#### **QUESTION 1**

(i)

|     |           | $\frac{4}{c}$ x                        | Marks |
|-----|-----------|----------------------------------------|-------|
| (a) | Evaluate: | $\int_{0} \frac{dx}{\sqrt{9+x^2}} dx.$ | 2     |

(b) Find:

$$\int \frac{1}{1+e^{-x}} \, dx \, . \tag{2}$$

(ii) 
$$\int \sec x \tan^3 x \, dx$$
.

(c) An ellipse has the equation  $\frac{x^2}{4} + y^2 = 1$ .

- (i) Calculate the eccentricity for this ellipse.
- (ii) Draw a neat sketch of the ellipse, clearly labelling the foci, directrices and **3** intercepts with the coordinate axes.

2

1

(d) Find the coordinates of the points on the graph of  $x^3 + y^3 = 3xy$  at which the tangent lines 4 are parallel to the *x*-axis.

### **QUESTION 2 START A NEW PAGE**

(a) The diagram below shows the graph of y = f(x). The graph has a horizontal asymptote at y = 0.



Draw, on separate sets of axes, sketches of the following graphs.

(i) 
$$y = f(|x|)$$

(ii) 
$$y = 2^{f(x)}$$

JRAHS\_ME2\_Assessment Task 2\_Term 1, 2008

### **Question 2 continued**

(b) Given 
$$I_n = \int_0^1 \frac{x^n}{x^2 + 1} dx$$
 for  $n = 1, 2, 3, ...$   
(i) Show that:  
 $I_n = \frac{1}{2} - I_n$  for  $n \ge 2$ 

$$I_n = \frac{1}{n-1} - I_{n-2}$$
 for  $n \ge 2$ .

(ii) Hence, evaluate:

$$\frac{x^5}{x^2+1}\,dx\,.$$

2

3

(c)  $P(x_1, y_1)$  is a point on the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  with foci  $S_1$  and  $S_2$ , so that  $PS_1$  is parallel to the y-axis and  $y_1 \ge 0$ , as shown in the diagram below.

 $\int_{0}^{1}$ 



- (i) Show that the *y*-coordinate of *P* can be given by  $y_1 = a(1 e^2)$ , where *e* is the eccentricity of the ellipse.
- (ii) Prove that the equation of the normal at *P* is  $x ey ae^3 = 0$ .
- (iii) For a particular ellipse the normal at *P* passes through point *Q* which is at the end of the minor axis, as shown. Calculate the value of  $e^2$  for this ellipse, expressing your answer as a surd in simplest form.

# QUESTION 3 START A NEW PAGE

|     |                                                   |                                                                                                                                                              | Marks |
|-----|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (a) | A hyperbola                                       | has foci at $S_1(0, 6)$ and $S_2(0, -6)$ . One of the vertices is at $A(0, -2)$ .                                                                            |       |
|     | (i)                                               | Find the equation of the hyperbola.                                                                                                                          | 3     |
|     | (ii)                                              | Find the equations of the directrices and the asymptotes of the hyperbola.                                                                                   | 2     |
| (b) | O) Consider the function $f(x) = e^{-x} \sin x$ . |                                                                                                                                                              |       |
|     | (i)                                               | Show that the graph of $y = f(x)$                                                                                                                            |       |
|     |                                                   | (a) intersects the <i>x</i> -axis at $x = n\pi$ , where <i>n</i> is an integer,                                                                              | 1     |
|     |                                                   | ( $\beta$ ) has stationary points at $x = \frac{(4n+1)\pi}{4}$ .                                                                                             | 1     |
|     | (ii)                                              | Sketch the graph of $y = f(x)$ for $-\pi \le x \le \pi$ .                                                                                                    | 2     |
|     | (iii)                                             | Show that $\int e^{-x} \sin x  dx = -\frac{1}{2}e^{-x}(\sin x + \cos x) + c$ , where <i>c</i> is a constant.                                                 | 3     |
|     | (iv)                                              | If $A_n$ is the magnitude of the area of the region bounded by the curve $y = e^{-x} \sin x$ and the <i>x</i> -axis for $(n-1)\pi \le x \le n\pi$ show that: | 3     |

$$\frac{A_1}{A_0} = e^{-\pi} \,.$$

# **QUESTION 4 START A NEW PAGE**

(a)

(i) Prove that 
$$\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$$
. **Marks** 2

(ii) Hence, or otherwise, calculate the value of 
$$\int_{0}^{x} \frac{x \sin x}{1 + \cos^{2} x} dx.$$
 4

### **Question 4 continued**

(b)  $P(a \sec \theta, a \tan \theta)$  is a point on the hyperbola  $x^2 - y^2 = a^2$ , where  $0 < \theta < \frac{\pi}{2}$  as shown in the diagram.



The point of intersection of the tangent at *P* with the *x*-axis is point *T*. *O* is the origin. Let  $\angle OPT = 2\beta$ ,

(i) Show that 
$$\tan 2\beta = \frac{\cos^2 \theta}{2\sin \theta}$$
. 3

(ii) By using the formula 
$$\tan 2\beta = \frac{2\tan\beta}{1-\tan^2\beta}$$
, show that  $\tan\beta = \left[\frac{1-\sin\theta}{\cos\theta}\right]^2$ . 3

(iii) Given that *MP* is the bisector of  $\angle OPT$ , as shown in the diagram above, **3** prove that *MP* is always parallel to one asymptote of the hyperbola.

#### **END OF EXAMINATION**

**MATHEMATICS Extension 2: Question.** Marks **Suggested Solutions** Marker's Comments 0) x Tq+x dal 2 2x (9+2) da (9+2) = - 4 Integration 0  $= \sqrt{9+16} - \sqrt{9+0}$ = 5 - 3 Q+x+ 4 0 Answer 6) (1) 2 x e daet oxyi dx () change of integral (e"+1)+C Ξ O answer (11) seca tan 3 x da 5 = (secx (tan x) tanxda Sec x (sec z-1) tanzdre useof sec & tan x - secx tan x dx secxtanx (secx) - secxtanxde sec<sup>3</sup>x - sec x + C answer D2 c) 1) a=2 y= mto formula 3 7y - - - answer

**MATHEMATICS Extension 2: Question**... **Suggested Solutions** Marks **Marker's** Comments C) fui. y=0 Fou 20 = + al 3 ac = 2× 53 53 ~ 1.7 -O.C Directrices 2 + a x 55/2 rectrice 4 ~ t203 = + \$3 a = 2b =03.0 4 32 The -5,0) +1 75C 51 1 -3 52 -1 0 2 3 -1 x = 4VE X = they ) x + y = 3xy (2)  $3x^2 + 3y^2 dy = 3x dy + 3y$ for horizontal langent dy x + y = 3x dy + 3yd) 4 differentia 0  $\frac{dy}{dx} = 0$ = 2 sub into (i) D y = X 320 20 = 0 R  $\frac{1}{2} = \frac{3}{4} \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{4}$ 1) x values e c Points O yvalues. 1352 0,0) 354 or O for each point

2



MATHEMATICS Extension 2: Question 2. Continued ggested Solutions Marks Market **Suggested Solutions Marker's** Comments 6) (1) xn 2 dia 1=1,2,3-x2+ 7-2 x x 2+1 26 6 reaman 12-2 integra 20 × de R ×n-2 x old dr 2024 n Integration X In-2 0 ka. Ln-17 -2 xs de 2 2 Ls 1-2 In 3-1 correct gub 2  $\pi$ dx = (at) hu 2 answer 0

MATHEMATICS Extension 2: Question 2 (confined **Suggested Solutions** Marks Marker's Comments η (j 2) P(x1, 3,) x 2 Si 3 2C Q -et a a 02 a as 3 11 = ( 2 das a on formula 1 d an 0 ah.s.  $-e^2$ x = ae4= M-Be 2.00 grad of langent (1) mN Equa 02 Orma X (1) equatu ac 2 2 P ey Norma 12 - 24 =0

MATHEMATICS Extension 2: Question ... Z. continued greested Solutions Marks Marker **Suggested Solutions Marker's Comments** (C) lui 2 2 ê PZ Sine . a P X ec +8 an Hor o -P -0 t 1+4 hil 0 answer a + VG

3 MATHEMATICS Extension 2: Question .... **Suggested Solutions** Marks **Marker's** Comments a -ou: S, 52 0,6 (0,-6) 3 centre is (0,0) 0,05, Verleg = (0,-2) is of the form (0,2) basic equation (6-2) of hypetbola 11 6-6) So bP 20 raheofe 2 P = 4 answer Equation of Hypebola is hi inexpices 2 answer Asymptotes 963 132 +22 26 answer (1)

MATHEMATICS Extension 2: Question **Suggested Solutions** Marks Marker's Comments h ind =0 mustinclude Sen 2 Hationany a 1 Bl De no ss of mark 820 6Cl 1 20 1 -37 ACC 1257 (in) 2 4 3 T U 2 urning point 3 3 Thy and 4 174 26 20 Approx valuesard: 1 0. 0.3 2.4 8

MATHEMATICS Extension 2: Question Marks **Marker's** Comments **Suggested Solutions** (iii), 6 IM FIRSE loszak 1 Integnation - e Sinxchi + e e 0 integratio -x sinxabc SINX + COS. e 1 3112x + 10 +C Showing +C ans e 91n70 +C + cos N 3 e 0+1 5 Ó 11 Ao e 12 dink No 0550 here For mar lute usina abso ē A 0380 A. PT mar absolut Ao -71 used for P 

**Suggested Solutions Marker's Comments** GL. a () ) LHS= 2 (1 10 a -X 1a-u ) du U P RHS ルニ U=a ÷. 2 K (11) TI ->c) SIN(11 da TT 25100 (T-X) 4 0 71 SINO Π 608230 0 change TT Π TISINC var Mable 1+ cos2 x 1+ 605230 and solil 5 inlegral. 0 T T SINX 31 T pan d inte 14 Cos's H Use SU 320 Sino D x: U -1 subs du П - 11 2 Π a 2 answe -17 11 4 14

MATHEMATICS Extension 2: Question ..... 4 continued **Suggested Solutions** Marks **Marker's** Comments  $-y^2 = a$ 3 - zydy = 0 dy -24 otx x gradient auseca atano Cost gread (1) × sino SINO = atemo greechent of = sino grad o piseco Angle between 2 lines is acute  $\frac{m_1 - m_2}{1 + m_1 m_2}$ fan 1\_ - SINQ SINO 1+ trox SINO BINO  $1 - gin^2 Q$ O use of between two lines formula SIND [I+T] los20 2 8100

MATHEMATICS Extension 2: Question ... It continued ggested Solutions Marks Marker D **Suggested Solutions Marker's** Comments Let t = tan /3(ii) 3  $\tan 2\beta = 2t$  $\frac{\cos^2 \phi}{23100} = \frac{2E}{1-E^2}$ COSO - FCOSO = 4ESINO Quadratic in tamps  $0 = F \cos^2 \Theta + 4 t \sin \Theta - \cos^2 \Theta$ = - 4 SIND + 16SIN2D+4 COS40 20050  $= -45100 \pm 2 \sqrt{4310^{2}0} + (1-510)^{2}$   $= 2(05)^{2}0$ O change of asto to (1-sin2) -45110 ± 2 143110+1-25110+5110 200520 -45110 ± 2 11 + 25110 + 511 40 = 200320  $-4sino \pm 2 \sqrt{(1+sin^2o)^2}$ 451no ± 2(1+sin Q) 200520  $\frac{-43ino \pm 2(1+sin^{2}c)}{\neq cos^{2}o}$ - SINTO -23100-1 OF, 1-25100+5102 6050 -20100-1 OF, 1-25100+5102 10 full solutions  $\frac{1+3mQ}{\cos Q}$ or I-sinto But  $0 < \beta < \overline{1}/4$  =  $1 - \sin \alpha$ COSO

12

MATHEMATICS Extension 1 : Question..... Marks **Marker's Comments Suggested Solutions** 9= 76 (11)3 B A 0 m asymptote bea. Asemptote y= >c greedient = 1 grad of asymptote -MOP tand 3 gread asymptote × mot 1) - subinto formula - SIND 1 IXSINA - SINQ XI. SINO SIND SING - SINO) · SIM20 SIND 0026 - SIND COGA D tand = tan ps an B Bare acute as and X O explanation 1 x -1 1 MP is parallel to asymptote as alternate analos are equa

E: JRAH M Fac Admin\Assessment info\Suggested Mk solns template\_V4.doc