QUESTION 1 (15 Marks)

(a) (i) Find: $\int \tan ^{2} 4 \theta d \theta$.
(ii) Find $\int \frac{d x}{x^{2}+2 x+4}$.
(iii) Evaluate: $\int_{0}^{1} \frac{x}{\sqrt{2-x}} d x$.

3
(iv) Evaluate: $\int_{1}^{3} \frac{4}{x^{2}-4 x} d x$

3
(b) Draw a neat sketch of the hyperbola $3 x^{2}-y^{2}=12$ showing
(i) the intercepts with the co-ordinate axes,
(ii) the positions and co-ordinates of the foci,
(iii) the positions and equations of the directrices.
(iv) the positions and equations of the asymptotes.

QUESTION 2 (15 Marks) (START A NEW PAGE)
(a) (i) Evaluate: $\int_{1}^{e} x \ln x d x$.
(ii) Evaluate: $\int_{0}^{\frac{\pi}{4}} \sin ^{3} \theta d \theta$.
(iii) Using the substitution $u=e^{x}$, find $\int \frac{e^{2 x}}{e^{x}-1} d x$.
(b) (i) Draw a neat sketch of the ellipse $9 x^{2}+25 y^{2}=225$ showing
(α) the intercepts with the co-ordinate axes,
(β) the positions and co-ordinates of the foci,
(γ) the positions and equations of the directrices.
(ii) Write down the equation of the tangent to the ellipse at the point $P(5 \cos \theta, 3 \sin \theta)$.
(iii) The tangent at P meets the tangents from the ends of the major axis at the points Q and R. Prove that the intervals $Q S$ and $R S$ are perpendicular where S is the focus with the positive x-coordinate.
(a) (i) Express $\frac{1}{1+x+x^{2}+x^{3}}$ in the form $\frac{A}{1+x}+\frac{B x+C}{1+x^{2}}$, where A, B and C are rational numbers.
(ii) Hence evaluate $\int_{0}^{1} \frac{d x}{1+x+x^{2}+x^{3}}$.
(b) The graph of $y=f(x)$ is illustrated. The line $y=-1$ is a horizontal asymptote.

Using the separate graphs provided, sketch each of the graphs below. In each case, clearly label any maxima or minima and the equations of any asymptotes.
(i) $y=\frac{1}{f(x)}$.
(ii) $y=2 f(x+1)$.
(c) (i) Given the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, prove that the line $y=m x+c$ is a tangent provided that $c^{2}=a^{2} m^{2}+b^{2}$.
(ii) Two tangents are drawn from the point $T(p, q)$ to touch the above ellipse at points M and N. Show that the gradients of these tangents are the roots of the quadratic equation $\left(a^{2}-p^{2}\right) m^{2}+2 p q m+\left(b^{2}-q^{2}\right)=0$.
(iii) If the above two tangents are perpendicular, show that $a^{2}+b^{2}=p^{2}+q^{2}$.
(a) (i) Given that $I_{n}=\int_{0}^{\frac{\pi}{2}} \theta \sin ^{n} \theta d \theta$, prove that $I_{n}=\frac{n-1}{n} I_{n-2}+\frac{1}{n^{2}}$ for $n \geq 2$.
(ii) Hence show that $\int_{0}^{\frac{\pi}{2}} \theta \sin ^{5} \theta d \theta=\frac{149}{225}$.

3
(b) (i) Use the substitution $t=\tan \frac{x}{2}$ to prove that $\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\sin x}=\frac{\pi}{3 \sqrt{3}}$.

3
(ii) Show that $\int_{0}^{2 a} f(x) d x=\int_{0}^{a}\{f(x)+f(2 a-x)\} d x$.
(iii) Hence evaluate $\int_{0}^{\pi} \frac{x}{2+\sin x} d x$.

Question 3(b)(i)
Student \#:
$y=\frac{1}{f(x)}$

Question 3(b)(ii)
Student \#:

2011-TERM 1 (HSST 2)
MATHEMATICS Extension 2: Question....!

Suggested Solutions	
a) ${ }^{\text {a }} \int \tan ^{2} 4 \theta d \theta$	$=\int\left(\sec ^{2} 4 \theta-1\right) d \theta$
	$=\frac{\tan 4 \theta-\theta+c}{4}$

ii) $\int \frac{d x}{(x+1)^{2}+3}=\frac{1}{\sqrt{3}} \int \frac{\sqrt{3} d x}{(x+1)^{2}+(\sqrt{3})^{2}}$

Marker's Comments
a) i)

$$
\begin{aligned}
\int \tan ^{2} 4 \theta d \theta & =\int\left(\sec ^{2} 4 \theta-1\right) d \theta \\
& =\tan 4 \theta-\theta+C
\end{aligned}
$$

$$
=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x+1}{\sqrt{3}}\right)+c
$$

ii) $I=\int_{0}^{1} \frac{x d x}{\sqrt{2-x}}$ $\begin{aligned} \text { Let } u & =2-x \\ { }^{\prime \prime} d u & =-d x "\end{aligned}$
$\therefore I=\int_{2}^{1} \frac{2-u(t u)}{\sqrt{u}}$
Wher $x=1, u=1$ $x=0, u=2 \quad 1$ $=\int_{i}^{2}\left(\frac{2}{\sqrt{u}}-\sqrt{u}\right) d u$
$=\left[4\left(u^{1 / 2}\right)-\frac{2\left(u^{3 / 2}\right)}{3}\right]_{1}^{2}$
$=4 \sqrt{2}-\frac{2}{3} \cdot 2 \sqrt{2}-4+\frac{2}{3}$

$$
=\frac{8 \sqrt{2}}{3}-\frac{10}{3}
$$

iv) Let $\frac{4}{x(x-4)}=\frac{A}{x}+\frac{B}{x-4}$

$$
A(x-4)+B x \equiv 4
$$

Substitite $x=4 \Rightarrow B=1$
Subotitute $x=0 \Rightarrow A=-1$
$\int_{1}^{3} \frac{4 d x}{x^{2}-4 x}=\int_{1}^{3}\left(-\frac{1}{x}+\frac{1}{x-4}\right) d x$

J:Maths\Suggested Mk solns template_V3_all Ls.doc

J:Waths\Suggested Mk solns template_V3_all Ls.doc

VIZ MATH EXT 2 ASSESSMEN TASK 2 TERM 1, 2011

MATHEMATICS Extension 2: Question. 2

$$
\begin{aligned}
& \text { Q } 2(a)(i) \quad \text { Suggested Sol } \\
& \frac{1}{2}=\left[\frac{1}{2} x^{2} \operatorname{lux}\right]_{2}^{e}-\frac{1}{2} \int_{1}^{e} x d x \\
& \left.=\left[\frac{1}{2} e^{2}-0\right]^{1}-\frac{1}{2} \times \frac{1}{2} x^{2}\right]_{1}^{e} \\
& =\frac{1}{2} e^{2}-\frac{1}{4}\left(e^{2}-1\right)^{2}=\frac{1}{2} e^{2}-\frac{1}{4} e^{2}+\frac{1}{4} \\
& =\frac{1}{4}\left(e^{2}+1\right) \\
& u=\operatorname{lu}_{2 c} \quad d v=x d x \\
& d e=\frac{1}{x} d x<v=\frac{1}{2} x^{2}
\end{aligned}
$$

(ii) $I=\int_{0}^{\pi / 4} \sin ^{3} \theta d \theta$
$=\int_{0}^{\frac{\pi}{4} \sin \theta \times \sin \theta d \theta}=$

$=\left[-\cos \theta+\frac{1}{3} \cos ^{3} \theta\right]_{0}^{\frac{\pi}{4}}$

$$
=\frac{2}{3}-\frac{5}{6 \sqrt{2}}=\frac{4 \sqrt{2}-5}{6 \sqrt{2}}-\frac{8-5 \sqrt{2}}{12}
$$

(iii)

$$
\begin{aligned}
& I=\int \frac{e^{2 x}}{e^{x}-1} d x \\
& u=e^{x} \quad[x=\ln u] \\
& d e=e^{x} d x=u d x \\
& \therefore-d x=\frac{d u}{u} \\
& I=\int \frac{u^{2}}{u-1} x \frac{d u}{u}=\int \frac{u d u}{L-1} \\
& -\int 1+\frac{1}{u-1} d u \\
& =u+e n|u-1|+c \\
& \therefore I=e^{t}+\ln \left[e^{x}-1\right]+c
\end{aligned}
$$

$\frac{1}{2}$ for $\frac{1}{2} e^{2}-0$
Marks

Marker's Comments

1 For correct IBPs

Method 2

$$
\frac{1}{2}, \frac{1}{2}
$$

$$
\begin{aligned}
& \text { Let } e=\cos \theta \\
& d e=-\sin \theta d \theta \\
& \sin \theta d \theta=-\operatorname{du} \\
& \theta \quad u \\
& \begin{array}{cc}
\pi / 4 & \frac{1}{\sqrt{2}} \\
0 & 1
\end{array} \\
& I=+\int_{\frac{1}{\sqrt{2}}}^{1}\left(u^{2}-i\right) d u e+c \\
& \text { Method } \overline{3} \text { I偮 } \\
& u=\sin ^{2} \theta \quad \alpha V=\sin \theta d \theta \\
& \text { du }=2 \sin \theta \cos \theta \\
& V_{H / 4}=-\cos \theta \\
& \begin{aligned}
I & =\left[-\cos \theta \sin ^{2} \theta\right]_{0}^{4 / 4}+2 \int \sin \phi \cos ^{2} \theta d d \\
& \left.=-\frac{1}{3 \sqrt{2}}-0-\frac{2}{3} \cos ^{3} \theta\right]_{0}^{\pi / 4}
\end{aligned}
\end{aligned}
$$

ai) $\quad A=\frac{1}{2}$

$$
B=-\frac{1}{2}
$$

$$
c=\frac{1}{2}
$$

$$
\frac{1}{2(1+x)}+\frac{-x+1}{2\left(1+x^{2}\right)}
$$

ii) $\int_{0}^{i} \frac{d x}{2(1+x)}-\int_{0}^{1} \frac{x d x}{2\left(1+x^{2}\right)}+\int_{0}^{1} \frac{d x}{2\left(1+x^{2}\right)}$

$$
=\frac{1}{2}[\ln (1+x)]_{0}^{1}-\frac{1}{4}\left[\ln \left(1+x^{2}\right)\right]_{0}^{i}+\frac{1}{2}\left[\tan ^{-1} x\right]_{0}^{i}
$$

$$
=\frac{1}{2} \ln 2-\frac{1}{4} \ln 2-\frac{1}{2} \frac{\pi}{4}
$$

$$
=\frac{\ln 2}{4}+\frac{\pi}{8}
$$

b)

$\frac{1}{2} m$
$\frac{1}{2} m$
$\frac{1}{2} m$
$\frac{1}{2} m \quad$ Same forgo ot
This line

$$
\frac{1}{2} m+\frac{1}{2} m+\frac{1}{2} m
$$

1 m
$\frac{1}{2} m$

$$
\begin{aligned}
& y=-1 \quad \frac{1}{2} m \\
& =0
\end{aligned}
$$

Asy $x=0, x=2, y=0,2 m$
Each branch $\frac{1}{2} m(a) \Rightarrow 4 \frac{1}{2} m$ must mat $y=1,-1$
must show min $\left(1, \frac{1}{2}\right)$

Any $y=-2 \quad \frac{1}{2} m$
x, y introits $\frac{1}{2} m$
End side yropt $\frac{1}{2} m=9 / \mathrm{m}$

2011 Ext 2 TI Qu
(i)

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{(m x+c)^{2}}{b^{2}}=1 \\
& \left(b^{2}+a^{2} m^{2}\right) x^{2}+2 a^{2} m c x+a^{2}\left(c^{2}-b^{2}\right)=0
\end{aligned}
$$

tangent if $\Delta=0$

$$
\begin{aligned}
& 4 a^{2} m^{2} c^{2}-4\left(b^{2}+a^{2} m^{2}\right) \times a^{2}\left(c^{2}-b^{2}\right)=0 \\
& 4 a^{2} b^{2}\left(a^{2} m^{2}-c^{2}+b^{2}\right)=0 \\
& a \neq D, b \neq 0 \\
& c^{2}=a^{2} m^{2}+b^{2}
\end{aligned}
$$

iF)

$$
\begin{aligned}
& q=m p+c \\
& c^{2}=a^{2} m^{2}+b^{2} \\
& (q-m p)^{2}=a^{2} m^{2}+b^{2} \\
& q^{2}-2 m p q+m^{2} p^{2}=a^{2} m^{2}+b^{2} \\
& \left(a^{2}-p^{2}\right) m^{2}+2 p q m+\left(b^{2}-q^{2}\right)=0
\end{aligned}
$$

iii) $m_{1}, m_{2}=-1$ for perpendicular lines

$$
\begin{aligned}
& \frac{b^{2}-q^{2}}{a^{2}-p^{2}}=-1 \quad \text { product of roots is } \\
& a^{2}+b^{2}=p^{2}+c^{2}
\end{aligned}
$$

Some of
$1 m \quad c=\sqrt{a^{2} m^{2}+b^{2}}$ - $-1 m$

1 m
$1 m$
(a) (i) Given that $I_{n}=\int_{0}^{\frac{\pi}{2}} \theta \sin ^{n} \theta d \theta$, prove that $I_{n}=\frac{n-1}{n} I_{n-2}+\frac{1}{n^{2}}$ for $n \geq 2$.

$$
\begin{aligned}
& \text { Solution: } \\
& \begin{aligned}
I_{n} & =\int_{0}^{\frac{\pi}{2}}\left\{\theta \sin ^{n-1} \theta \times \frac{d}{d \theta}(-\cos \theta)\right\} d \theta \\
& =u v-\int v d u e
\end{aligned} \\
& =\left[-\theta \cos \theta \sin ^{n-1} \theta\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}}\left\{(-\cos \theta) \times\left(\sin ^{n-1} \theta+\theta(n-1) \cos \theta \sin ^{n-2} \theta\right)\right\} d \theta \\
& =0+\int_{0}^{\frac{\pi}{2}}\left(\cos \theta \sin ^{n-1} \theta+(n-1) \theta \cos ^{2} \theta \sin ^{n-2} \theta\right) d \theta \\
& =\int_{0}^{\frac{\pi}{2}}\left(\cos \theta \sin ^{n-1} \theta\right) d \theta+(n-1) \int_{0}^{\frac{\pi}{2}}\left(\theta \cos ^{2} \theta \sin ^{n-2} \theta\right) d \theta \\
& \left.=\left[\frac{1}{n} \sin ^{n} \theta\right]_{0}^{\frac{\pi}{2}}+(n-1)\right]_{0}^{\frac{\pi}{2}}\left\{\theta\left(1-\sin ^{2} \theta\right) \sin ^{n-2} \theta\right\} d \theta \\
& =\frac{1}{n}+(n-1) \int_{0}^{\frac{\pi}{2}}\left\{\theta \sin ^{n-2} \theta-\theta \sin ^{n} \theta\right\} d \theta \\
& =\frac{1}{n}+(n-1) \int_{0}^{\frac{\pi}{2}}\left\{\theta \sin ^{n-2} \theta\right\} d \theta-(n-1) \int_{0}^{\frac{\pi}{2}}\left\{\theta \sin ^{n} \theta\right\} d \theta \\
& =\frac{1}{n}+(n-1) I_{n-2}-(n-1) I_{n} \\
& I_{n}+(n-1) I_{n}=\frac{1}{n}+(n-1) I_{n-2} \\
& n I_{n}=\frac{1}{n}+(n-1) I_{n-2} \\
& I_{n}=\frac{1}{n^{2}}+\frac{n-1}{n} I_{n-2}
\end{aligned}
$$

(ii) Hence show that $\int_{0}^{\frac{\pi}{2}} \theta \sin ^{5} \theta d \theta=\frac{149}{225}$.

Solution:

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \theta \sin ^{5} \theta d \theta=I_{5} \\
& I_{5}=\frac{1}{25}+\frac{4}{5} I_{3} \\
& I_{3}=\frac{1}{9}+\frac{2}{3} I_{1}
\end{aligned}
$$

$$
\begin{aligned}
& I_{1}=\int_{0}^{\frac{\pi}{2}} \theta \sin \theta d \theta \\
&=\int_{0}^{\frac{\pi}{2}} \theta \frac{d}{d \theta}(-\cos \theta) d \theta \\
&=[-\theta \cos \theta]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}}(-\cos \theta) d \theta \\
&=0+\int_{0}^{\frac{\pi}{2}} \cos \theta d \theta \\
&=[\sin \theta]_{0}^{\frac{\pi}{2}} \\
&=1 \\
& I_{3}=\frac{1}{9}+\frac{2}{3}(1) \\
&=\frac{7}{9} \\
& I_{5}=\frac{1}{25}+\frac{4}{5}\left(\frac{7}{9}\right) \\
&=\frac{149}{225} \\
& \int_{0}^{\frac{\pi}{2}} \theta \sin ^{5} \theta d \theta=\frac{149}{225}
\end{aligned}
$$

(b) (i) Use the substitution $t=\tan \frac{x}{2}$ to prove that $\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\sin x}=\frac{\pi}{3 \sqrt{3}}$.

Solution:

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\sin x} & =\int_{0}^{1}\left(\frac{1}{2+\frac{2 t}{1+t^{2}}}\right) \times \frac{2 d t}{1+t^{2}} \\
& =\int_{0}^{1}\left(\frac{2 d t}{2\left(1+t^{2}\right)+2 t}\right) \\
& =\int_{0}^{1}\left(\frac{1}{t^{2}+t+1}\right) d t \\
& =\int_{0}^{1}\left(\frac{1}{\left(t+\frac{1}{2}\right)^{2}+\frac{3}{4}}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{\sqrt{3}}\left[\tan ^{-1}\left(\frac{t+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)\right]_{0}^{1} \\
& =\frac{2}{\sqrt{3}}\left[\tan ^{-1}\left(\frac{2 t+1}{\sqrt{3}}\right)\right]_{0}^{1} \\
& =\frac{2}{\sqrt{3}}\left\{\left(\tan ^{-1}\left(\frac{3}{\sqrt{3}}\right)-\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)\right)\right\} \\
& =\frac{2}{\sqrt{3}}\left(\frac{\pi}{3}-\frac{\pi}{6}\right) \\
& =\frac{\pi}{3 \sqrt{3}}
\end{aligned}
$$

(ii) Show that $\int_{0}^{2 a} f(x) d x=\int_{0}^{a}\{f(x)+f(2 a-x)\} d x$.

Solution:

$\int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{a}^{2 a} f(x) d x$
Consider

$$
\begin{aligned}
& \int_{a}^{2 a} f(x) d x, \text { let } u=2 a-x, d u=-d x, x=a \Rightarrow u=a, x=2 a \Rightarrow u=0 \\
& \begin{aligned}
\int_{a}^{2 a} f(x) d x & =\int_{a}^{0} f(2 a-u)(-d u) \\
& =\int_{0}^{a} f(2 a-u) d u \\
& =\int_{0}^{a} f(2 a-x) d x(\text { let } u=x)
\end{aligned} \\
& \begin{aligned}
\int_{0}^{2 a} f(x) d x & =\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x \\
& =\int_{0}^{a}\{f(x)+f(2 a-x)\} d x
\end{aligned}
\end{aligned}
$$

(iii) Hence evaluate $\int_{0}^{\pi} \frac{x}{2+\sin x} d x$.

Solution:

$$
\int_{0}^{\pi} \frac{x}{2+\sin x} d x=\int_{0}^{\frac{\pi}{2}}\left(\frac{x}{2+\sin x}+\frac{\pi-x}{2+\sin (\pi-x)}\right) d x
$$

$$
=\int_{0}^{\frac{\pi}{2}}\left(\frac{x}{2+\sin x}+\frac{\pi-x}{2+\sin x}\right) d x
$$

(ii) | Atterncetive | |
| ---: | :--- |
| Lots | $\left.=\int_{0}^{2 a} f(x) d x=F(x)\right]_{0}^{2 a}=F$ |
| Bits | $=\int_{0}^{0} f(x)+f(2 a-x) d x$ |
| | $=[F(x)-F(2 a-x)]_{0}^{a}$ |

