HURLSTONE AGRICULTURAL HIGH SCHOOL

<u>YEAR 12</u>

MATHEMATICS EXTENSION 2

2010

HSC COURSE

HALF YEARLY EXAMINATION (ASSESSMENT TASK 2)

EXAMINERS ~ G. RAWSON AND S. GEE

GENERAL INSTRUCTIONS

- Reading Time 5 minutes.
- Working Time Two Hours.
- Attempt all questions.
- Questions are of equal value.
- All necessary working should be shown in every question.
- This paper contains Five (5) questions.
- Total Marks 75 marks

- Marks may not be awarded for careless or badly arranged work.
- Board approved Calculators and Templates may be used.
- Each question is to be started in a new Examination Booklet.
- This assessment task must **NOT** be removed from the Examination Room.

STUDENT NAME / NUMBER:

TEACHER:

QUESTION ONE 15 marks Start a SEPARATE sheet

(a) The diagram shows the graph of y = f(x).

Draw neat separate sketches of at least one third of a page for

(i)	y = f(x+3)	1
(ii)	$y = \left f(x) \right $	1
(iii)	$y = \sqrt{f(x)}$	1
(iv)	$y = f\left(x \right)$	1

$$(\mathbf{v}) \qquad \left| \mathbf{y} \right| = f(\mathbf{x}) \tag{1}$$

(b) Given the function $g(x) = (x-1)^2 (x+2)^2$ Draw neat separate sketches of at least one third of a page for

(i)	y = g(x)	1
(ii)	$y = \frac{1}{g(x)}$	1

(iii)
$$y = -g(x)$$

(iv) $y = g(x) + 2$
1

Question 1 continued on next page...

Question 1 continued...

(c)	Given the function $f(x) = \frac{x^2 + 1}{x}$		
	(i)	Show $y = f(x)$ is an odd function.	1
	(ii)	Find the equations of any asymptotes.	1
	(iii)	Show $y = f(x)$ has a relative minimum point at (1, 2).	1
	(iv)	Without using calculus explain why $y = f(x)$ has a relative maximum point at $(-1, -2)$.	1
	(v)	Sketch the curve $f(x) = \frac{x^2 + 1}{x}$	1
	(vi)	With reference to your sketch in part (v),	
		explain why the inequation $\left \frac{x^2+1}{x}\right \le 2$ has only two solutions.	1

3

(a) If z = 3 - i and w = 1 + 3i, find (in the form x + iy) the simplest answer for

- (i) z w 1 (ii) zw 1
- (iii) $w\overline{w}$ 2 (iv) $\frac{z}{w}$ 2

(b) (i) Find the modulus and argument (in radians) of
$$5+5\sqrt{3} i$$
 2

(ii) Hence, or otherwise, find the two square roots of $5+5\sqrt{3}$ *i* **3**

The diagram above shows the fixed points *A*, *B* and *C* in the Argand plane, where AB = BC, $\angle ABC = \frac{\pi}{2}$, and *A*, *B* and *C* are in anticlockwise order. The point *A* represents the complex number $z_1 = 2$ and the point *B* represents the complex number $z_2 = 3 + \sqrt{5}i$.

Find the complex number z_4 represented by D.

QUESTION THREE 15 marks Start a SEPARATE sheet

(a) The sketch shows a hyperbola in the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Given $a^2 = 144$ and $b^2 = 25$

(i)	Find the coordinates of the points where the hyperbola meets the x - axis.	1
(ii)	Find the coordinates of the foci of the hyperbola.	2
(iii)	Find the equations of the asymptotes and directrices of the hyperbola.	2
(iv)	If <i>a</i> remains constant, what value must <i>b</i> become for the hyperbola to become rectangular?	1
(v)	Find the equation of the tangent to the curve at the point $P\left(13, \frac{1}{12}\right)$.	1
(vi)	Find the equation of the focal chord SP where S is the closest focus.	1

Question 3 continued on next page...

Question 3 continued...

(b) The points $P(x_1, y_1)$ and $Q(x_2, y_2)$ lie on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The tangents at *P* and *Q* meet at *T*.

(i) Show that the equation of the tangent at *P* is
$$\frac{x_1}{a^2}x + \frac{y_1}{b^2}y = 1$$
. 2

(ii) Show that *T* lies on the line
$$\frac{(x_1 - x_2)}{a^2}x + \frac{(y_1 - y_2)}{b^2}y = 0.$$
 2

QUESTION FOUR 15 marks Start a SEPARATE sheet

(a) If
$$|z_1 - z_2| = |z_1 + z_2|$$
 show that $\arg z_1 - \arg z_2 = \frac{\pi}{2}$. 2

(b) Plot on the Complex Plane, the values of z for which
$$z^3 - 8i = 0$$
. 3

(c) What is the maximum value of
$$|z|$$
 for $|z-1-i| \le 2$? 2

(c) Sketch the locus of *z* satisfying:

(i)
$$\arg(z-4) = \frac{3\pi}{4}$$
 3

(ii)
$$\operatorname{Im} z = |z|$$
 2

(d) Given z = x + iy, sketch the locus of z if $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{4}$, showing all important features.

Write the Cartesian equation of this locus.

3

QUESTION FIVE 15 marks Start a SEPARATE sheet

(a) Factorise
$$2^{n+1} + 2^n$$
 and hence write $\frac{2^{1001} + 2^{1000}}{3}$ as a power of 2. 2

(b) Consider the circle $x^2 + y^2 - 2x - 14y + 25 = 0$

(i) Show that if the line y = mx intersects the circle in two distinct points, then

$$(1+7m)^2 - 25(1+m^2) > 0.$$
 3

(ii) For what values of *m* is the line
$$y = mx$$
 tangent to the circle? 2

(c) Find the equation of
$$P(x)$$
 given it is monic of degree 5,
has a double root at $x = 2$ and is odd. Sketch $y = P(x)$. 2

END OF TEST

8

Year 12	Mathematics Extension 2	Half Yearly 2010 HSC
Question No. 2 Solutions and Marking Guidelines		
E2	Outcomes Addressed in this Ques	tion
E3 uses	s the relationship between algebraic and geometric rep	resentations of complex numbers
Outcome	Solutions	Marking Guidelines
	(a) $z = 2 - i, w = 1 + 2i$	
	(i) $z - w = 3 - i - (1 + 3i)$	
	= 2 - 4i	<u>1 mark</u> : correct answer
	(ii) $zw = (3-i)(1+3i)$	
	$=3+9i-i-3i^{2}$	1 mark : correct answer
	= 6 + 8i	
	(iii) $w\overline{w} = (1+3i)(\overline{1+3i})$	
	=(1+3i)(1-3i)	2 marks : correct answer
	$=1-9i^{2}$	<u>1 mark</u> : partially correct
	=10	
	$(iv)\frac{z}{i} = \frac{3-i}{i} \times \frac{1-3i}{i}$	
	w 1+3i 1-3i	
	$=\frac{3-9l-l+3l}{10}$	<u>2 marks</u> : correct answer
	-10i .	<u>1 mark</u> : partially correct
	$=$ $\frac{10}{10}$ $=$ $-i$	
	$\int \frac{1}{2} (-\frac{5}{2})^2 = (-\frac{5}{3})^2$	2 marks · correct solution
	(b) (1) $ z = \sqrt{5^2 + (5\sqrt{3})}$ $\arg(z) = \tan \frac{1}{5}$	<u>2 marks</u> . contect solution
	$=10$ $=\frac{\pi}{}$	<u>1 mark</u> : partially correct solution
	3	
	(b) (ii) $(r \operatorname{cis} \theta)^2 = 10 \operatorname{cis} \frac{\pi}{2}$	
	π	3 marks : correct solution
	$r^2 \operatorname{cis} 2\theta = 10 \operatorname{cis} \frac{\pi}{3}$	
	$r^2 - 10$ $2\theta - \frac{\pi}{2} + 2k\pi$	$\frac{2 \text{ marks}}{\text{solution}}$: substantially correct
	7 - 10 $20 - 3 - 200$	
	$r = \sqrt{10} \qquad \qquad \theta = \frac{\pi}{6} \pm k\pi$	<u>1 mark</u> : partially correct solution
	so the two square roots are	
	$\sqrt{10}$ cis $\frac{\pi}{6}$ and $\sqrt{10}$ cis $\frac{-5\pi}{6}$ {or $\pm \frac{\sqrt{10}}{2} (\sqrt{3} + i)$	
	$\begin{cases} (x+iy)^2 = 5 + 5\sqrt{3}i \\ x^2 - y^2 + 2xyi = 5 + 5\sqrt{3}i \\ ie x^2 - y^2 = 5 \end{cases}$	
	and $2m - 5\sqrt{2}$ $\rightarrow \int x = \frac{\sqrt{30}}{2}, -\frac{\sqrt{3}}{2}$	
	$y = \frac{\sqrt{10}}{2}, -\frac{\sqrt{10}}{2}$	

Year	12
------	----

Extension 2 Mathematics

HSC Task 2 Half Yearly 2010

Question No.3 Solutions and Marking Guidelines			
Outcomes Addressed in this Question			
sections.	ent techniques for the algebraic manipulation required in dealing with quest	ons such as those involving come	
Outcome	Solutions	Marking Guidelines	
	a $a^{2} = 144, b^{2} = 25$ $\frac{x^{2}}{144} - \frac{y^{2}}{25} = 1$ (i) $y = 0: \frac{x^{2}}{144} = 1$		
	$ \begin{array}{l} 144 \\ x^{2} = 144 \\ x = \pm 12 \\ (ii) \\ b^{2} = a^{2} \left(e^{2} - 1\right), \text{focii} \left(\pm ae, 0\right) \\ 25 \\ \end{array} $	1 mark correct answer	
	$\frac{25}{144} = e^2 - 1$ $e^2 = \frac{169}{144}$ $e = \frac{13}{12}, e > 0$ $focii at \left(\frac{13}{12} \times 12, 0\right) and \left(-\frac{13}{12} \times 12, 0\right)$ $(13, 0), (-13, 0)$	2 marks correct method leading to correct conclusion 1 marks substantial progress in proof with correct method leading to an appropriate conclusion	
	(iii) asymptotes : $y = \pm \frac{b}{a}x$ $y = \pm \frac{5}{12}x$ directrices : $x = \pm \frac{a}{e}$ $x = \pm \frac{12}{\frac{13}{12}}$ $\therefore x = \pm \frac{144}{13}$	 mark correct answer asymptote mark correct answer directrices 	
	(<i>iv</i>) $b = \pm 12, a = b$ for rectangular hyperbola (<i>v</i>)	1 mark correct answer	
	tangent of form $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$ $\frac{13x}{144} - \frac{\frac{1}{12}y}{25} = 1$ $\frac{13x}{144} - \frac{y}{300} = 1$	1 mark correct answer	
	(vi) Chord SP (13,0), $(13, \frac{1}{12})$ x = 13	1 mark correct answer	

b *(i)* $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0$ $\frac{dy}{dx} = -\frac{b^2 x}{a^2 y}$ gradient of tangent at (x_1, y_1) : $m = -\frac{b^2 x_1}{a^2 y_1}$ equation of tangent at (x_1, y_1) : $y - y_1 = -\frac{b^2 x_1}{a^2 y_1} (x - x_1)$ $a^{2}y_{1}y - a^{2}y_{1}^{2} = -b^{2}x_{1}x + b^{2}x_{1}^{2}$ $a^{2}y_{1}y + b^{2}x_{1}x = b^{2}x_{1}^{2} + a^{2}y_{1}^{2}$ $\frac{y_1y}{h^2} + \frac{x_1x}{a^2} = \frac{x_1^2}{a^2} + \frac{y_1^2}{h^2}$ $\frac{y_1y}{b^2} + \frac{x_1x}{a^2} = 1 \operatorname{as} \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1$ Similarly Q lies on $\frac{y_2 y}{h^2} + \frac{x_2 x}{a^2} = 1$ Tis the point of intersection ∴ solve simultaneously $\therefore \frac{y_1 y}{b^2} + \frac{x_1 x}{a^2} = \frac{y_2 y}{b^2} + \frac{x_2 x}{a^2}$ $\frac{x_1x}{a^2} - \frac{x_2x}{a^2} + \frac{y_1y}{b^2} - \frac{y_2y}{b^2} = 0$ $\frac{x(x_1 - x_2)}{a^2} + \frac{y(y_1 - y_2)}{b^2} = 0$ If M lies on line in Part (*ii*) then it should satisfy the equation $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Consider $\frac{x(x_1 - x_2)}{a^2} + \frac{y(y_1 - y_2)}{b^2}$ $\frac{x_1 + x_2}{2} \times \frac{(x_1 - x_2)}{a^2} + \frac{(y_1 - y_2)}{b^2} \times \frac{y_1 + y_2}{2}$ $\frac{1}{2} \left[\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - \left(\frac{x_2^2}{a^2} + \frac{y_2^2}{b^2} \right) \right]$ $\frac{1}{2} [1-1] = 0 \text{ as both } \frac{x_2^2}{a^2} + \frac{y_2^2}{b^2} = 1 \text{ and } \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1$ \therefore *M* lie on the same line as *T* from part (*ii* Substitute (0,0) into $\frac{x(x_1 - x_2)}{a^2} + \frac{y(y_1 - y_2)}{b^2} = 0$ $\frac{0 \times (x_1 - x_2)}{a^2} + \frac{0 \times (y_1 - y_2)}{b^2} = 0 \text{ which is true } \therefore O, M \text{ and } T \text{ are collinear.}$

2 marks correct method leading to correct equation
1 marks substantial progress in proof with correct method leading to an appropriate conclusion

2 marks correct method with reasoning leading to correct conclusion
1 marks substantial progress in proof with correct method leading to an appropriate conclusion

3 marks correct method leading to correct conclusion 2 marks substantial progress in proof with correct method leading to an appropriate conclusion 1 mark elementary progress towards correct solution

Note if you used gradients you had to state they had a point in common therefore were not parallel but coincident

<u>3 marks</u> : correct solution

2 marks : substantially correct

1 mark : partially correct

Year 12	Extension 2 Mathematics	HSC Task 2 Half Yearly 2010	
Question No.5. Colutions and Marking Quidelines			
Question	Outcomes Addressed in this Ouestion		
E2 chooses a	oppropriate strategies to construct arguments and proofs in both concrete and	abstract settings	
Outcome	Solutions	Marking Guidelines	
	a		
	$2^{n+1} + 2^n = 2 \times 2^n + 2^n$		
	$=2^{n}\left(2+1\right)$	1 mark correct index	
	$=3\times2^n$	expression	
	$2^{1001} + 2^{1000} = 3(2^{1000})$		
	$-\frac{3}{3} = \frac{3}{3}$		
	$=2^{1000}$	1 mark correct answer	
	b		
	(<i>i</i>)		
	$x^2 + y^2 - 2x - 14y + 25 = 0$	3 marks correct method	
	y = mx	leading to correct conclusion	
	Solve simultaneously and consider discriminants $r^{2} + (mx)^{2} - 2x - 14(mx) + 25 = 0$	2 marks substantial progress in	
	$(m^{2}+1)x^{2}-2(1+7m)x+25=0$	leading to an appropriate	
	for two solutions $\Delta > 0$	conclusion	
	$4(1+7m)^{2} - 4 \times (m^{2}+1) \times 25 > 0$	1 mark elementary progress	
	$(1+7m)^2 - (m^2+1) \times 25 > 0$	towards correct solution	
	(<i>ii</i>)		
	for tangent $\Delta = 0$	2 marks correct method	
	$(1+7m)^2 - (m^2+1) \times 25 = 0$	leading to correct conclusion	
	$49m^2 + 14m + 1 - 25m^2 - 25 = 0$	proof with correct method	
	$24m^2 + 14m - 24 = 0$ $12m^2 + 7m - 12 = 0$	leading to an appropriate	
	12m + 7m - 12 = 0 (3m + 4)(4m - 3) = 0	conclusion	
	-4 3		
	$m = \frac{1}{3}, \frac{1}{4}$		
	c		
	$P(x) = x(x-2)^{2}(x+2)^{2}$	1 mark correct answer	
	$<_{-10}^{y}$	1 mark correct graph	
	-10		

d (i)
Use Induction to prove
$$(\cos \theta + i\sin \theta)^{*} = \cos n\theta + i\sin n\theta$$

Prove True for $n = 0, 1$
LMS: $(\cos \theta + i\sin \theta)^{\circ} = 1$
RHS: $\cos x + i\sin 0 \times \theta = 1$
IHS = *RHS*
 $abson = 1: \cos \theta + i\sin \theta = \cos \theta + i\sin \theta$
 \therefore true for $n = 0, 1$
 $Assume true for $n = k$
 $l.e.(\cos \theta + i\sin \theta)^{+} = \cos k\theta + i\sin k\theta$
Prove true for $n = k$
 $l.e.(\cos \theta + i\sin \theta)^{+} = \cos k\theta + i\sin k\theta$
 $Prove true for $n = k$
 $l.e.(\cos \theta + i\sin \theta)^{+} = \cos k\theta + i\sin \theta$
 $(\cos k\theta + i\sin \theta)^{+} = \cos k(k + 1)\theta + i\sin(k + 1)\theta$
IHS: $(\cos \theta + i\sin \theta)^{+} (\cos \theta + i\sin \theta)$
 $(\cos k\theta + i\sin k\theta)(\cos \theta + i\sin \theta)$
 $(\cos k\theta + i\sin k\theta)(\cos \theta + i\sin \theta)$
 $\cos (k + 1)\theta + i\sin (k + 1)\theta$
 $= RHS$
 \therefore if the for $n = k$ is true for $n = k + 1$
Since proved true for $n = 1$ and $n = k + 1$ is true for $n = 2, 3, ...$
and hence by the process of mathematical induction
is true for all positive integral values of n .
ii
 $(\cos \theta + i\sin \theta)^{-1} = (\frac{1}{(\cos n\theta + i\sin n\theta)})$
 $= (\frac{\cos n\theta - i\sin n\theta}{(\cos n\theta - i\sin n\theta)}$
 $= (\frac{\cos n\theta - i\sin n\theta}{(\cos n\theta - i\sin n\theta)}$
 $= \cos (-\theta) + i\sin (-\theta)$
 \therefore true for negatives
iii
 $\arg(z) = \tan^{-1}(\sqrt{\frac{3}{1}}) = \frac{\pi}{3}$
 $\arg(z^{3}) = 5 \times \frac{\pi}{3} = -\frac{\pi}{3}$ (principle argument)
1 mark correct solution$$