(a) Find (i) $\quad \int \sin \left(a x+\frac{\pi}{6}\right) d x$.
(ii) $\int \sin ^{2}\left(a x+\frac{\pi}{6}\right) d x$, where a is a constant.
(b) Find $\int \frac{d x}{\sqrt{x^{2}-6 x+13}}$.
(c) Evaluate $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \sin ^{-1}(x) d x$.
(d) (i) Given that $\frac{2 x^{2}-2 x+1}{(x+1)\left(2 x^{2}+3\right)}=\frac{1}{x+1}+\frac{a x+b}{2 x^{2}+3}$,
find the real numbers a and b.
(ii) Hence, or otherwise evaluate $\int_{0}^{\frac{\sqrt{3}}{\sqrt{2}}} \frac{2 x^{2}-2 x+1}{(x+1)\left(2 x^{2}+3\right)} d x$.
(a) Given $f(x)=x^{2}-2 x$, sketch the graph of the following on separate axes

$$
\text { (i) } \quad y=f(x) \text {. }
$$

(ii) $\quad y=f(x)+|f(x)|$.
(iii) $y^{2}=f(x)$.
(iv) $y=[f(x)]^{-1}$.
(v) $\quad y=f\left(2^{x}\right)$.
(b) (i) For the Hyperbola: $H: \frac{x^{2}}{9}-\frac{y^{2}}{16}=1$, find its eccentricity e. 2
(ii) Hence, neatly sketch the graph of H, clearly showing the vertices, foci, directrices and asymptotes.
(a) An ellipse E has the equation: $E: \frac{x^{2}}{100}+\frac{y^{2}}{75}=1$.
(i) Sketch this ellipse, clearly showing on your diagram the coordinates of the foci and the equation of each directrix.
(ii) Show that the equation of the normal to the ellipse E is

$$
4 x-2 y=5 \text { at point } P\left(5,7 \frac{1}{2}\right)
$$

(iii) A circle is tangential to the ellipse E at P and at $Q\left(5,-7 \frac{1}{2}\right)$.

Show that the centre of the circle is $\left(1 \frac{1}{4}, 0\right)$.
(iv) Hence find the equation of this circle.
(b) Using the substitution: $t=\tan \frac{x}{2}$, where $0 \leq x<\pi$, show that:

$$
\int_{0}^{\frac{2 \pi}{3}} \frac{d x}{5+3 \sin x+4 \cos x}=\frac{\sqrt{3}-1}{3}
$$

(c) For $x>0$, find: $\int \frac{d x}{x^{4}+x}$.
(a) The point $S(3 e, 0)$ is a focus of the hyperbola $H: x^{2}-y^{2}=9$.

The tangent to the hyperbola, at the point $P(p, q)$, meets the asymptotes of H in T and W, as shown in the diagram below.

Not to scale
(i) Show that the equation of the tangent $T W$ is given by: $p x-q y=9 . \quad 1$
(ii) Show that the gradient of the line through $S W$ is given by

$$
m_{S W}=\frac{3}{e(p+q)-3}
$$

(iii) By letting $\angle W S T=\theta$, find the value of $\tan \theta$.
(b)

Let $I_{n}=\int_{o}^{\frac{\pi}{4}} \tan ^{n} x d x$, for $n=0,1,2, \ldots$
(i) Show that $I_{1}=\frac{1}{2} \ln 2$.
(ii) Show that, $I_{n}+I_{n-2}=\frac{1}{n-1}$, for $n=2,3,4, \ldots$
(iii) Explain why $I_{n}<I_{n-2}$, for $n \geq 2$, and deduce that

$$
\frac{1}{2 n+2}<I_{n}<\frac{1}{2 n-2} .
$$

(iv) By using the recurrence relation in part (b) (ii),
find I_{5}, and deduce that: $\quad \frac{2}{3}<\ln 2<\frac{3}{4}$.
THE END
() $)=$
vestion 1
i) $\int \sin (a x+\pi / 6) d x=-\frac{1}{a} \cos \left(a x+\frac{\pi}{6}\right)+c$ i) $\int \sin ^{2}(a x+\pi / 6) d x$
$=\frac{1}{2} \int[1-\cos 2(a x+\pi / L)] d x$ (1)
$=\frac{x}{2}-\frac{1}{4 a} \sin 2\left(a x+\frac{\pi}{6}\right)+c$ (1)
2) $\int \frac{1}{x^{2}-6 x+13} d x$
$\int \frac{1}{(x-3)^{2}+4} d x$

$$
=\frac{1}{2} \tan ^{-1}\left(\frac{x-3}{2}\right)+c
$$

(1) (1)

$$
\int_{1 / 2}^{\sqrt{3} / 2} \sin ^{-1} x d x=\left[x \sin ^{1} x\right]_{\frac{1}{2}}^{\frac{5}{2}}-\int_{1 / 2}^{\sqrt[3]{2}} \frac{x}{\sqrt{1-x^{2}}} d x
$$

$$
\left.\frac{\sqrt{3}}{2} \sin ^{-1} \frac{\sqrt{3}}{2}-\frac{1}{2} \sin ^{-1} \frac{1}{2}\right)+\int_{1 / 2}^{5 / 2} \frac{d(1-x)}{\sqrt{1-x^{2}}}
$$

$$
\frac{\sqrt{3} \pi}{6}-\frac{\pi}{12}+\frac{1}{2}\left[\left(1-x^{2}\right)^{10}\right]_{\frac{1}{2}}^{1 / 6 / 2}
$$

$$
\frac{\sqrt{3} \pi}{6}-\frac{\pi}{12}+\frac{1}{2}\left(\frac{1}{2}-\frac{\sqrt{3}}{2}\right)
$$

$\frac{2 \sqrt{3} \pi-\pi+3-3 \sqrt{3}}{12}$
d) $\frac{2 x^{2}-2 x+1}{(x+1)\left(2 x^{2}+3\right)}=\frac{1}{x+1}+\frac{a x+b}{2 x^{2}+3}$ RHS $=\frac{2 x^{2}+3+(a x+b)(x+1)}{(x+1)\left(2 x^{2}+3\right)}$

$$
=\frac{(2+a) x^{2}+x(a+b)+b+3}{(x+1)\left(2 x^{2}+3\right)}
$$

$$
\begin{aligned}
& \text { equating coefficiets: } \\
& 2=2+a \quad \therefore a=0 \\
& -2=a+b
\end{aligned} \quad \begin{aligned}
1 & =b+3
\end{aligned} \quad \text { and } b=-2 \text { (1) }
$$

$$
\begin{equation*}
\text { ii) } \int_{0}^{\frac{\sqrt{3}}{2}}\left[\frac{1}{x+1}+\frac{-2}{2 x^{2}+3}\right] d x \tag{1}
\end{equation*}
$$

$$
=\left[\ln (x+1)+\frac{-1}{\sqrt{3}} \tan ^{-1}\left(\frac{\sqrt{2}}{\sqrt{3}} x\right)\right]_{0}^{\sqrt[3]{2} / \sqrt{2}}
$$

$$
=[\ln (x+1)]_{0}^{\sqrt[3]{3} / 2}+-\frac{\sqrt{2}}{\sqrt{3}}\left[\tan ^{-1} \frac{\sqrt{2} x}{\sqrt{3}}\right]_{0}^{\frac{\sqrt{3}}{\sqrt{2}}} \text { (1) }
$$

$$
=\ln \left(\frac{\sqrt{3}}{\sqrt{3}}+1\right)+-\frac{\sqrt{2}}{\sqrt{3}}\left(\tan ^{-1} 1-\tan ^{-1} 0\right)(1
$$

$$
\begin{equation*}
=\ln \left(\frac{\sqrt{3}}{\sqrt{2}}+1\right)+\frac{\sqrt{2}}{\sqrt{3}} \frac{\pi}{4} \tag{1}
\end{equation*}
$$

Question 2
a) i) $y=x^{2}-2 x$

iv) $y=[f(x)]^{-1}=\frac{1}{x^{2}-2 x}$

b) i) $b^{2}=a^{2}\left(e^{2}-1\right)$

$$
\begin{gathered}
16=9\left(e^{2}-1\right) \\
\frac{16}{9}+1=e^{2} \\
e=\frac{5}{3}
\end{gathered}
$$

ii)

(1) for diredrices
(1) for vertices
(1) for asy-piltes
(1) for focilshape
(2)

Question 3
a) i) $\frac{x^{2}}{100}+\frac{y^{2}}{75}=1$
$a=10 \quad b=\sqrt{75}=5 \sqrt{3}$
$b^{2}=a^{2}\left(1-e^{2}\right)$
$\frac{75}{100}=1-e^{2}$
$e^{2}=1 / 4$
$e=\frac{1}{2}$ (i) \quad loci are $(\pm 5,0)$ $e=\frac{1}{2}$
iv)

$$
\begin{aligned}
\text { radius } & =\sqrt{(5-1 / 4)^{2}+\left(7^{1 / 2}-0\right)^{2}} \\
& =\sqrt{3^{3} 4^{2}+71^{2}} \\
& =\sqrt{\frac{225}{16}+\frac{900}{16}} \\
& =\frac{\sqrt{1125}}{4}
\end{aligned}
$$

eqn. ff ard is:

$$
\begin{aligned}
& \text { as are } \\
& x= \pm 20
\end{aligned}
$$

ii) Differentiate with respect to x :

$$
\begin{aligned}
\frac{2 x}{100}+\frac{2 y}{75} \cdot \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =-\frac{x}{50} \cdot \frac{75}{2 y}=-\frac{3 x}{4 y}
\end{aligned}
$$

(1) At $P\left(5,7^{1 / 2}\right) \frac{d y}{d x}=-\frac{3(5)}{4\left(7^{1 / 2}\right)}=-\frac{1}{2}$
\therefore gradient of normal is 2 . eqn. of normal is:

$$
\begin{aligned}
y-7^{1 / 2} & =2(x-5) \\
y & =2 x-2^{1 / 2} \\
2 y & =4 x-5
\end{aligned}
$$

iii) The intersection of the the x-axis, the centre of the

$$
\text { ie } 4 x-2 y=5
$$ normals at P and Q will lie on tangential circle is paint of intersection of these 2 normals.

$$
\begin{align*}
1 & =-2\left[\frac{1}{t+3}\right]_{0}^{\sqrt{3}} \tag{1}\\
& =\frac{-2}{\sqrt{3}+3}+\frac{2}{3} \\
& =\frac{-2 \sqrt{3}+6}{3-9}+\frac{2}{3} \\
& =\frac{2 \sqrt{3}-2}{6} \\
& =\frac{\sqrt{3}-1}{3} \quad Q \in P \\
u & =\frac{1}{x^{3}}
\end{align*}
$$

$$
=\int \frac{\frac{1}{x}+d x}{1+\frac{1}{x^{3}}}
$$

(1)

$$
\frac{d u}{d x}=-\frac{3}{x}+\quad \therefore-\frac{1}{8} d u=\frac{1}{x} d x
$$

(1) sub in $y=0$ (lies on x-avis $=-\frac{1}{2} \int \frac{d u}{1}=-\frac{1}{2} \ln (1+u)+c$

Question 4
a) i)

$$
\begin{gathered}
x^{2}-y^{2}=9 \\
2 x-2 y \frac{d y}{d x}=0 \\
\therefore \frac{d y}{d x}=\frac{x}{y}
\end{gathered}
$$

at $P(p, q) \quad \frac{d y}{d x}=\frac{p}{q}$
eq. of tangent at p is:

$$
\begin{aligned}
& y-q=\frac{p}{q}(x-p) \\
& q y-q^{2}=p x-p^{2} \\
& p^{2}-q^{2}=p x-q y
\end{aligned}
$$

bot p lies on the Hyperbola
(12)

$$
\therefore p^{2}-q^{2}=9
$$

So tangent is $p x-q y=9$
ii) W lies on tangent at P and the asymptote $y=-x$

$$
\begin{gathered}
\therefore p x+q x=9 \\
x=\frac{q}{p+q} \\
\therefore w \text { is }\left(\frac{q}{p+q}, \frac{-q}{p+q}\right)
\end{gathered}
$$

Gradient of $s \omega=\frac{0-\frac{q}{p+q}}{3 e-\frac{q}{p+q}}$
iii) Ties on $y=x$ and ion the tangent at P

$$
\begin{aligned}
\therefore p x-q x & =9 \\
x & =9
\end{aligned}
$$

QED.
(1)

$$
\therefore T \text { is }\left(\frac{q}{p-q}, \frac{q}{p-q}\right)
$$

Grad of $S T=\frac{3}{3-e(p-q)}$
If $<\omega S T=\theta$ then

$$
\tan \theta=\frac{m_{2}-m_{1}}{1+m_{2} m_{1}}
$$

$$
\tan \theta=\frac{\frac{3}{e(p+q)-3}-\frac{3}{3-e(p-q)}}{1+\frac{q}{[e(q+q)-3][3-e(p-q)]}}
$$

$$
\begin{aligned}
\tan \theta & =\frac{3[3-e(p-q)]-3[e(p+q)-3]}{[e(p+q)-3][3-e(p-q)]+9} \\
& =\frac{9-3 e p+3 e q-3 e p-3 e q+9}{(e p+e q-3)(3-e p+e q)+9}
\end{aligned}
$$

(1) $=\frac{18-6 e p}{3 e p-e^{2} p^{2}+e^{2} p q+3 e q-e^{2} p q+e^{2} q^{2}-6}$ $+3 e p-3$ eq +

$$
=\frac{6(3-e p)}{6 e p-e^{2}\left(p^{2}-q^{2}\right)}
$$

$$
\begin{align*}
& =\frac{6(3-e p)}{6 e p-9 e^{2}} \quad\left[a s p^{2}-q^{2}=9\right] \\
& =\frac{6(3-e p)}{6 e p-18} \quad\left[a s e^{2}=2\right] \\
& =\frac{6(3-e p)}{6(e p-3)} \quad \tag{1}
\end{align*}
$$

$\therefore \tan \theta=-1$
$=\frac{9}{3 e(p+q)-9} \quad$ b) i) I_{1} is when $n=1$

$$
=\frac{3}{e(p+q)-3}
$$

$$
I_{1}=\int_{0}^{\pi / 4} \tan x d x
$$

$$
=\int_{0}^{\pi / 4} \frac{\sin x}{\cos x} d x
$$

$$
=[-\ln (\cos x)]_{0}^{\pi / 4}
$$

$$
=-\ln \cos \pi / 4+\ln \cos 0
$$

$$
--\ln 1
$$

b) cont.
ii) show $I_{n}+I_{n-2}=\frac{1}{n-1}$

$$
\text { LHS }=I_{n}+I_{n-2}
$$

QED.
iii) let area represent In $\therefore A_{n}=I_{n}$ now $0 \leqslant x \leqslant \pi / 4$
for $n \geqslant 2$
ie $0 \leqslant \tan ^{n+2} x<\tan ^{n} x<\tan ^{n-2} x<\ldots .<\tan ^{2} x<\tan x \leqslant 1$ for $n \geqslant 2$
now for $\int_{0}^{\pi / 4} \cdots \cdot d x$
iv) when $n=5 \Rightarrow \frac{1}{10+2}<I_{5}<\frac{1}{10-2}$

$$
=\int_{0}^{\pi / 4}\left(\tan ^{n} x\right) d x+\int_{0}^{\pi / 4} \tan ^{n-2} x d x
$$

$$
\therefore \frac{1}{12}<I_{s}<\frac{1}{8}
$$

now

$$
=\int_{0}^{\pi / 1}\left(\tan ^{2} x+\tan ^{n-2} x\right) d x
$$

$$
=\int_{0.4}^{4} \tan ^{n-2} x\left(\tan ^{2} x+1\right) d x
$$

$$
=\int_{0}^{\pi / 4} \tan ^{n-2} x \cdot \sec ^{2} x d x
$$

$$
=\left[\frac{1}{n-1} \tan ^{n-1} x\right]_{0}^{\pi / 4}
$$

$$
\begin{aligned}
& I_{5}+I_{3}=\frac{1}{4} \quad \text { from } \\
& I_{3}+I_{1}=\frac{1}{2} \\
& I_{3}+\frac{1}{2} \ln 2=\frac{1}{2} \quad \text { (as } I_{1}=\frac{1}{2} \\
& I_{3}
\end{aligned}=\frac{1}{2}-\frac{1}{2} \ln 2 \quad \begin{aligned}
\therefore I_{5} & =\frac{1}{4}-\left(\frac{1}{2}-\frac{1}{2} \ln 2\right) \\
& =-\frac{1}{4}+\frac{1}{2} \ln 2
\end{aligned}
$$

$$
=\frac{1}{n-1}\left[\tan ^{n-1} \pi / 4 / 4-\tan ^{n-1} 0\right]
$$

So $\frac{1}{12}<-\frac{1}{4}+\frac{1}{2} \ln 2<\frac{1}{8}$

$$
=\frac{1}{n-1}(1-0)
$$

$$
=\frac{1}{n-1}
$$

$$
\therefore \quad \frac{2}{3}<\ln 2<\frac{3}{4}
$$

$$
\begin{aligned}
\therefore 0 & \leqslant \tan x \leqslant 1 \\
\text { so } 0 & \leqslant \tan ^{\infty} x
\end{aligned}
$$

becomes

$$
\begin{align*}
& 0 \leqslant I_{n+2}<I_{n}<I_{n-2}<\ldots<I_{2}<I_{1} \leqslant \pi / 4 \tag{1}\\
& I_{n}<I_{n-2} \\
& \text { now } I_{n+2}<I_{n}<I_{n-2} \\
& I_{n+2}+I_{n}<2 I_{n}<I_{n}+I_{n-2} \\
& \frac{1}{n+1}<2 I_{n}<\frac{1}{n-1} \\
& \frac{1}{2(n+1)}<I_{n}<\frac{1}{2(n-1)} \quad \text { for }
\end{align*}
$$

