Question 1

(a) i) Find
$$\int \sqrt{e^x} dx$$
.

ii) Find
$$\int \frac{\sqrt{x}}{x-1} dx$$
.

iii) Use the substitution
$$t = \tan \frac{x}{2}$$
, evaluate $\int_{0}^{\frac{2\pi}{3}} \frac{1}{5 + 4\cos x} dx$.

(b) Consider the hyperbola
$$\frac{x^2}{4} - \frac{y^2}{3} = 1.$$

The point P(4, 3) lies on the hyperbola. The normal at P to the hyperbola meets the *x*-axis at N. The vertical line through P meets the asymptote in the first quadrant at L.

iii) Show that *LN* is perpendicular to *OL*.

Question 2 (Start a new Page)

(a)

(b)

	Consider the ellipse $\frac{x^2}{16} + \frac{y^2}{12} = 1.$	
i)	Sketch the ellipse, clearly showing the directrices and foci.	3
ii)	The tangent and normal to the ellipse at $P(2,3)$ cut the <i>y</i> -axis at <i>A</i> and <i>B</i> respectively. Given that the equation of the tangent to the ellipse at <i>P</i> is $x + 2y = 8$. Find the coordinates of <i>A</i> and <i>B</i> .	2
iii)	Show that AB subtends a right angle at the focus (S)of the ellipse.	2
iv)	Give the reason why the points A, P, S and B are concylic.	1
	The graph on the next page shows a function which has <i>x</i> -intercepts at $x = 0$ and $x = 2$. There is a vertical asymptote at $x = 1$ and a horizontal asymptote of $y = 1$.	
	Without using calculus, sketch the following graphs on the ANSWER	

Without using calculus, sketch the following graphs on the ANSWER sheet provided at the end of this question paper, clearly showing any asymptotes and intercepts. 1

1

2

Question 2(b) cont'd

- i) y = |f(x)| 1
- ii) y = f(x-1) 1

iii)
$$y^2 = f(x)$$
 2

iv)
$$y = \tan^{-1} f(x)$$
 3

Question 3 (Start a new Page)

(a) i)
Show that
$$\sqrt{\frac{8-x}{x}} = \frac{4-x}{\sqrt{8x-x^2}} + \frac{4}{\sqrt{8x-x^2}}$$
.
(a) Show that $\sqrt{\frac{8-x}{x}} = \frac{4-x}{\sqrt{8x-x^2}} + \frac{4}{\sqrt{8x-x^2}}$.
(b) Hence evaluate $\int_{0}^{2} \sqrt{\frac{8-x}{x}} dx$.

Marks

Question 3 cont'd

(b)
$$P(a \cos \theta, b \sin \theta)$$
 is a point in the first quadrant on the ellipse
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and $Q(a \sec \theta, b \tan \theta)$ is a point on the hyperbola
 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, where $a > b > 0$.

i) Sketch the ellipse, the hyperbola and their common auxillary circles 3 $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ on the same diagram, showing the angle θ and the related points *P* and *Q*. Show clearly how the positions of *P* and *Q* are determined by the value of θ , where $0 < \theta < \frac{\pi}{2}$.

ii) Prove that the tangent to the ellipse at *P* is $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$.

iii) The tangent to the hyperbola at Q and the tangent to the ellipse at P 4 meet at T. Given that the equation of the tangent to the hyperbola at Q is $\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$. Find the coordinates of T.

Question 4 (Start a new Page)

(a) i) Given
$$f(x) = f(a - x)$$
 and using the substitution $u = a - x$, prove that

$$\int_{0}^{a} xf(x)dx = \frac{a}{2}\int_{0}^{a} f(x)dx.$$
ii) Given that $f(x) = \frac{\sin x}{1 + \cos^{2} x}$, prove that $f(x) = f(\pi - x)$.
iii) Hence evaluate $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx.$
(b) Let $I_{n} = \int_{0}^{1} x(1 - x^{5})^{n} dx$, where $n \ge 0$ is an integer.
i) Show that $I_{n} = \frac{5n}{5n+2}I_{n-1}$ for $n\ge 1$.
ii) Show that $I_{n} = \frac{5^{n}n!}{2 \times 7 \times 12 \times \cdots \times (5n+2)}$ for $n\ge 1$.

iii) Hence evaluate
$$I_A$$
. 1

END

Marks

2

Now attach this sheet with your answer booklet for Question 2.

TOAHS EXT 2 TI 2010

$$|a:i\rangle \int e^{\frac{\pi}{2}} dx = 2e^{\frac{\pi}{2}} + c$$

$$ii) = 2\int \frac{u^{2}du}{u^{2}-1} \qquad \forall \overline{x} = u$$

$$= 2\int \frac{u^{-1}+1}{(u^{2}-1)} \qquad dx = 2udu$$

$$= 2\int du + 2\int \frac{du}{u^{-1}} \qquad dx = 2udu$$

$$= 2\int du + 2\int \frac{du}{u^{-1}} \qquad |$$

$$= 2u + \int \frac{du}{u^{-1}} - \int \frac{du}{u^{+1}} \qquad |$$

$$= 2u + \int \frac{du}{(u^{-1})} + c$$

$$= 2\int \overline{x} + \int u \left(\frac{\sqrt{x}-i}{\sqrt{x}+i}\right) + c$$

$$= 2\int \overline{x} + \int u \left(\frac{\sqrt{x}-i}{\sqrt{x}+i}\right) + c$$

$$= \int \frac{3}{5} \frac{dx}{5+4co} \qquad t = \tan \frac{4}{2}$$

$$dy = \frac{2}{1+t^{2}} \qquad t$$

$$= \int \frac{2}{3} \frac{2}{5+5t^{2}+4-4t^{2}} \qquad |$$

$$= \int \frac{2}{3} \frac{2}{5+5t^{2}+4-4t^{2}} \qquad |$$

$$= \frac{2}{3} \left[\tan^{-1} \frac{t}{3} \right]^{3} \qquad |$$

$$= \frac{2}{3} \left[\tan^{-1} \frac{t}{3} \right]^{3} \qquad |$$

$$= \frac{2}{3} \left[\tan^{-1} \frac{t}{3} \right]^{3} = \frac{2}{3} \times \frac{u}{t} = 2\left(\frac{\pi}{4} \right) |$$

1 bi)
FILLE GUP (4.3)

$$y = \frac{5}{3}x$$

 $y = \frac{5}{3}x$
 $y = \frac{5}{3}x$
 $y = \frac{5}{3}x$
 $y = -\frac{5}{3}x$
 $y' = \frac{5}{3} = 1$
 $y' = \frac{5}{3} = \frac{1}{3}$
 $y = -\frac{5}{3}x$
 $x = 4, \quad y = \frac{5}{3} = -\frac{1}{3}$
 $x = \frac{1}{3} = \frac{5}{3}$
 $x = \frac{5}{3}$

YIZ ASSESSMENT TASK 2, TERMI 2010 MATH. EXT 2.

Suggested Solutions	Marks	Marker's Comments
Suggested solutions $\frac{2(a)(i)}{li} = \frac{x^{2} + y^{2}}{li} = 1$ $\frac{1}{li} = \frac{1}{12}$		Harker's comments $1 For e = \frac{1}{2}$ $\frac{1}{2} For S(2,0)$ $\frac{1}{2} For yc = 8$ $1 For Ellipse \\ sharpe$
$\frac{3}{2}$ $\frac{3}$	21- 21-	12 For (0,4) 12 For my = 2
y = 2x - 1 For B: $x = 0$ i $y = -1$ B = (0, -1)	l	{ For (0,-1)
i) $A(0, -4) = 5(2, 0) = B(0, -1)$ $M_{AS} = 4-0 = -2$ $M_{S} = -1-0 = +1$ 0-2 i $M_{S} = -1-0 = +1$		12 For MAS = - 2 12 For mse = 12 (For mse = 2
i. ASLSB i. LASB = 90° i.e. AB subtends a right angle at S.	2	1 For Conclusio
(V) · LAPB = 90° (Tangent and normal at 90°) LASB = 90° (shown above) i. A. P. S and B are concyclic points as interval AB subtends equal angles at 2 points of it then endpoints and the 2 points are c	onth	I For 'correct reason(s)

ICALLISTO Staffilomes WOITJRAH M Fac Admin Assessment info Suggested Mk solns template_V4_half Ls.dec

.

$$3 \alpha_{i}^{2} \int \frac{g_{-x}}{x_{c}} = \int \frac{g_{-x}}{x_{c}} \cdot \int \frac{g_{-x}}{x_{c}} = \frac{g_{-2L}}{\int (g_{-x})x_{c}}$$

$$= \frac{g_{-x}}{\sqrt{g_{x-x^{*}}}} + \frac{g_{-x}}{\sqrt{g_{x-x^{*}}}} + \frac{g_{-x}}{\sqrt{g_{x-x^{*}}}}$$

$$= \int \frac{g_{-x}}{\sqrt{g_{x-x^{*}}}} + \frac$$

$$\frac{dy}{dx} \frac{dy/d\theta}{dx/d\theta} = -\frac{b\cos\theta}{a\sin\theta}$$

$$Eg = \frac{1}{2} \frac{1}{a\sin\theta} \frac{1}{a\sin\theta}$$

$$\frac{dy}{dx} \frac{dy/d\theta}{dx/d\theta} = -\frac{b\cos\theta}{a\sin\theta} (x-a)$$

$$\frac{xb\cos\theta}{a} \frac{y-b\sin\theta}{y} = -\frac{b\cos\theta}{a\sin\theta} (x-a)$$

$$\frac{x\cos\theta}{a} \frac{y\sin\theta}{b} = 1$$

$$\frac{\chi c_{B}G}{a} + \frac{\chi sin G}{b} = 1 \qquad (0 \times Ae_{c}G) = \frac{\chi}{a} + \frac{\chi tan G}{b} = secG \qquad (3)$$

$$\frac{y \tan \theta}{a} = \frac{y \tan \theta}{b} = 1 \quad (2)$$

 $(2+3) \qquad \xrightarrow{\lambda}_{a}(1+sec) = 1+sec \qquad x = a \qquad \# \qquad 1$

Sub X=a into ()
$$sol \theta + \frac{y_{sib}}{b} = 1$$

 $\frac{y_{sib}}{b} = 1 - cos \theta$
 $y = \frac{b}{sib} (1 - cos \theta)$
 $\frac{1}{4}$

MATHEMATICS Extension 2: Question...... **Marker's Comments Suggested Solutions** Marks (a-x a a -20 = Q -20 U X d = Oí L = Q1) correct substitution a U di Ξ change variable nge \mathcal{D} a a x (1))C ntegral toque ansu SINOC Sin TT-JC M COSO Must Show COS(TT->C + 4 51n(TT-2) = Sins Sin recause SINX - COSX COSOC (1T-20)= COS 4 11720 Х 77 change uu Sinx SINSC T a. 1+cosse TΓ as an LOSX COSTI LOSO an. - 77 2 D Answer π^2

MATHEMATICS Extension 2: Question Marks **Marker's** Comments **Suggested Solutions** b1 \mathcal{X} X d A 1-1 ntegrate F5 264 n 91 X 51 dX -(i se*parat*e 5n 20 (1-25) dae 5n e T complete (i) 30 Witton 5 n 5n 2 2 Í 51 +51 @ Mustshow 5m μ series at $2 \pm 5 m$ both ends IO 1-21 including Io ac ala Calculate Is 15 In In Z must show outside eac ferm to 5x(3) s(2) x to make 5/n-1) 5/n-2) \simeq 5 n stn 5/272 Sn+ 5711-2)+2 3/ (n)(n-1)3x 2 × 5 ้ И -บิ (5n+2) (5n-3) 17×12 8 <u>lSn-</u> n 2X7X12X 51+2 correct ()answer 15000 5 ×4 only 2832 2×7×12×17×22 625 2618

\\mercury\staffhome\$\WOH\Admin_M Fac\Assessment info\Suggested Mk solns template_V3.doc

.