QUESTION 1

(a) Evaluate: $\int_{0}^{4} \frac{x}{\sqrt{9+x^{2}}} d x$.
(b) Find:
(i) $\int \frac{1}{1+e^{-x}} d x$.
(ii) $\int \sec x \tan ^{3} x d x$.
(c) An ellipse has the equation $\frac{x^{2}}{4}+y^{2}=1$.
(i) Calculate the eccentricity for this ellipse.
(ii) Draw a neat sketch of the ellipse, clearly labelling the foci, directrices and intercepts with the coordinate axes.
(d) Find the coordinates of the points on the graph of $x^{3}+y^{3}=3 x y$ at which the tangent lines are parallel to the x-axis.

QUESTION 2 START A NEW PAGE

(a) The diagram below shows the graph of $y=f(x)$. The graph has a horizontal asymptote at $y=0$.

Draw, on separate sets of axes, sketches of the following graphs.
(i) $y=f(|x|)$
(ii) $\quad y=2^{f(x)}$

Question 2 continued

(b) Given $I_{n}=\int_{0}^{1} \frac{x^{n}}{x^{2}+1} d x$ for $n=1,2,3, \ldots$
(i) Show that:

$$
I_{n}=\frac{1}{n-1}-I_{n-2} \text { for } n \geq 2 .
$$

(ii) Hence, evaluate:

$$
\int_{0}^{1} \frac{x^{5}}{x^{2}+1} d x
$$

(c) $P\left(x_{1}, y_{1}\right)$ is a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with foci S_{1} and S_{2}, so that $P S_{1}$ is parallel to the y-axis and $y_{1} \geq 0$, as shown in the diagram below.

(i) Show that the y-coordinate of P can be given by $y_{1}=a\left(1-e^{2}\right)$, where e is the eccentricity of the ellipse.
(ii) Prove that the equation of the normal at P is $x-e y-a e^{3}=0$.
(iii) For a particular ellipse the normal at P passes through point Q which is at the end of the minor axis, as shown.
Calculate the value of e^{2} for this ellipse, expressing your answer as a surd in simplest form.

QUESTION 3 START A NEW PAGE

(a) A hyperbola has foci at $S_{1}(0,6)$ and $S_{2}(0,-6)$. One of the vertices is at $A(0,-2)$.
(i) Find the equation of the hyperbola.
(ii) Find the equations of the directrices and the asymptotes of the hyperbola.
(b) Consider the function $f(x)=e^{-x} \sin x$.
(i) Show that the graph of $y=f(x)$
(α) intersects the x-axis at $x=n \pi$, where n is an integer,
(β) has stationary points at $x=\frac{(4 n+1) \pi}{4}$.
(ii) Sketch the graph of $y=f(x)$ for $-\pi \leq x \leq \pi$.
(iii) Show that $\int e^{-x} \sin x d x=-\frac{1}{2} e^{-x}(\sin x+\cos x)+c$, where c is a constant.
(iv) If A_{n} is the magnitude of the area of the region bounded by the curve $y=e^{-x} \sin x$ and the x-axis for $(n-1) \pi \leq x \leq n \pi$ show that:

$$
\frac{A_{1}}{A_{0}}=e^{-\pi}
$$

QUESTION 4 START A NEW PAGE

(a)
(i) Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$.
(ii) Hence, or otherwise, calculate the value of $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$.
(b) $P(a \sec \theta, a \tan \theta)$ is a point on the hyperbola $x^{2}-y^{2}=a^{2}$, where $0<\theta<\frac{\pi}{2}$ as shown in the diagram.

The point of intersection of the tangent at P with the x-axis is point $T . O$ is the origin.
Let $\angle O P T=2 \beta$,
(i) Show that $\tan 2 \beta=\frac{\cos ^{2} \theta}{2 \sin \theta}$.
(ii) By using the formula $\tan 2 \beta=\frac{2 \tan \beta}{1-\tan ^{2} \beta}$, show that $\tan \beta=\left[\frac{1-\sin \theta}{\cos \theta}\right]^{2}$.
(iii) Given that $M P$ is the bisector of $\angle O P T$, as shown in the diagram above, prove that MP is always parallel to one asymptote of the hyperbola.

END OF EXAMINATION

NmercuryistaffhomesiWOHNAdmin_M Fac\Assessment in folSuggested Mk sohns template_V3.doc

MATHEMATICS Extension 2: Question.../.
Suggested Solutions
Marks
Marker's Comments
i) $(u) F_{0} u \quad x \quad x-t a e \quad y \equiv 0$

$$
a l=2 \times \frac{\sqrt{3}}{2}=\sqrt{3} \sim 1 \cdot 7
$$

Dinecfices $x= \pm \frac{a}{e}=\frac{2}{\sqrt{5} / 2}$

$$
= \pm \frac{4}{\sqrt{3}} \quad 2 \pm 2 \cdot 3
$$

$$
a=2 \quad b=1
$$

$$
S_{1}=(3,0)
$$

$$
x=\frac{4}{\sqrt{3}}
$$

(1) Face
(1) alirectrues
(1) scale a shape, axes'

$$
S_{2}=(-\sqrt{3}, 0)
$$ etc

\qquad
d) $x^{3}+y^{3}=3 x y$

$$
3 x^{2}+3 y^{2} \frac{d y}{d x}=3 x \frac{d y}{d x}+3 y
$$

for horyoutal tangent $\frac{d y}{d x}=0$

$$
\therefore \because(i x) y=x^{2}
$$

aub-rito(i) $x^{3}+\left(x^{2}\right)^{3}=3 x\left(x^{2}\right)$

$$
\begin{gathered}
\therefore x^{3}+x^{6}=3 x^{3} \\
x^{6}-2 x^{3}=0 \\
x^{3}\left(x^{3}-2\right)=0 \\
x=0 \quad x=3 \sqrt{2} \\
y=0 \quad y=\sqrt[3]{4}
\end{gathered}
$$

Pornts $(0,0) \quad y=0 \quad(3 \sqrt{2}, 3 \sqrt{4})$
(1) differentiation
\qquad
(1) $y=x^{2}$
\qquad
\qquad
\qquad
(1) x ralwos
(1) yvalus. (er O) Sor Geach anoint)
\qquad
\qquad
\qquad
\qquad

[^0]MATHEMATICS Extension 2: Question.......Continued
b) (i)

$$
\begin{aligned}
& I_{n}=\int_{0}^{1} \frac{x^{n}}{x^{2}+1} d x \quad n=1,2,3 \cdots \\
& =\int_{0}^{1} x^{n-2} \times \frac{x^{2}}{\left(x^{2}+1\right)} d x \\
& =\int_{0}^{1} x^{n-2} \times\left[1-\frac{1}{x^{2}+1}\right] d x \\
& =\int_{0}^{1} x^{n-2} d x-\int_{0}^{1} \frac{x^{n-2}}{x^{2}+1} d x \\
& =\left[\frac{x^{n-1}}{n-1}\right]_{0}^{1}-I n-2 \\
& =\frac{1}{n} L=I n-2 \\
& \int_{0}^{1} \frac{x^{5}}{x^{2}+1} d x=I_{5} \\
& I_{5}=\frac{1}{5-1}-I_{3} \\
& =\frac{1}{4}-\left[\frac{1}{3-1}-I_{1}\right] \\
& =\frac{1}{4}-\left[\frac{1}{2}-\int_{0}^{1} \frac{x}{x^{2}+1} d x\right] \\
& =\frac{1}{4}-\frac{1}{2}+\left[\frac{1}{2}+\operatorname{tw}(x+1)\right]_{0}^{1} \\
& =-1471 \\
& -\frac{1}{2} \text { gr } 2-\frac{1}{4}
\end{aligned}
$$

(1) neamanging inkegral
\qquad
\qquad
\qquad
(1) Integnation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
correct gub
(1) to I,
\qquad
\qquad
\qquad
1
(1) anvwer
\qquad

WmercuryistaffhomeSIWOH\Admin_M Fac\Assessment infolSuggested Mk solns template_V3.doc

"mercurylstaffhomeSIWOHVAdmin_M Fac\Assessment in folSuggested Mk solns template_V3.doc

MATHEMATICS Ertension 2: Question...S

MnercuryistaffhomeSIWOH\Admin_M Fac\Assessment infolSuggested Mk solns template_V3.doc

MATHEMATICS Extension 2: Question... 4

\[

\]

Use substuftutun \quad sy assx

$$
\frac{d y}{d x}=-\sin x
$$

\qquad
\qquad
(1) Change of varuable ralues.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Change
radeable
(1) and saplit inlegnal.
(1) Move pant integral to LHS
\qquad
\qquad
\qquad

$$
x=0 \quad y=1
$$

\qquad
\qquad

$$
\therefore 2 I=\pi \int_{1}^{-1} \frac{-1}{1+y^{2}} d y
$$

$$
x=\pi \quad y=-1
$$

(1) subsifition

$$
=1 \quad-\frac{\pi}{2}\left[\tan ^{-1} y\right]_{1}^{-1}
$$

\qquad
\qquad
\qquad

$$
=-\frac{\pi}{2}\left[\tan ^{-1}(-1)-\tan ^{-1}(1)\right]
$$

\qquad
\qquad

$$
=-\frac{\pi}{2} \times[-\pi / 4-\pi / 4]=\frac{\pi^{2}}{4}
$$

(1) amswer

Wmercury\staffhomeSIWOHVAdmin_M Fac\Assessment infolSuggested Mk solns template_V3.doc

$$
\begin{aligned}
& \text { (ii) } \int_{0}^{\pi} \frac{x \sin x}{+\cos ^{2} x} d x=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\cos ^{2}(\pi-x)} d x \\
& =\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+0^{2} 5} d x \\
& =\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x-\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x \\
& \therefore 2 \int_{0}^{\pi} \frac{x 91 n x}{1+\cos ^{2} x} d x=\pi \int_{0}^{1} \frac{\sin x}{1+\cos ^{2} x} d x
\end{aligned}
$$

b)
(ii) \qquad
Let $t=\tan \beta$
$\tan 2 \beta=\frac{2 t}{1-t^{2}}$
$\frac{\cos ^{2} \theta}{2 \sin \theta}=\frac{2 t}{1-t^{2}}$
$\cos ^{2} \theta-t^{2} \cos ^{2} \theta=4 t \sin \theta$
$\theta=t^{2} \cos ^{2} \theta+4 t \sin \theta-\cos ^{2} \theta$
$t=\frac{-4 \sin \theta \pm \sqrt{16 \sin ^{2} \theta+4 \cos ^{4} \theta}}{2 \cos ^{2} \theta}$
$=\frac{-4 \sin \theta \pm 2 \sqrt{4 \sin ^{2} \theta+(1-\sin \theta)^{2}}}{2 \cos ^{2} \theta}$
$=\frac{-4 \sin \theta \pm 2 \sqrt{4 \sin ^{2} \theta+1-2 \sin ^{2} \theta+\sin ^{4} \theta}}{2 \cos ^{2} \theta}$
$=\frac{-4 \sin \theta \pm 2 \sqrt{1+2 \sin ^{2} \theta+\sin ^{4} \theta}}{2 \cos ^{2} \theta}$
$=\frac{-4 \sin \theta \pm 2 \sqrt{\left(1+\sin ^{2} \theta\right)^{2}}}{2 \cos ^{2} \theta}$
$=\frac{-4 \sin \theta \pm 2\left(1+\sin ^{2} \theta\right)}{2 \cos ^{2} \theta}$
$=\frac{-4 \sin \theta+2\left(1+\sin ^{2} \theta\right)}{\psi \cos ^{2} \theta}$
$=\frac{-\sin ^{2} \theta-2 \sin \theta-1 \text { or } \frac{1-2 \sin \theta+\sin ^{2} \theta}{\cos ^{2} \theta}}{\cos ^{2} \theta}$
$=-\left[\frac{1+\sin \theta}{\cos \theta}\right]^{2}$ or $\left[\frac{1-\sin ^{2} \theta}{\cos \theta}\right]^{2}$

But $0<\beta<11 / 4<\beta=\left[\frac{1-\sin ^{2} Q}{\cos \theta}\right]^{2}$
ImercuryistafihomeSiWOHMAdm in_M Fac\Assessment in folSuggested Mk soins template_V3.doc

MATHEMATICS Extension 1 : Question........

Let angle between OP and axympade be α
Ausepmetake: $y=x$ gradient $=1$ $\tan \alpha=\frac{\text { grad of a spmptote }-m O P}{1-\text { ged asymptote } \times m 0 P}$

$=\tan / 3$
as α and β are acute

$\therefore M P$ is parallel to aummptate

as altemate angles are equal
\qquad
\qquad

[^0]: WmercurystaffhomeSIWOHVAdmin_M Fac\Assessment infolSuggested Mk solns template_V3.doc

