QUESTION 1: START A NEW PAGE

Marks

(a) Evaluate: $\int_{0}^{\frac{\pi}{2}} \cos ^{7} x \sin x d x$
(b) Find $\int \frac{d x}{(x+1)\left(x^{2}+2\right)}$

4
(c) Use the substitution $t=\tan \frac{\theta}{2}$ to evaluate

4
$\int_{0}^{\frac{\pi}{3}} \frac{1}{1+\sin \theta} d \theta$
(d) (i) Find the equations to the two tangents to the hyperbola $\frac{x^{2}}{4}-y^{2}=1$ which are parallel to the line $2 x-y=3$.
(ii) Show that the distance between these two tangents is $2 \sqrt{3}$ units.

QUESTION 2: START A NEW PAGE

(a) The diagram shows the graph of $y=f(x)$ for $-5 \leq x \leq 5$.

Draw separate sketches of the graphs of the following for $-5 \leq x \leq 5$.
(i) $y=\frac{1}{f(x)}$
(ii) $\quad y=f(x)-|f(x)|$
(iii) $y=e^{f(x)}$
(iv) $y=[f(x)]^{2}$
(b) Points $P(a \cos \theta, b \sin \theta)$ and $Q(a \cos \phi, b \sin \phi)$ lie on the ellipse

$$
\frac{x^{2}}{4}+\frac{y^{2}}{3}=1, \quad \text { where } \phi=\theta+\frac{\pi}{2} .
$$

(i) Show that the gradient of the tangent at Q is $\frac{\sqrt{3} \sin \theta}{2 \cos \theta}$.
(ii) If α is the acute angle between the tangents at P and Q prove that

$$
\tan \alpha=\frac{4 \sqrt{3}}{|\sin 2 \theta|}
$$

(iii) Find the value of $O P^{2}+O Q^{2}$ where O is the centre of the ellipse.

QUESTION 3: START A NEW PAGE

(a) (i) If $I_{n}=\int \sin ^{n} x d x$ show that:

Marks
3

3

4 $R(a \cos (\theta-\phi), b \sin (\theta-\phi))$ are three points on the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Show that $O P$ bisects the chord $Q R$, where O is the origin.
(c) (i) Use the substitution of $u=\pi-x$ to show:

$$
\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \frac{x}{\sin x} d x=\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \frac{\pi-x}{\sin x} d x
$$

(ii) Evaluate $\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \frac{x}{\sin x} d x$

3
[You may assume $\int \operatorname{cosec} \theta d \theta=\ln |\operatorname{cosec} \theta-\cot \theta|$]

QUESTION 4: START A NEW PAGE

Marks

(a) Evaluate: $\int_{0}^{2} x e^{2 x} d x$

2

2 number plane without using calculus.
(a) $y=\frac{x}{2}$
(ß) $y=\sin x$
(ii) Sketch on a separate number plane the graph of

$$
y=\frac{2 \sin x}{x} \text { for }-2 \pi \leq x \leq 2 \pi
$$

(c) A hyperbola has the equation:

$$
\frac{x^{2}}{3}-\frac{y^{2}}{2}=1
$$

(i) Find the coordinates of the foci.

The equation of the tangent to the hyperbola at $P(\sqrt{3} \sec \theta, \sqrt{2} \tan \theta)$ is:

$$
\sqrt{2} x \sec \theta-\sqrt{3} y \tan \theta=\sqrt{6} .
$$

(Do not prove this equation)

(ii) Show that the equation of the normal at P is:

$$
\sqrt{3} x \tan \theta+\sqrt{2} y \sec \theta=5 \sec \theta \tan \theta
$$

The tangent and normal to the hyperbola at P cut the y axis at T and N respectively.
(iii) Show that the circle with $T N$ as diameter passes through the foci of the hyperbola.

END OF EXAMINATION

Term / HSC EXT II 2006
a)

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \cos ^{7} x \sin x d x \\
& =-\int_{0}^{\pi / 2}-\sin x \cos ^{5} x d x
\end{aligned}
$$

This is of the form: $-\int f^{\prime}(x)[(x)]^{7} d x$

$$
\begin{aligned}
& =\left[-\frac{\operatorname{cog}^{8} x}{8}\right]_{0}^{\pi / 2} \\
& =-0-\left(-\frac{1}{8}\right) \\
& =\frac{1}{8}
\end{aligned}
$$

Write as partial fractions

$$
\begin{aligned}
& \int \frac{d x}{(x+1)\left(x^{2}+2\right)}=\int\left[\frac{A}{(x+1)}+\frac{B x+c}{\left(x^{2}+2\right)}\right] d x \\
& \therefore 1 \equiv A\left(x^{2}+2\right)+(B x+C)(x+1) \\
& \quad=A x^{2}+2 A+B x^{2}+B x+C x+C
\end{aligned}
$$

Equate coefficients

$$
\begin{array}{rl}
A+B=0 & A=-B \\
B+C=0 \quad & C=-B \\
2 A+C=1 & \therefore-2 B-B=1 \\
\therefore B=-1 / 3 \\
A=1 / 3 \\
C=1 / 3
\end{array}
$$

$$
\frac{1}{3} \int\left(\frac{1}{x+1}+\frac{-x+1}{x^{2}+2}\right) d x
$$

$$
=\frac{1}{3} \int\left(\frac{1}{x+1}-\frac{\frac{1}{2}(2 x)}{x^{2}+2}+\frac{1}{x^{2}+2}\right) d x
$$

$$
=\frac{1}{3}\left[\ln |x+1|-\ln \left(x^{2}+2\right)+\tan ^{-1} \frac{x}{\sqrt{2}}\right]
$$

$$
=\frac{1}{3}\left[\ln \left(\frac{(x+1)}{\sqrt{x^{2}+2}}\right)+\tan ^{-1} \frac{x}{\sqrt{2}}\right]+c
$$

(L)
(1) For correct integration.
(1) for correct substitution and answer.

$$
\begin{aligned}
& \int_{0}^{\pi / 3} \frac{1}{1+\sin \theta} d \theta \\
& t=t a n=\frac{1}{2} \theta \\
& \frac{d t}{d \theta}=\frac{1}{2} \sec ^{2} \frac{1}{2} \theta \\
& =\frac{1}{2}\left[1+t^{2}\right] \\
& \theta=\frac{\pi}{3} \quad t=\frac{1}{\sqrt{3}} \\
& \theta=0 \quad t=0 \\
& \int_{0}^{\frac{1}{3}} \frac{1}{\left.1+\frac{(2 t}{(1+t}\right)}\left(\frac{2}{1+t^{2}}\right) d t \\
& =\int_{0}^{\frac{1}{13}} \frac{2}{1+t^{2}+2 t} d t \\
& =\int_{0}^{\frac{5}{3}} \frac{2}{(1+t)^{2}} d t \\
& =\left[\frac{-2}{(1+t)}\right] \\
& =-2\left[\frac{1}{\left.1+\frac{1}{\sqrt{3}}\right)}-\frac{1}{1}\right] \\
& =-2\left[\frac{\sqrt{3}}{\sqrt{3}+1}-\left(\frac{\sqrt{3}+1)}{(\sqrt{3}+1)}\right]\right. \\
& =\frac{-2}{(\sqrt{3}+1)}(-1) \\
& =\frac{2}{\sqrt{3}+1} \\
& =\frac{2(\sqrt{3}-1)}{2}
\end{aligned}
$$

(1) for integration to $\tan ^{-1} \frac{x}{\sqrt{2}}$
(1) correct derivative in" " and change of limit values
(1) correct change of namable in integral
(1) correct integration
(1) correct substitution and simplified answer
(rationalised denominator not necessary for full marks)
$1(d)$

$$
\text { (i) } \frac{x^{2}}{x}-y^{2}=1
$$

tangent parallel to $2 x-y=3$ mist be en the form

$$
\begin{aligned}
& y=2 x+c \\
\therefore & \frac{x^{2}}{4}-(2 x+c)^{2}=1 \\
& \frac{x^{2}}{4}-\left(4 x^{2}+4 x c+c^{2}\right)=1 \\
\therefore & x^{2}-16 x^{2}-16 x c-4 c^{2}=4 \\
\therefore & 15 x^{2}+16 x c+4\left(c^{2}+1\right)=0
\end{aligned}
$$

$$
\therefore A=(16 c)^{2}-4 \times 15 \times 4\left(c^{2}+1\right)
$$

(1) correct substitution

$$
\text { as line is a tangent }: \Delta=0
$$ of $y=2 x+c$

$$
0=16^{2} c^{2}-16 \times 15\left(c^{2}+1\right)
$$

(1) correct \triangle

$$
0=16 c^{2}-15 c^{2}-15
$$

$$
c^{2}=15
$$

(1) correct tangent equations.

$$
c= \pm \sqrt{15}
$$

Alternative solutions using

$$
\frac{x x_{1}}{4}-y y_{1}=0
$$

are ale possible.
(ii)

Alternative solutions using
pere distance formula
(1) Derwative/gradint
(1) Equation of tangos to hyperbola.
(1) Equation getargends
(1) calculation of $\cos \theta$
(1) correct distance.
(1) point on line
(1) correct distance.

(1) asymptotes + intercepts
(1) Shape.
(1) $y=0-4 \leqslant x<4$
(1) graph for
$-5 \leq x \leq 4$ an ci.
$+4 \leq x \leq 5$.
(1) values for $x=0$ and $x= \pm I_{r}$ (6) Shape.

(1) Endpoints and ontiercepts
(1) shape.

$$
\begin{aligned}
(i)(b)
\end{aligned}
$$

(ii) gradient of tangent at P is

$$
\left.\begin{aligned}
& \frac{-\sqrt{3}}{2} \frac{\cos \theta}{\sin \theta} \\
\tan \alpha & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{\sqrt{3}}{2} \frac{\sin \theta}{\cos \theta}-\frac{-\frac{\sqrt{3} \cos \theta}{\sin \theta}}{1+\frac{\sqrt{3}}{2} \frac{\sin \theta}{\cos \theta} \times-\frac{\sqrt{3}}{2} \frac{\cos \theta}{\sin \theta}}\right| \\
& =\left\lvert\, \frac{\frac{\sqrt{3}}{2}\left[\sin ^{2} \theta+\cos ^{2} \theta\right]}{\cos \theta \sin \theta}\left(1-\frac{3}{4}\right)\right.
\end{aligned} \right\rvert\,
$$

(1) derivative
(1) correct substitution and proof.
(1) correct gradient of tangent at P
(1) correct substitution into formula.
(1) correct simplification
$O P^{2}$ and $O Q^{2}$ equations

$$
\begin{aligned}
O P^{2} & =a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta \\
O Q^{2}= & a \cos ^{2} \phi+b^{2} \sin ^{2} \phi \\
= & a^{2} \cos ^{2}(\theta+\pi / 2)+b^{2} \sin ^{2}(\theta+\pi / 3 \\
& =a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta \\
\therefore Q P^{2}+a Q^{2} & =a^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right. \\
& +b^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =a^{2}+b^{2} \\
& =4+3 \\
& =7
\end{aligned}
$$

$P(a \cos \theta, b \sin \theta)$
$Q(a \cos (\theta+\phi), b \sin (\theta+\phi))$
$R(a \cos (\theta-\phi), b \sin (\theta-\phi))$
Midpoint $Q R=M\left(x_{1}, y_{1}\right)$
$\begin{aligned} \text { (i) } I_{n} & =\int \sin ^{n} x d x . \\ & =-\cos x \sin ^{n-1} x+\end{aligned}$

$$
+\int \cos x(n-1) \sin ^{n-2} \cos x d x
$$

(1) integration by parls

$$
=-\cos x \sin ^{n-1} x+(n-1) \int \sin ^{n-2} x \cos ^{2} x d x .
$$

$$
==\cos x \sin ^{n-1} x+(n-1) \int \sin ^{n-2} x /\left(1-\sin ^{2} x\right) d x
$$

$$
\equiv-\cos x \sin ^{n-1} x+(n-1) \int \sin ^{n-2} x d x-(n-1) \int \sin ^{n} x d x
$$

$$
\begin{equation*}
\equiv=\cos x \sin ^{n-1} x+(n-1) I_{n-2}-(n-1) I_{n} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
x_{1} & =\frac{a}{2}(\cos (\alpha+\phi)+\cos (\theta-\phi)) \\
& =\frac{a}{2}[\cos \theta \cos \phi-\sin \theta \sin \phi+ \\
& =\frac{a}{2}[2 \cos \theta \cos \phi+\sin \theta \sin \phi] \\
& =a \cos \theta \cos \phi \\
y_{1} & =\frac{b}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)] \\
& =\frac{b}{2}[\sin \theta \cos \phi+\cos \theta \sin \phi+ \\
& =b / 2[2 \sin \theta \cos \phi-\cos \theta \sin \phi] \\
& =b \cos \phi]
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
& \int \sin ^{5} x d x=I_{5} \\
I_{5} & =-\frac{1}{5} \cos x \sin ^{4} x+\frac{4}{5} I_{3} \\
I_{3} & =-\frac{1}{3} \cos x \sin ^{2} x+\frac{2}{3} I_{1} \\
I_{1} & =\int \sin x d x \\
& =-\cos x+C
\end{aligned}
$$

$$
\begin{aligned}
& I_{n}(1-(n-1))=-\cos x \sin ^{n-1} x+(n-1) I_{n-2} \\
& n I_{n} \equiv=\cos x \sin ^{n-1} x+(n-1) I_{n-2} \\
& I_{n}=-\frac{1}{n} \cos x \sin ^{n-1} x+\left(\frac{n-1}{n} I_{n-2}\right.
\end{aligned}
$$ to Im.

(1) correct

$$
\begin{align*}
I_{5}= & -\frac{1}{5} \cos x \sin ^{4} x+ \tag{1}\\
& 4 / 5\left[-\frac{1}{3} \cos x \sin ^{2} x\right]+ \\
& \frac{4}{5} \times \frac{2}{3}[-\cos x]+C . \\
& =-\frac{1}{5} \cos x \sin ^{4} x-\frac{4}{15} \cos x \sin ^{2} x \\
& -\frac{8}{15} \cos x+C
\end{align*}
$$

comect addition. \int of terms.
(1) Ansuver
$\dot{3(c)} \int_{\pi / 3}^{2 \pi / 3} \frac{x}{\sin x} d x$

$$
\begin{aligned}
& u=\pi-x . \\
& \frac{d u}{d x}=-1 \\
& x=2 \pi / 3 \\
& u=\pi / 3 \\
& x=\pi / 3 \quad u=\pi=2 \pi / 3 . \\
& \cdots \int_{\pi / 3}^{2 \pi / 3} \frac{x}{\sin x} d x=\int_{2 \pi / 3}^{\pi / 2} \frac{(\pi-u)(-1)}{\sin (\pi-u)} d u \\
& =\int_{\pi / 3}^{2 \pi / 3} \frac{\pi-u}{\sin u} d u \\
& \left(\begin{array}{c}
\text { change of } \\
\text { varabile } \\
u=x
\end{array}\right)=\int_{\pi / 3}^{2 \pi / 3} \frac{\pi-x}{\sin x} d x \\
& \begin{array}{l}
\therefore \int_{\pi / 3}^{2 \pi / 3} \frac{x}{\sin x} d x=\int_{\pi / 3}^{2 \pi / 3} \frac{\pi-x}{\sin x} d x \\
\int_{\pi / 3}^{2 \pi / 3} \frac{x}{\sin x} d x=\int_{\pi / 3}^{2 \pi / 3} \frac{\pi}{\sin x} d x-\int_{2 \pi / 3}^{\pi / 3} \frac{x}{\sin x} d x
\end{array} \\
& \therefore 2 \int_{\pi / 3}^{2 \pi / 3} \frac{x}{\sin x} d x=\pi \int_{2 \pi / 3}^{2 \pi / 3} \frac{1}{\sin x} d x \\
& =\pi \int_{\pi / 3}^{2 \pi / 3 / 3} \operatorname{cosec} x d x \\
& \left.\left.\int_{\frac{\pi}{3}}^{2 \pi / 3} \frac{x}{\sin x} d x=\frac{\pi}{2}[\ln \mid \operatorname{cosec} x-\cot x] \right\rvert\,\right] \\
& =\frac{\pi}{2}\left[\ln 1 \frac{\operatorname{cosec} 2 \pi / 3-\cot / 4}{\operatorname{cosec} \pi / 3}-\cot \pi / 3\right] \\
& =\frac{\pi}{2} \ln w\left[\frac{\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}}{\frac{2}{\sqrt{3}}-\frac{1}{\sqrt{3}}}\right] \\
& =\frac{\pi}{2} \ln 3
\end{aligned}
$$

(1)
derivative and change of variable linit values
(1) wrrect substitition and change of varable.
(1) splitting + combining inlegrals
(1) integration and substitution of values
(1) Simplified answere.
$4(a) \quad \int_{0}^{2} x e^{2 x} d x$.
$=\left[\frac{1}{2} e^{2 x} \cdot x\right]_{0}^{2}-\int_{0}^{2} \frac{1}{2} e^{2 x}(1) d x$.
$=\left[\frac{1}{2} e^{4} \cdot x-\frac{1}{2} e^{0} \cdot 0\right]-\frac{1}{4}\left[e^{2 x}\right]_{0}^{2}$

$$
=e^{4}-\frac{1}{4}\left(e^{4}-e^{0}\right)
$$

(1) Integration by parts
(1) complete integration + aubstitut correctly correcis

$$
=e^{4}-\frac{e^{4}}{4}+\frac{1}{4}
$$

$$
=\frac{3 e^{4}+1}{4}
$$

$$
\text { fcc) }\left(\begin{array}{l}
\left(1 a x^{2}\right. \\
3 \\
-\frac{y^{2}}{2}=1 \\
a^{2}=3 \\
b^{2}=2 \\
b^{2}=a^{2}\left(e^{2}-1\right) \\
2=3\left(e^{2}-1\right) \\
\frac{2}{3}=e^{2}-1 \\
e^{2}=\frac{5}{3} \\
e=\sqrt{7 / 3}
\end{array}\right.
$$

\therefore Foci $y=0 \quad x= \pm a e$

$$
= \pm \sqrt{3} \frac{\sqrt{5}}{\sqrt{3}}
$$

$$
= \pm \sqrt{5}
$$

$$
\text { foot }=(\pm \sqrt{\xi}, 0)
$$

(ii) Equation to tangent atpis:
$\sqrt{2} x \sec \theta-\sqrt{3} y \tan \theta=\sqrt{6}$
Equation to perpendicular lines:
$\sqrt{3} x \tan \theta+\sqrt{2} y \tan \theta=c$
Normal passes through P

$$
\therefore \sqrt{3}(\sqrt{3} \sec \theta) \tan \theta+\sqrt{2}(\sqrt{2} \tan \theta)=c
$$

$\therefore 3 \sec \theta \tan \theta+2 \tan \theta \sec \theta-c$
\therefore Equation to normal is.
$\sqrt{3} x \tan \theta+\sqrt{2} y \sec \theta=5 \sec \theta \tan \theta$
(iii) Equation of tangent
$\sqrt{2} x \sec \theta-\sqrt{3}$ y $\tan \theta=\sqrt{6}$ y intercept $x=0$
$\therefore y=-\frac{\sqrt{6}}{\sqrt{3} \tan \theta} \quad(\tan \theta \neq 0)$

$$
\begin{aligned}
& \therefore y=-\frac{-\sqrt{6}}{\sqrt{3} \tan \theta} \quad(\tan \theta \neq 0) \\
& \therefore T=\left(0,-\frac{\sqrt{2}}{\tan \theta)}\right.
\end{aligned}
$$

Equation of normal
$\sqrt{3} x \tan \theta+\sqrt{2} y \sec \theta=5 \sec \theta d \sin \theta$

$$
x=0 \quad y=\frac{5 \tan \theta}{\sqrt{2}} \quad(\sec \theta \neq 0)
$$

$$
\therefore N=\left(0, \frac{5 \tan \theta}{\sqrt{2}}\right)
$$

(1) $y \operatorname{coord}$ of N
gradient of $8 N$

$$
\begin{aligned}
m_{S N} & =\frac{\frac{5 \tan \theta}{\sqrt{2}}-0}{0-\sqrt{5}} \\
& =\frac{-\sqrt{5} \tan \theta}{\sqrt{2}}
\end{aligned}
$$

gradient ST

$$
\begin{aligned}
m_{\text {ST }} & =\frac{\frac{-\sqrt{2}}{\tan \theta}-0}{0-\sqrt{5}} \\
& =\frac{\sqrt{2}}{\sqrt{5} \tan \theta} \\
\therefore m_{B N} & \times m_{B T} \\
& =-\frac{\sqrt{5} \tan \theta}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{5} \tan \theta} \\
& =-1
\end{aligned}
$$

$\therefore \quad S N$ is perpendicular
to ST
\therefore Focus $S(\sqrt{5}, 0)$ is on circle with diameter TN (angle in a semicircle is 90°)
Similarly for s' $(-\sqrt{5}, 0)$ by
symmetricly. (or Eurtherproof)
Alternate Solutions:
(o) Find equation to circle through
rand N and test sands'
(b)

Find midpoint of TN and then distances to T, sand s^{\prime}
(1) gradentssT and.
(1) Shewing

ST perm to $S N, \ldots$, geometric reason why g is on on the uncle.
(1) Reason for rit on circle (no marks for father figure.)
(1) Equation of circle (1) Test for se encircle (1) Test/reascus si circle
(1) midponit of TNand distance to T
(1) distance to s
(1) Reason fer' b.

