## Question 1

(a) i) Find $\int \sqrt{e^{x}} d x$.

1

4
ii) Find $\int \frac{\sqrt{x}}{x-1} d x$.
iii) Use the substitution $t=\tan \frac{x}{2}$, evaluate $\int_{0}^{\frac{2 \pi}{3}} \frac{1}{5+4 \cos x} d x$.

4
(b)

Consider the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{3}=1$.
The point $P(4,3)$ lies on the hyperbola. The normal at $P$ to the hyperbola meets the $x$-axis at $N$. The vertical line through $P$ meets the asymptote in the first quadrant at $L$.
i) Sketch the hyperbola, clearly showing all the above information.
ii) Show that the equation of the normal to the hyperbola at $P$ is $x+y=7$.
iii) Show that $L N$ is perpendicular to $O L$.

## Question 2 (Start a new Page)

(a) Consider the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$.
i) Sketch the ellipse, clearly showing the directrices and foci.
ii) The tangent and normal to the ellipse at $P(2,3)$ cut the $y$-axis at $A$ and 2 $B$ respectively.
Given that the equation of the tangent to the ellipse at $P$ is $x+2 y=8$. Find the coordinates of $A$ and $B$.
iii) Show that $A B$ subtends a right angle at the focus ( $S$ )of the ellipse.
iv) Give the reason why the points $A, P, S$ and $B$ are concylic.
(b) The graph on the next page shows a function which has $x$-intercepts at $x=0$ and $x=2$. There is a vertical asymptote at $x=1$ and a horizontal asymptote of $y=1$.

Without using calculus, sketch the following graphs on the ANSWER sheet provided at the end of this question paper, clearly showing any asymptotes and intercepts.
i) $\quad y=|f(x)|$ 1
ii) $y=f(x-1)$
iii) $\quad y^{2}=f(x)$
iv) $y=\tan ^{-1} f(x)$


## Question 3 (Start a new Page)

(a) i) Show that $\sqrt{\frac{8-x}{x}}=\frac{4-x}{\sqrt{8 x-x^{2}}}+\frac{4}{\sqrt{8 x-x^{2}}}$.
ii) Hence evaluate $\int_{0}^{2} \sqrt{\frac{8-x}{x}} d x$.

## Question 3 cont'd

Marks
(b) $\quad P(a \cos \theta, b \sin \theta)$ is a point in the first quadrant on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $Q(a \sec \theta, b \tan \theta)$ is a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, where $a>b>0$.
i) Sketch the ellipse , the hyperbola and their common auxillary circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}$ on the same diagram, showing the angle $\theta$ and the related points $P$ and $Q$. Show clearly how the positions of $P$ and $Q$ are determined by the value of $\theta$, where $0<\theta<\frac{\pi}{2}$.
ii) Prove that the tangent to the ellipse at $P$ is $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$.
iii) The tangent to the hyperbola at $Q$ and the tangent to the ellipse at $P$ meet at $T$.
Given that the equation of the tangent to the hyperbola at $Q$ is $\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$.
Find the coordinates of $T$.

## Question 4 (Start a new Page)

(a) i) Given $f(x)=f(a-x)$ and using the substitution $u=a-x$, prove that $\int_{0}^{a} x f(x) d x=\frac{a}{2} \int_{0}^{a} f(x) d x$.
ii) Given that $f(x)=\frac{\sin x}{1+\cos ^{2} x}$, prove that $f(x)=f(\pi-x)$.
iii) Hence evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$.
(b)

Let $I_{n}=\int_{0}^{1} x\left(1-x^{5}\right)^{n} d x$, where $n \geq 0$ is an integer.
i) Show that $I_{n}=\frac{5 n}{5 n+2} I_{n-1} \quad$ for $n \geq 1$.
ii) Show that $I_{n}=\frac{5^{n} n!}{2 \times 7 \times 12 \times \cdots \times(5 n+2)}$ for $n \geq 1$.
iii) Hence evaluate $I_{4}$.

## END

Answer sheet for Q2(b)
(i)

Sketch $y=|f(x)|$


$$
x=1
$$

(ii)

Sketch $y=f(x-1)$


## Answer sheet for Q2(b)

(iii)

```
Sketch \(y^{2}=f(x)\)
```


(iv) Sketch $y=\tan ^{-1} f(x)$


Now attach this sheet with your answer booklet for Question 2.

JRAHS EAR 2 TI 2010

1a.i) $\int e^{\frac{x}{2}} d x=2 e^{\frac{x}{2}}+c$
ii)

$$
\begin{aligned}
& \left.2 \int \frac{u^{2} d u}{u^{2}-1} \quad \right\rvert\, \quad \sqrt{x}=u \\
= & 2 \int \frac{u^{2}-1+1 d u}{\left(u^{2}-1\right)} \quad d x=2 u d u \\
= & \left.2 \int d u+2 \int \frac{d u}{u^{2}-1} \quad \right\rvert\, \\
= & 2 u+\int \frac{d u}{u-1}-\int \frac{d u}{u+1} \\
= & 2 u+\ln \left(\frac{u-1}{u+1}\right)+c \\
= & 2 \sqrt{x}+\ln \left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)+c
\end{aligned}
$$

$i=1 \int_{0}^{\frac{2 \pi}{3}} \frac{d x}{5+4 \cos x}$

$$
t=\tan \frac{x}{2}
$$

$$
=\int_{0}^{\sqrt{3}} \frac{2}{1+t^{2}} d t
$$

$$
d x=\frac{2}{1+t^{2}}
$$

$$
=\int_{0}^{\sqrt{3}} \frac{2 d t}{5+5 t^{2}+4-4 t^{2}}
$$

$$
=\int_{0}^{\sqrt{3}} \frac{2 d t}{3^{2}+t^{2}}
$$

$$
\begin{aligned}
& =\frac{2}{3}\left[\tan ^{-1} \frac{t}{3}\right]_{0}^{\sqrt{3}} \\
& =\frac{2}{3} \tan ^{-1} \frac{1}{\sqrt{3}}=\frac{2}{3} \times \frac{\pi}{6}=\frac{\pi}{9}
\end{aligned}
$$

$\left.1 b_{i}\right)$

i-)

$$
\begin{gathered}
\frac{y^{2}}{4}-\frac{y^{2}}{3}=1 \\
\frac{x x}{4}-\frac{x y y^{\prime}}{3}=0 \\
\frac{x}{4}=\frac{y y^{\prime}}{3} \\
y^{\prime}=\left.\frac{x}{4} \cdot \frac{3}{y}\right|_{(4,3)}=1 \\
m^{\prime}=-1
\end{gathered}
$$

Eq Normal at $P: \quad y-3=-(x-4)$

$$
x+y=7
$$

iii) $\tau_{0}$ find $L$ : Eq of asynpt: $y=\frac{\sqrt{3}}{2} x$

$$
x=4, \quad y=\frac{\sqrt{3}}{2} \cdot 4=2 \sqrt{3}
$$

$$
\therefore L=\left(4^{2}, 2 \sqrt{3}\right)
$$

T. fird $N: y=0, x=7 \quad N=(7,0)$
$m(L N)=\frac{2 \sqrt{3}}{-3}=-\frac{2}{\sqrt{3}}, m(0 L)=\frac{2 \sqrt{3}}{4}=\frac{\sqrt{3}}{2}$
$\therefore m(L N) \times m(O L)=-1$
ENBOL\#

YI2 ASSESSMENT TASK 2, TERMI 2010 MATU. ExT 2 .
MATHEMATICS Extension 2: Question. 2....

(i) $x+2 y=8$

For $A \quad x=0 \quad r^{\prime} \quad y=4 \quad A=(0,4)$
$\frac{1}{2}$ For $S(2,0)$
$\frac{1}{2}$ For $x=8$
1 For Ellipse shoxpe

Groedient of teengent $m_{t}=-\frac{1}{2}$
u $\quad$ uormal $\mu_{N}=+2$
$\therefore$ Eqes of normel $\quad y-3=2(x-2)$

$$
y=2 x-1 \quad 2
$$

For $B: x=0: y=-1$

$$
B=(0,-1)
$$

(iii) $A(0,-4) \quad S(2,0) \quad B(0,-1)$

$$
\begin{aligned}
& \frac{\mu_{s}=\frac{4-0}{0-2}=-2}{\mu_{s B}=-\frac{1-0}{0-2}=4 \frac{1}{2}}
\end{aligned}
$$

$$
\therefore m_{A} \times \pi=B=-2 \times \frac{1}{2}=-1
$$

$$
\because A S 1 S B \quad \therefore \quad \angle A B=90^{\circ}
$$

le. $A B$ subtends a right eengle oet $S$.
(iv) $\angle A P B=90^{\circ}$ (Tangent cend normeel of $90^{\circ}$ ) ${ }^{\prime}$

$$
\angle A S B=90^{\circ}(\text { shown celarve) }
$$

$\therefore A, P, S$ and $B$ are concyclic ponts as interval $A B$ subtences equal augles at 2 pounts on the sceme side of it then emdpoints cuncl the 2 pouts cone conclic

- couló reason ulomy semicurccos, ocicemeter trecosou.



Sketch $\bar{y}^{2}=f(x)$
(iii)


(iv)


$$
\begin{aligned}
& 3 \text { ai) } \sqrt{\frac{8-x}{x}}=\sqrt{\frac{8-x}{x}} \cdot \sqrt{\frac{8-x}{x}}=\frac{8-x}{\sqrt{(8-x) x}} \\
& =\frac{4-x}{\sqrt{8 x-x^{2}}}+\frac{4}{\sqrt{8 x-x^{2}}} 1 \\
& \text { ii) } \int_{0}^{2} \sqrt{\frac{8-x}{x}} d x=\int \frac{4-x d x}{\sqrt{8 x-x^{2}}}+4 \int \frac{d x}{\sqrt{8 x-x^{2}}} \\
& \int_{2}^{2} \int_{0}^{2} \frac{2(4-x) d x}{\sqrt{8 x-x^{2}}}=\frac{12\left[\left(\sqrt{8 x-x^{2}}\right)\right]_{0}^{2}}{x}=\sqrt{16-4} \\
& =\sqrt{12}=2 \sqrt{3} \text { 生 } \\
& 4 \int_{0}^{2} \frac{d x}{\sqrt{8 x-x^{2}}}=4 \int_{0}^{2} \frac{d x}{\sqrt{-\left(x^{2}-8 x+16-16\right)}} \\
& =4 \int \frac{d x}{16-(x-4)^{2}}=4\left[\sin ^{-1}\left(\frac{x-4}{4}\right)\right]_{0}^{2} \\
& =4 \sin ^{-1}\left(-\frac{1}{2}\right)-\sin ^{-1}(-1) \\
& =4\left(-\frac{\pi}{6}+\frac{\pi}{2}\right)=\frac{4 \pi}{3}+1
\end{aligned}
$$

Ans $2 \sqrt{3}+\frac{k \pi}{3}{ }_{\#}$
i)

$\therefore \quad \frac{d y}{d x}=\frac{d y / d \theta}{2 x / d \theta}=-\frac{b \cos \theta}{a \sin \theta}$
Eq of tangent at $P: \quad y-b \sin \theta=-\frac{b \cos \theta}{a \sin \theta}(x-a)$

$$
\begin{gathered}
x b \cos \theta+y a \sin \theta=a b\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1
\end{gathered}
$$

$i \because) \quad \frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$

$$
\begin{equation*}
\text { (1) } x \sec \theta \quad \frac{x}{a}+\frac{y \tan \theta}{b}=\sec \theta \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1 \tag{2}
\end{equation*}
$$

(2) + (3)

$$
\frac{x}{a}(1+\sec \theta)=1+\sec \theta \quad \therefore \quad x=a,
$$

sub $x=4$ into (1) $\operatorname{sos} \theta+\frac{y \sin \theta}{b}=1$

$$
\begin{aligned}
y \frac{\sin \theta}{b} & =1-\cos \theta \\
y & =\frac{b}{\sin \theta}(1-\cos \theta)
\end{aligned}
$$



Nmercurylstaffhome\$1WOH\Adm in_M Fac\Assessment infolSuggested Mk solns template_V3.doc

MATHEMATICS Extension 2: Question. $\mathcal{\alpha}$

$I_{n}\left[1+\frac{5 n}{2}\right]=\frac{5 n}{2} I_{n}-1$
$I k=\left(\frac{5 n}{2+5 n}\right) I n-1$
(f) $I_{m}=\frac{5 m}{2+5 m} \quad I n-1$

$I_{2}=\frac{10}{12} I_{1}$




$$
\begin{aligned}
& I_{n}=\frac{5 n}{5 n+2} \cdot \frac{5(n-1)}{5(n-1)+2} \cdot \frac{5(n-2)}{5(n-2)+2} \quad \frac{5 \times(3)}{5(3)+2}+\frac{5)}{(2)+2} \times 40 \\
& =\frac{5^{n}(11)(n-1)(n-2) \cdots-2 \times 2 \times 17}{(5 n+2)(5 n-3)(5 n-8)-a 12} \\
& =\frac{5 n n!}{2 \times 7 \times 12 \times(5 n+2)}
\end{aligned}
$$

$\qquad$

$$
\begin{aligned}
T_{4} & =\frac{54 \times 4}{2 \times 7 \times 12 \times 17 \times 22}
\end{aligned}
$$

Marker's Comments
(1) Integrale by for $n+5$
(i) Simplefy
(1) separate
integneis
$\qquad$
$\qquad$
$\qquad$
(1) complete solution
$\qquad$
$\qquad$
$\qquad$
(m) mstshaw
semesat
both ends inclurlingIo
(1) Calcapare Io
(3) must show
Sontside pach Hem to - make 5 n and $n(n-1)(n-2) \cdots 321$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(1) compect anower only $\cdots, \ldots, \ldots, \ldots, \ldots$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

IImercury\staffhome\$1WOHVAdmin_M Fac\Assessment infolSuggested Mk solns template_V3.doc

