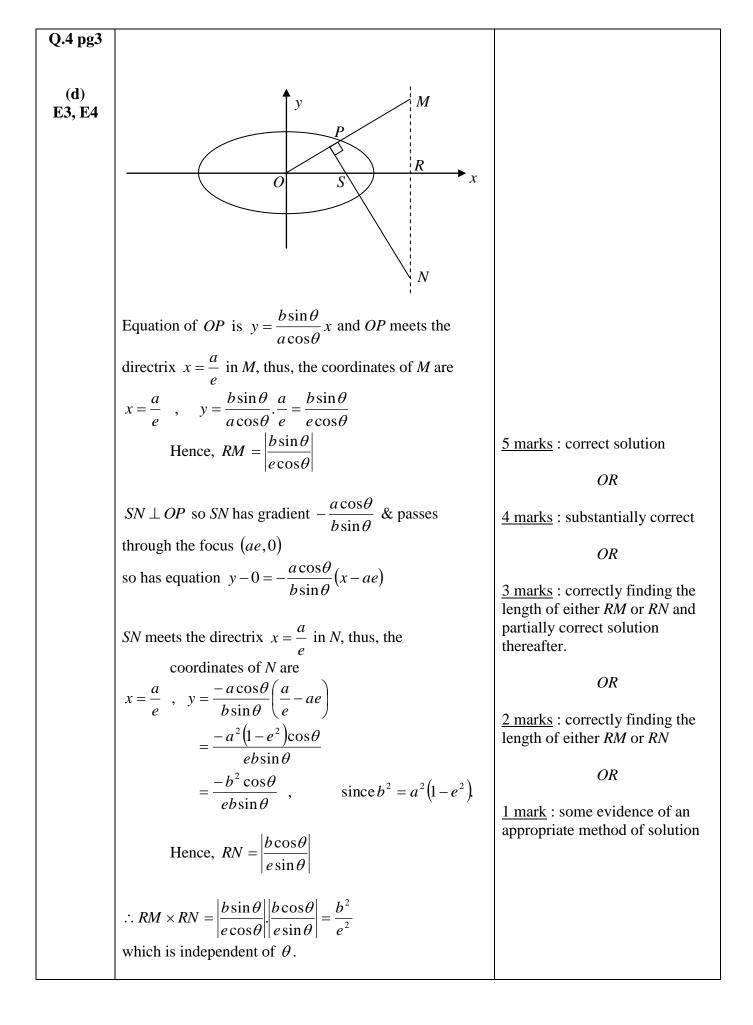
(ii) The second root of the quadratic equation is β . Express β in terms of positive powers of ρ . Justify your answer.


(iii) Find the values of the coefficients of *a* and *b*. 2


(iv) Deduce that
$$-\sin\frac{\pi}{7} + \sin\frac{2\pi}{7} + \sin\frac{3\pi}{7} = \frac{\sqrt{7}}{2}$$
. 2

Marks

2


Year 12 Mathematics Extension 2 HY Examination 2006				
Question No. 3Solutions and Marking Guidelines				
	Outcomes Address	sed in this Question	l	
uses th	es the relationship between algebraic an	nd geometric represe	entations of conic sections	
E4 uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving conic sections				
tcome	e Solutions		Marking Guidelines	
(a) x b, E4 -	° -	$x^{2} - 3y^{2} = 6$ $b^{2} = a^{2}(e^{2} - 1)$ $\frac{x^{2}}{6} - \frac{y^{2}}{2} = 1$ $w = \sqrt{\frac{b^{2}}{a^{2}} + 1}$ $= \sqrt{\frac{2}{6} + 1}$		
(b) F 8, E4 =	Foci $(\pm ae, 0)$ $= \left(\pm \sqrt{6} \times \frac{2}{\sqrt{3}}, 0\right)$ $= \left(\pm 2\sqrt{2}, 0\right)$ Directrices $x = \pm \frac{a}{e}$ $x = \pm \frac{\sqrt{6} \times \sqrt{3}}{2}$ $x = \pm \frac{\sqrt{6} \times \sqrt{3}}{2}$ $x = \pm \frac{3\sqrt{2}}{2}$	Asymptotes $y = \pm \frac{b}{a} x$ $y = \pm \frac{\sqrt{2}}{\sqrt{6}} x$ $y = \pm \frac{1}{\sqrt{3}} x$	$\frac{3 \text{ marks}}{OR}$: all correct $\frac{2 \text{ marks}}{OR}$: 2 correct $\frac{OR}{1 \text{ mark}}$: 1 correct	
(c) y 3, E4 –	$y = -\frac{1}{\sqrt{3}}x$ $x = -\frac{3\sqrt{2}}{2}$ $x = -\frac{3\sqrt{2}}{2}$ $(-2\sqrt{2}, 0)$ $(-\sqrt{6}, 0)$	$3\sqrt{2} \qquad y = \frac{1}{\sqrt{3}}x \\ (2\sqrt{2},0) \\ (\sqrt{6},0) \\ (6$	2 marks : correct diagram with <i>x</i> - intercepts <i>OR</i> 1 mark : correct diagram, but partially labelled	
	$x^{2} - 3y^{2} = 6$ $2x - 6y \cdot \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{x}{3y}$ $= \frac{3}{-3}$ $= -1 \text{ at } P(3, -1)$	Eq'n of tangent y+1 = -1(x-3) x + y = 2 Eq'n of normal y+1 = 1(x-3) x - y = 4	3 marks : correct solution OR 2 marks : substantially correct OR 1 mark : partially correct	
	$=\frac{3}{-3}$	Eq'n of normal y+1=1(x-3)	<u>2 marks</u> : substantially corr OR	

Year 12	Mathematics Extension 2	HY Examination 2006	
Question N	Io. 4 Solutions and Marking Guidelines Outcomes Addressed in this Question		
 E3 uses the relationship between algebraic and geometric representations of conic sections E4 uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving conic sections 			
Outcome	Solutions	Marking Guidelines	
(a)(i) E3, E4	$\begin{cases} x = 2\cos\theta \\ y = \sin\theta \end{cases} \Rightarrow a = 2, b = 1$ so ellipse has equation $\frac{x^2}{4} + y^2 = 1$	2 marks : correct solution OR 1 mark : substantially correct	
(a)(ii) E3, E4	$b^{2} = a^{2} (1 - e^{2}) \Longrightarrow e = \sqrt{1 - \frac{b^{2}}{a^{2}}} = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}$		
	foci: $(\pm ae, 0) \Rightarrow \left(\pm 2 \times \frac{\sqrt{3}}{2}, 0\right)$ ie $\left(\pm \sqrt{3}, 0\right)$ directrices: $x = \pm \frac{a}{e} = \pm \frac{2}{\frac{\sqrt{3}}{2}} = \pm \frac{4}{\sqrt{3}}$ equation of auxiliary circle is $x^2 + y^2 = 4$	<u>2 marks</u> : correct diagram with auxiliary circle	
	$x = -\frac{4}{\sqrt{3}}$ $x = \frac{4}{\sqrt{3}}$ $x = \frac{4}{\sqrt{3}}$ $x = \frac{4}{\sqrt{3}}$	<i>OR</i> <u>1 mark</u> : correct ellipse, partially labelled	
(b) E3, E4	$x = 2 \sec \theta \qquad y = 3 \tan \theta$ $\frac{dx}{d\theta} = 2 \sec \theta \tan \theta \qquad \frac{dy}{d\theta} = 3 \sec^2 \theta$ $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{3 \sec^2 \theta}{2 \sec \theta \tan \theta} = \frac{3}{2 \sin \theta}$		

				1
Q.4 pg2	Now, when $\theta = \frac{\pi}{3}$ Normal has	,		<u>3 marks</u> : correct solution
	$m = -\frac{2\sin\theta}{3}$	$x = 2 \sec \theta$	$v = 3 \tan \theta$	OR
	$\begin{array}{c} 3\\ 2.\frac{\sqrt{3}}{2} \end{array}$	$x = 2 \sec \theta$ $= 2 \sec \frac{\pi}{3}$ $= 2 \times 2$ $= 4$	$= 3 \tan \frac{\pi}{2}$	2 marks : substantially correct
	$=-\frac{2}{3}$	$=2\times2$	$=3\sqrt{3}$	OR
	$=-\frac{\sqrt{3}}{\sqrt{3}}$	=4	- 5 4 5	<u>1 mark</u> : partially correct
	3	I		
		$y - y_1 = m(x - x)$	- /	
		$y - 3\sqrt{3} = -\frac{\sqrt{3}}{3}(x)$	(x-4)	
	$\sqrt{3}x$	$x + 3y - 13\sqrt{3} = 0$		
		2		
(c)	Tangent at $P(x_{\cdot})$	y_1 is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	①	
E3, E4		a ² b^2 for $y = mx + c$ to tou		
	we write this as <i>n</i>	ix - y = -c	•	<u>3 marks</u> : correct solution
	$-\frac{mx}{m} + \frac{y}{m} = 1 \qquad \dots \textcircled{2}$			
	C C			OR
	Both ① and ② represent the same tangent, So, comparing coefficients:			<u>2 marks</u> : substantially correct
	$\frac{x_1}{a^2} = -\frac{m}{c} \qquad \text{and} \qquad \frac{y_1}{b^2} = \frac{1}{c}$			OR
	$x_1 = \frac{-a^2m}{c}$ $y_1 = \frac{b^2}{c}$			<u>1 mark</u> : partially correct
	t t			
	Subbing these va	lues into $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.		
	$\frac{a^4m}{2}$	$\frac{a^2}{b^2} + \frac{b^4}{b^2c^2} = 1$		
		00		
		$\frac{{}^{2}m^{2}}{c^{2}} + \frac{b^{2}}{c^{2}} = 1$		
	$c^2 = a^2m^2 + b^2$			
	Alternate solution:			
	Solving $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$ and $y = mx + c$ gives:			
		$\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} =$		
	$b^2x^2 + a^2m^2x^2 + b^2x^2$	$2a^2mcx + a^2c^2 - a^2b^2 =$		
	which must have	one solution for tange	ent, ie $\Delta = 0$.	
	$\Delta = 4a^4 - 4(a^2m)$	$(a^{2} + b^{2})(a^{2}c^{2} - a^{2}b^{2}) =$		
		$\Psi^2 = a^2 m^2 + b^2$		
	Ľ			

Year 12	Mathematics Extension 2	HY Examination 2006		
Question N				
	Outcomes Addressed in this Question			
	E2 chooses appropriate strategies to construct arguments and proofs in both concrete and abstract settings			
	E4 uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving polynomials			
E9 com	municates abstract ideas and relationships using appropriate not	ation and logical argument		
Outcome	Solutions	Marking Guidelines		
(a)(i) E4	For polynomials with real coefficients, complex roots occur in conjugate pairs. So, if <i>ki</i> is a root, <i>-ki</i> must also be a root.	<u>1 mark</u> : correct statement – must include reference to real coefficients		
(a)(ii) E4	$P(x) = x^{4} + ax^{3} + bx^{2} + cx + d$ $P(ki) = k^{4} - ak^{3}i - bk^{2} + cki + d = 0$ Equating imaginary parts: $-ak^{3} + ck = 0$ $c = ak^{2}$	2 marks : correct solution OR		
	<i>OR</i>	<u>1 mark</u> : substantially correct		
	$(x - ki)(x + ki) = x^{2} + k^{2} \text{ is a factor}$ so, $P(x) = x^{4} + ax^{3} + bx^{2} + cx + d = (x^{2} + k^{2})(x^{2} + Ax + B)$ Equating coefficients of x^{3} : $a = A$ Equating coefficients of x : $c = Ak^{2}$ $\therefore c = ak^{2}$ OR Let the roots of $P(x)$ be ki , $-ki$, α , β $\sum \alpha = \alpha + \beta = -a$ $\sum \alpha \beta \gamma = ki\alpha\beta - ki\alpha\beta + k^{2}\alpha + k^{2}\beta$ $= k^{2}(\alpha + \beta) = -c$ $\therefore k^{2}(-a) = -c$ $c = ak^{2}$			
(a)(iii) E4	From $P(ki) = 0$ in (ii), equate real parts ie $k^4 - bk^2 + d = 0$ & noting $k^2 = \frac{c}{a}$ $\frac{c^2}{a^2} - b\frac{c}{a} + d = 0$ $c^2 - abc + ad = 0$ $c^2 + ad = abc$	2 marks : correct solution OR 1 mark : substantially correct		

	1	1
Q.5 pg2 (a)(iv)	$b = 0 \Longrightarrow P(x) = x^4 + ax^3 + cx + d = 0$	
E2, E4	roots are ki , $-ki$, 2, α	
	$\sum \alpha = 2 + \alpha = -a \qquad \qquad \sum \alpha \beta = k^2 + 2\alpha = 0$ $\alpha = -(a+2) \qquad \qquad k^2 = 2\alpha$	2 marks : correct solution
	$\alpha = -(a+2) \qquad \qquad k^{-} = 2\alpha$	
	Noting $k^2 = \frac{c}{a} \implies \frac{c}{a} = -2\alpha$	OR
	$c = -2\alpha$	<u>1 mark</u> : substantially correct
	c = 2a(a+2)	
	<i>a</i> is an integer, $\therefore c$ is even	
	OR	
	$P(2) = 0 \implies 16 + 8a + 4b + 2c + d = 0$	
	$r(2) = 0 \qquad \implies \qquad ro + 6a + 4b + 2c + a = 0$ since $b = 0$: $16 + 8a + 2c + d = 0$	
	Now, $c^2 + a^2 d = abc$	
	$b=0 \implies a^2d=-c^2$	
	$d = \frac{-c^2}{a^2}$	
	$\therefore 16 + 8a + 2c - \frac{c^2}{a^2} = 0$	
	$c^2 - 2a^2c - 16a^2 - 8a^3 = 0$	
	Quadratic Formula gives	
	$c = 2a(a+2) \qquad \text{or} \qquad c = -4a$	
	which are both even	
(b)(i) E2	$\rho = \cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}$	
	$\rho^7 = \left(\cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}\right)^7$	
	$= \cos 2\pi + i \sin 2\pi$ $= 1$	2 marks : correct solution
	$\therefore \rho$ is a root of $x^7 - 1 = 0$ i.e. ρ is a root of	OR
	$(x-1)(x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1) = 0$	
		<u>1 mark</u> : substantially correct
	but $x \neq 0$, so ρ satisfies	
	$x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1 = 0$	Note: this must be proven/shown. Marks not awarded for using
	i.e. $1 + \rho + \rho^2 + \rho^3 + \rho^4 + \rho^5 + \rho^6 = 0$	calculator
	OR	
	$1 + \rho + \rho^{2} + + \rho^{6}$ is a GP with $a = 1$	
	$r = \rho$	
	<i>n</i> = 7	
	so, $1 + \rho + \rho^2 + + \rho^6 = \frac{1(\rho^7 - 1)}{\rho - 1}$	
	$\beta 0, 1 + \rho + \rho + \dots + \rho - \frac{\rho}{\rho - 1}$	
	$=\frac{\left(cis\frac{2\pi}{7}\right)^{7}}{\rho-1}$	
	$\rho - 1$	
	$=\frac{\cos 2\pi + i\sin 2\pi - 1}{\rho - 1} = 0$	

Q.5 pg3		
(b)(ii) E2	Since the coefficients of $x^2 + ax + b = 0$ are real, and $\alpha = \rho + \rho^2 + \rho^4$ is a complex root, then $\overline{\alpha}$ must also be a root. $\therefore \beta = \overline{\alpha} = \overline{\rho + \rho^2 + \rho^4}$ $= \overline{\rho} + \overline{\rho^2} + \overline{\rho^4}$ $= \rho^6 + \rho^5 + \rho^3$ Since $\overline{\rho} = \rho^6$, $\overline{\rho^2} = \rho^5$ and $\overline{\rho^4} = \rho^3$ (see diagram)	<u>2 marks</u> : correct solution <i>OR</i> <u>1 mark</u> : substantially correct
(b)(iii) E2, E4	sum of roots: $\alpha + \beta = -a$ ie $a = -(\alpha + \beta)$ $= -(\rho + \rho^{2} + \rho^{3} + \rho^{4} + \rho^{5} + \rho^{6}) \text{ from(ii)}$ $= 1 \text{from(i)}$ product of roots: $b = \alpha\beta$ $= (\rho + \rho^{2} + \rho^{4})(\rho^{3} + \rho^{5} + \rho^{6})$ $= \rho(1 + \rho + \rho^{3})\rho^{3}(1 + \rho^{2} + \rho^{3})$ $= \rho^{4}\left(\underbrace{1 + \rho + \rho^{2} + \rho^{3} + \rho^{4} + \rho^{5} + \rho^{6} + 2\rho^{3}}_{\downarrow}\right)$ $= \rho^{4}\left(\begin{array}{c} 0 \\ + 2\rho^{3} \end{array}\right)$ $= 2\rho^{7}$ $= 2 \qquad (\rho^{7} = 1)$ i.e. $a = 1$ & $b = 2$	<u>2 marks</u> : correct solution (both <i>a</i> and b correct) OR <u>1 mark</u> : partially correct (either <i>a</i> or b correct)
(b)(iv) E2	from (iii), the quadratic equation is: $x^{2} + x + 2 = 0$ so $x = \frac{-1 \pm \sqrt{1-8}}{2}$ $= \frac{-1 \pm i\sqrt{7}}{2}$ $\therefore \operatorname{Im}(\alpha) = \frac{\pm \sqrt{7}}{2}, \text{but } \alpha = \rho + \rho^{2} + \rho^{4}$ and $\operatorname{Im}(\alpha) > 0$, from diagram in (ii) $\therefore \operatorname{Im}(\alpha) = \frac{\sqrt{7}}{2}$	

Q.5 pg3Now,
$$\operatorname{Im}(\alpha) = \operatorname{Im}(\rho + \rho^2 + \rho^4)$$

 $= \sin \frac{2\pi}{7} + \sin \frac{4\pi}{7} + \sin \frac{8\pi}{7}$
 $= \sin \frac{2\pi}{7} + \sin (\pi - \frac{3\pi}{7}) + \sin(\pi + \frac{\pi}{7})$
 $= \sin \frac{2\pi}{7} + \sin \frac{3\pi}{7} - \sin \frac{\pi}{7}$
 $= \frac{\sqrt{7}}{2}$, as required2 marks : correct solution
OR
I mark : substantially correct
Now: this must be deduced, ic from
earlier parts. Marks not awarded for
using calculator