## HURLSTONE AGRICULTURAL HIGH SCHOOL



## YEAR 12

## MATHEMATICS EXTENSION 2

## 2008

HSC COURSE

# HALF YEARLY EXAMINATION (ASSESSMENT TASK 2) 

EXAMINERS ~ G. RAWSON AND J. DILLON

## General Instructions

- Reading Time - 5 minutes.
- Working Time - Two Hours.
- Attempt all questions.
- Questions are of equal value.
- All necessary working should be shown in every question.
- This paper contains Five (5) questions.
- Total Marks - $\mathbf{7 5}$ marks
- Marks may not be awarded for careless or badly arranged work.
- Board approved Calculators and Templates may be used.
- Each question is to be started in a new Examination Booklet.
- This assessment task must NOT be removed from the Examination Room.


## QUESTION 1: (USE A SEPARATE ANSWER BOOKLET)

(a) Two complex numbers are given by

$$
z=3-4 i \text { and } w=2-2 i
$$

(i) Find, in the form $x+i y$, the product $\bar{z} w$.
(ii) Find, in the form $x+i y$, the two square roots of $z$.
(iii) ( $\alpha$ ) Express $w$ in modulus - argument form.
( $\beta$ ) Find, in the form $x+i y, w^{5}$.
(b) The locus of a point $P$ which moves in the complex plane is represented by the equation

$$
|z-(3+4 i)|=5
$$

(i) Sketch the locus of the point $P$
(ii) ( $\alpha$ ) Find the maximum value of the modulus of $z$.
( $\beta$ ) Write down the value of $\arg z$ when $P$ is in the position of maximum modulus.
( $\gamma$ ) Find the value of the modulus of $z$ when $\arg z=\tan ^{-1}\left(\frac{1}{2}\right)$
(c) The complex number $z$ is given by $z=1-i$.

Find real numbers $a$ and $b$ such that $a z=1-\frac{b}{z}$.
(d) In an Argand diagram the point $P$ represents the complex number $z$ and the point $Q$ represents the complex number $w$ and the point $R$ represents the complex number $z-w$ with $O$ being the origin.
It is given $z-w=i z$.
(i) Describe the geometric properties of triangle $P O R$, providing full reasoning for your answer.
(ii) Find the size of angle $Q P R$.

## QUESTION 2: (USE A SEPARATE ANSWER BOOKLET)

Consider the function $g(x)=4 \sqrt{x}-2 x$.
(a) Write down the domain of $g(x)$.
(b) Find the $x$ intercepts of the graph of $y=g(x)$.
(c) Show that the curve $y=g(x)$ is concave downwards for all $x>0$.
(d) Find the coordinates of the stationary point and determine its nature.
(e) Sketch the graph of $y=g(x)$, clearly showing all essential features.
(f) Hence, by consideration of your graph of $y=g(x)$, sketch each of the following on separate diagrams, showing all essential features.
(i) $\quad y=|g(x)|$
(ii) $y=g(x-2)$
(iii) $\quad y=g(|x|)$

2
(iv) $|y|=g(x)$
(v) $y=\frac{1}{g(x)}$

## QUESTION 3: (USE A SEPARATE ANSWER BOOKLET)

Marks
(a) A polynomial has a remainder of 5 when divided by $(x-3)$ and a remainder of 12 when divided by $(x-4)$.
What is the remainder when the polynomial is divided by $(x-3)(x-4)$ ?
(b) The polynomial $P(x)=x^{3}+3 x-5$ has roots $\alpha, \beta$ and $\gamma$.

Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(c) The equation $x^{3}+3 x^{2}-2=0$ has roots $\alpha, \beta$ and $\gamma$.

Find the cubic equation with roots $\alpha^{2}, \beta^{2}$ and $\gamma^{2}$.
(d) Given that $x=2+i$ is a root of the polynomial $P(x)=x^{3}-2 x^{2}-3 x+10$, factorise $P(x)$ over the complex field, $\square$.
(e) If $P(x)=x^{4}+2 x^{3}-12 x^{2}+14 x-5$ has a triple zero, find all the zeros of $P(x)$.
(f) Consider the function $P(x)=x^{3}+a x+b$.

Show that the function will have three distinct roots if $4 a^{3}+27 b^{2}<0$.

## Question 4: (USE a SEPARATE ANSWER bOoklet)

Marks
(a) The ellipse $\mathscr{E}$ has the equation

$$
4 x^{2}+9 y^{2}=36
$$

(i) Write down:
( $\alpha$ its eccentricity $\mathbf{1}$
( $\beta$ ) the coordinates of its foci $S$ and $S^{\prime} \quad 1$
$(\gamma)$ the equation of each directrix $\mathbf{1}$
( $\delta$ ) the length of the major axis. $\mathbf{1}$
(ii) Sketch the ellipse $\mathscr{E}$. Show the $x$ and $y$ intercepts as well as the features found in parts $(\beta)$ and $(\gamma)$ of part (i) above.
(iii) Without using the formula for the area of an ellipse, show by integration that the area of the ellipse $\mathscr{E}$ is $6 \pi$ square units.
(b) (i) Show that if $y=p x+q$ is a tangent to the hyperbola

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \text { then } p^{2} a^{2}-b^{2}=q^{2} \tag{3}
\end{equation*}
$$

(ii) Hence find the equations of the tangents from the point $(1,3)$ to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{15}=1$.

## QUESTION 5: (USE A SEPARATE ANSWER BOOKLET)

(a) (i) Use De Moivre's theorem, or otherwise, to show that

$$
\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta .
$$

(ii) Hence, solve $8 x^{3}-6 x-1=0$.
(iii) Deduce that $\sin \frac{\pi}{18}=\sin \frac{7 \pi}{18}+\sin \frac{11 \pi}{18}$.
(b) The polynomial $P(x)=x^{3}+q x^{2}+r x+s$ has real coefficients. It has three distinct zeros $\alpha,-\alpha$ and $\beta$.
(i) Prove that $q r=s$.
(ii) The polynomial does not have three real zeros. Show that two of the the zeros are purely imaginary. (A number is purely imaginary if it is of the form $i y$, with $y$ real and $y \neq 0$.)
(c) You are given

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

and

$$
\sin 2 A=2 \sin A \cos A
$$

If $n$ is any integer, prove that:
(i) $\quad\left(1+\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}\right)^{n}=-2^{n} \cos ^{n} \frac{\pi}{n}$.
(ii) $\quad(1+i \sqrt{3})^{2 n}+(1-i \sqrt{3})^{2 n}$ has either the value $2^{2 n+1}$ or $-2^{2 n}$, according as to whether $n$ is or is not a multiple of 3 .

