Student Number: _____

2016 HSC ASSESSMENT TASK 2 TERM 1 ASSESSMENT BLOCK

Mathematics Extension 2

Wednesday 23rd March (Morning Session)

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black pen
- Board-approved calculators may be used
- A Reference Sheet is provided.
- In Questions 11–16, show relevant mathematical reasoning and/or calculations

Total marks – 100

Section I 10 marks Attempt Questions 1–10 Allow about 15 minutes for this section Section II 90 marks Attempt Questions 11–16 Allow about 2 hours 45 minutes for this section

Outcomes to be Assessed:

A student:

- E2 chooses appropriate strategies to construct arguments and proofs in both concrete and abstract settings.
- **E3** uses the relationship between algebraic and geometric representations of complex numbers and of conic sections.
- **E4** uses efficient techniques for the algebraic manipulation required in dealing with questions such as those involving conic sections and polynomials.
- **E6** combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions.
- **E9** communicates abstract ideas and relationships using appropriate notation and logical argument.

Section I

10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1-10.

1 What is $-\sqrt{3} + i$ expressed in modulus-argument form?

(A)
$$\sqrt{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

(B)
$$2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

(C)
$$\sqrt{2}\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$

(D)
$$2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$

2 Which of the following expressions is equivalent to $\frac{2i}{1-2i} = ?$

(A) $-\frac{4}{3} - \frac{2}{3}i$ (B) $-\frac{4}{5} + \frac{2}{5}i$ (C) $\frac{4}{5} + \frac{2}{5}i$

(D)
$$\frac{4}{3} - \frac{2}{3}i$$

3 The eccentricity of the hyperbola $\frac{x^2}{4k^2} - \frac{y^2}{k^2} = 1$, where k is a positive constant is?

- (A) $\frac{\sqrt{3}}{2}$ (B) 2 (C) $\frac{\sqrt{5}}{2}$
- (D) $\sqrt{5}$

4 The equation $8x^3 - 54x + k$ has a double root. What are the possible values of k?

- (A) ±4
- (B) ±9
- (C) ±40.5
- (D) ±54

5 If z represents a variable point on the argand diagram, which best represents the locus of |z-4+i|-|z+4-i|=0?

- (A) a hyperbola
- (B) an ellipse
- (C) a circle
- (D) a line

6 The diagram below shows the graph of the function y = f(x).

Which of the following is the graph of $y = \sqrt{f(x)}$?

7 The polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ is an odd polynomial with at least 1 multiple root. Julie was asked to give some facts about the curve and replied

I y = P(x) must pass through the origin

II If P'(a) = 0 then P(-a) = 0

Which of Julie's statements must always be correct?

(A) I only

- (B) II only
- (C) both I and II
- (D) neither I nor I

8 What is the number of asymptotes of the graph of $y = \frac{2x^3}{x^2 - 1}$?

- (A) 1
- (B) 2
- (C) 3
- (D) 4

9 If ω is a complex cubic root of unity, which of the following statements is **NOT** correct?

- (A) ω^2 is the other complex root
- $(B) \qquad \omega^2 + \omega = -1$
- (C) $\omega^6 \omega = \omega^2$
- (D) $\overline{\omega}$ is also a root

10

The point *W* on the Argand diagram above represents a complex number *w* where |w| = 1.5. The complex number w^{-1} is best represented by which point?

- (A) *P*
- (B) *R*
- (C) S
- (D) T

Section II

90 marks Attempt Questions 11–16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

Let z = 4 - i and w = 2 + 2i. (a) Express in the form x + iy, where x and y are real numbers: iz, (i) 1 (ii) 1 ΖW $\frac{z}{w}$ (iii) 2 The complex number w is given by $w = -1 + i\sqrt{3}$. (b) (i) Show that $w^2 = 2\overline{w}$. 2 Evaluate |w| and $\arg(w)$. (ii) 2

(iii) Show that w is a root of the equation $w^3 - 8 = 0$. 1

Question 11 continues on the next page

- (c) The polynomial P(x) leaves a remainder of 6 when divided by (x-1)and a remainder of 2 when divided by (x-3). Find the remainder when P(x) is divided by (x-1)(x-3).
- (d) *P* is a point on the Argand diagram representing the complex number Z = 1 + i. The points *Q*, *R* and *T* represent Q = iZ, R = -Z and $T = \frac{1}{Z}$.
 - (i) Find the values of *Q*, *R* and *T*, expressing each in the form x + iy with *x* and *y* real. 2
 - (ii) Locate *P*, *Q*, *R* and *T* on the Argand diagram. What is the best2 description of the quadrilateral *PQRT*?

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) The diagram shows the graph of y = f(x).

x = -1 and y = 1 are asymptotes and (0,3) is a maximum turning point.

Draw separate one-third page sketches of the graphs of the following:

(i)	$y = f\left(\left x\right \right)$	1
<i>(</i> ••)	c()	

(ii)
$$|y| = f(x)$$
 1

(iii)
$$y = \left[f(x)\right]^2$$
 2

(iv)
$$y^2 = f(x)$$
 2

$$(\mathbf{v}) \qquad \mathbf{y} = e^{f(\mathbf{x})} \qquad \qquad \mathbf{2}$$

Question 12 continues on the next page

Question 12 (continued)

- (b) The letters of the word EQUATIONS are arranged in a row from left to right.
 - (i) Find the probability that the vowels occur in alphabetical order 1
 reading from left to right.
 - (ii) Find the probability that no two vowels are next to each other. 2

(c) Solve
$$\frac{|x-1|-2}{12+x-x^2} \ge 0.$$
 4

Question 13 (15 marks) Use a SEPARATE writing booklet.

Ques	1011 15	(15 marks) Ose a SEI MKATE witting bookiet.	
(a)	On th	he Argand diagram, let $A = \sqrt{3} + i$	
	(i)	Draw a clear sketch to show the important features of the curve	1
		defined by $ z - A = 2$.	
	(ii)	For <i>z</i> on this curve find the maximum value of $ z $.	1
	(ii)	For z on this curve find the range of values of $\arg(z)$.	2
(b)	The e	equation of the ellipse, <i>E</i> , is $\frac{x^2}{25} + \frac{y^2}{9} = 1$.	
	The p	point <i>P</i> on the ellipse is (x_1, y_1) .	
	(i)	Find the eccentricity of the ellipse.	1
	(ii)	Find the coordinates of the foci and the equations of the directrices	2
		of the ellipse.	
	(iii)	Show that the equation of the tangent at <i>P</i> is $\frac{xx_1}{25} + \frac{yy_1}{9} = 1$.	2
	(iv)	Let the tangent at <i>P</i> meet the directrix at a point <i>J</i> . Show that $\angle PSJ$	3
		is a right angle where S is the corresponding focus.	
(c)	Solve	e the equation $x^4 - 5x^3 - 9x^2 + 81x - 108 = 0$ given that it has a	3
	triple	root.	

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) Express
$$\frac{x-8}{(x^2+2)(x-2)}$$
 in the form $\frac{Ax+B}{x^2+2} + \frac{C}{x-2}$ 3

(b) Consider
$$f(x) = \sin x + \cos x$$

(i) Find A and B such that
$$\sin x + \cos x = A \sin (x+B)$$

where $A > 0$ and $0 \le B \le \frac{\pi}{2}$

(ii) Sketch
$$f(x) = \sin x + \cos x$$
 for $-2\pi \le x \le 2\pi$. 2

(iii) Hence, or otherwise sketch
$$y = \frac{1}{f(x)}$$
 for $-2\pi \le x \le 2\pi$. 2

(iv) Sketch
$$y = \frac{f(x)}{x}$$
. 2

(c) The equation
$$x^3 - 3x^2 + 9 = 0$$
 has roots α, β and γ .

(i) Find the equation with roots
$$\alpha^2$$
, β^2 and γ^2 . 2

(ii) Find the value of
$$\alpha^2 + \beta^2 + \gamma^2$$
 and hence evaluate $\alpha^3 + \beta^3 + \gamma^3$. 2

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) For the relation
$$x^3 + 3y^2 = 6xy - 3x$$
, find $\frac{dy}{dx}$ in terms of x and y. 2

(b) Sketch the region on the Argand diagram defined by $(z-3+i)(\overline{z}-3-i) \le 9$. 3

(c)

ABC is an acute angled triangle inscribed in a circle. *P* is a point on the minor arc *AB* such that *PL* is perpendicular to *CA* produced. *N* is a point on BC such that *PN* is perpendicular to *BC*. *LN* cuts *AB* at *M*. Copy or trace the diagram into your writing booklet.

Question 15 continues on the next page

Question 15 (continued)

- (d) A and B are on the curve $y = x^4 + 4x^3$ at $x = \alpha$ and $x = \beta$ respectively. The line y = mx + b is a tangent to the curve at both the points A and B.
 - (i) The zeroes of the equation $x^4 + 4x^3 mx b = 0$ are α, α, β and β . **1** Explain this result.
 - (ii) Find the values of *m* and *b*.

3

Question 16 (15 marks) Use a SEPARATE writing booklet.

(ii) Show that
$$1 + \omega + \omega^2 = 0$$
. 1

3

- (iii) Find in its simplest form, the cubic equation whose roots are 3, $2\omega + \omega^2$ and $2\omega^2 + \omega$.
- (b) The points $P(a\cos\theta, b\sin\theta)$ and $Q(-a\sin\theta, b\cos\theta)$ lie on the ellipse *E*,

Given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$

(i) Show that if O is the origin then $OP^2 + OQ^2 = a^2 + b^2$. 1

The equations of the tangents at P and Q are:

$$\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1 \text{ and } \frac{-x\sin\theta}{a} + \frac{y\cos\theta}{b} = 1 \text{ respectively.}$$

Do not prove these.

- (ii) Show that the point of intersection of *T* of the two tangents at **3** *P* and *Q* is given by $T(a(\cos\theta - \sin\theta), b(\cos\theta + \sin\theta))$.
- (iii) Show that the locus of T is given by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2.$ 2
- (iv) If α is the angle between the tangents at *P* and *Q* show that 4

$$\tan \alpha = 2\frac{\sqrt{1-e^2}}{e^2\sin 2\theta}$$

End of paper.

Student Number					
Judent Number					

MATHEMATICS EXTENSION 2

MULTIPLE-CHOICE ANSWER SHEET

1	A 🔿	В	с 🔾	
2	A 🔿	В	c 🔿	D 🔿
3	A 🔿	В	c 🔿	D 🔿
4	A 🔿	в 🔿	c 🔿	D 🔿
5	A 🔿	В	c 🔿	D 🔿
6	A 🔿	В	C 🔾	D 🔿
7	A 🔿	В	C 🔾	D 🔿
8	A 🔿	в 🔿	c 🔿	D 🔿
9	A 🔿	в 🔿	c 🔿	D 🔿
10	A 🔿	В	c 🔾	

1. $-\sqrt{3}+1$ $ z =2$, $\arg(z)=\frac{5\pi}{6}$	D
6	
2↑	
-sr3,1	
	D
2. $\frac{2i}{1-2i} = \frac{2i(1+2i)}{(1-2i)(1+2i)}$	Б
1-2i (1-2i)(1+2i)	
$=\frac{2i-4}{2i-4}$	
1+4	
$=\frac{-4}{2i}+\frac{2i}{2i}$	
5 5	
$3 e^2 - \frac{a^2 + b^2}{a^2 + b^2}$	С
$3. e^{-\frac{1}{a^2}}$	
$4k^2 + k^2$	
$=\frac{1}{4k^2}$	
5 V ²	
$=\frac{3\kappa}{4L^2}$	
$e = \frac{\sqrt{5}}{\sqrt{5}}$	
2	
4. $f(x) = 8x^3 - 54x + k$	D
$f'(x) = 24x^2 - 54$	
for a double root $f''(x)=0$	
$x = \pm 1.5$	
$f(1.5) = 8(\pm 1.5)^3 - 54(\pm 1.5) + k$	
$=\mp 54+k$	
$\therefore k = \pm 54$	
5. $ z - (4 - i) = z - (-4 + i) $ refers to the distance of z from 2 points is equal	D
therefore Z lies on the perpendicular bisector	
6.	С
7. As $P(x)$ is a continuous function statement 1 must be true.	А
Statement 11 is true for the multiple root, however not all stationary points	
are necessarily on the x-axis.	C
8. $y = \frac{2x^3}{2}$	C
$x^{2}-1$	
$=2x-\frac{2x}{2}$	
x^2-1	
<i>Asymptotes</i> : $x = 1, x = -1, y = 2x$	

9. If ω is a complex root $\omega^3 = 1$	C
$\therefore \left(\omega^2\right)^3 = \left(\omega^3\right)^2 = 1 \text{ is also a root}$	
$Sum of \ roots = 0$	
$\therefore 1 + \omega + \omega^2 = 0$	
$\therefore \omega + \omega^2 = -1$	
$\therefore C$ is not correct as	
$\omega^6 - \omega = \omega^2$	
$\omega + \omega^2 = \omega^6$	
=1	
$\neq -1$	
$10 \qquad w = 1.5 cis\theta$	В
$\frac{1}{w} = \frac{1}{1.5} cis(-\theta)$	
$\therefore R$	
11a(i) iz = i(4-i)	1 correct
=4i+1	solution
$\overline{iz} = 1 - 4i$	
(<i>ii</i>) $zw = (4-i)(2+2i)$	1 correct
=8+8i-2i+2	solution
=10+6i	
(iii) $\frac{z}{z} = \frac{4-i}{x} \times \frac{2-2i}{z}$	2 correct
w 2+2i 2-2i	solution
$=\frac{8-8i-2i-2}{4+4}$	1
6-12i	multiplyin
$=\frac{3}{8}$	g by conjugate
_ 3-6 <i>i</i>	or
	equivalent
b)i) $w^2 = (-1 + i\sqrt{3})^2$	2 Correct solution
$=1-2i\sqrt{3}-3$	1 correctly
$=-2-2i\sqrt{3}$	finding
$2\overline{w} = 2(-1-i\sqrt{3})$	LHS or
	RHS
$= -2 - 2i\sqrt{3}$	
= w	2 both
$ ii w = 2$ $\arg(w) = \frac{2\pi}{3}$	correct
	1 one
Draw a diagram	correct

<i>iii</i>) $w^3 - 8 = \left(2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)\right)^3 - 8$	1 Correct show
$= \left(2^3 \left(\cos\frac{6\pi}{3} + i\sin\frac{6\pi}{3}\right)\right) - 8$	
= 8(1+0i) - 8	
=0	
So wis a root of the equation	
c) $P(x) = (x-1)(x-3)Q(x) + R(x)$	2 correct
=(x-1)(x-3)Q(x)+ax+b as deg $R(x) < 2$	solution
P(1) = 6	1 correct
6 = (1-1)(1-3)Q(1) + a + b	attempt at
a+b=6	and b
P(3) = 2	
2 = (3-1)(3-3)Q(3) + 3a + b	
3a + b = 2	
a+b=6	
2a = -4	
a = -2, b = 8	
R(x) = -2x + 8	
$d) \qquad P = Z = 1 + i$	2 correct
Q = i(1+i)	solution
= -1 + i	1 two
R = -(1+i)	correct
= -1 - i	solutions
$T = \frac{1}{1-i} \times \frac{1-i}{i}$	
$1+i^{-1}-i$	
$=\frac{1-i}{2}$	
$\frac{2}{1}$	
$=\frac{1}{2}-\frac{1}{2}$	
	1

$a^2 - b^2$	1 correct
$b(i) e^{z} = \frac{1}{a^{2}}$	solution
$=\frac{25-9}{25-9}$	
25	
$e = \frac{4}{5}$	
<i>ii)</i> $Foci: (\pm ae, 0) = (\pm 4, 0)$	2 correct
Directrices: $x = +\frac{a}{2}$	solution
e	1 either
$=\frac{\pm 25}{4}$	foci or
4	correct
<i>iii</i>) $\frac{x^2}{25} + \frac{y^2}{9} = 1$	
Differentiate implicitly:	
2x + 2y dy	
$\frac{1}{25} + \frac{1}{9} \cdot \frac{1}{dx} = 0$	
$\frac{dy}{dx} = \frac{-9x}{2}$	
dx 25y	
$At P(x_1, y_1), \qquad \frac{dy}{dx} = \frac{-9x_1}{25y_1}$	
Equation of the tangent :	
$y - y_1 = \frac{-9x_1}{25y_1} (x - x_1)$	
$25 yy_1 - 25 y_1^2 = -9 xx_1 + 9 x_1^2$	
$9xx_1 + 25yy_1 = 9x_1^2 + 25y_1^2$	
$xx_1 + yy_1 - x_1^2 + y_1^2$	
25 + 9 - 25 + 9	
$\frac{xx_1}{25} + \frac{yy_1}{9} = 1$ as P is a point on the ellipse.	
iv)	

c) Let $P(x) = x^4 - 5x^3 - 9x^2 + 81x - 108$	
$P'(x) = 4x^3 - 15x^2 - 18x + 81$	
$P''(x) = 12x^2 - 30x - 18$	
if P(x) has a triple root then that root solves $P9x = P'(x) = P''(x) = 0$	
P''(x) = 0	
$12x^2 - 30x - 18 = 0$	
$2x^2 - 5x - 3 = 0$	
(2x+1)(x-3) = 0	
$r-3 - \frac{-1}{2}$	
x = 5, 2	
P'(3) = P(3) = 0 (should show but too lazy to type in).	
$\therefore x = 3$ is the triple root.	
Now sum of roots $=\frac{-b}{a}$	
$3+3+3+\alpha=5$	
lpha = -4	
: Solution to $x^4 - 5x^3 - 9x^2 + 81x - 108 = 0$ is $x = 3, 3, 3$ and -4	
Question 14	
a) $\frac{x-8}{(x^2+2)(x-2)} = \frac{Ax+B}{(x^2+2)} + \frac{C}{x-2}$	3 correct solution
$x-8 = (Ax+B)(x-2)+C(x^2+2)$	
When $x = 2$ $-6 = O + C(4+2)$	2 correct
C = -1	attempt
when $x = 0$ $-8 = B(-2) - 1(2)$	minor
B=3	error
When $x = 1$ $1-8 = (A+3)(-1)-1(3)$	1 finding
-7 = -A - 3 - 3	A, B or C
A = 1	
x - 8 = x + 3 = 1	
$(x^{2}+2)(x-2)$ $(x^{2}+2)$ $x-2$	
$b)i) \sin x + \cos x = A\sin(x+B)$	2 correct
$= A\sin x\cos B + A\cos x\sin B$	solution
$\therefore A\cos B = 1, A\sin B = 1$	
$\int \overline{2} \qquad \qquad$	1 correctly finding A or B
$\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$	

c) α is a root of $x^3 - 3x^2 + 9 = 0$	2 correct
$\therefore \alpha^3 - 3\alpha^2 + 9 = 0$	equation
Let $\alpha = \sqrt{X}$ $\therefore X = \alpha^2$	
Then $\left(\sqrt{X}\right)^3 - 3\left(\sqrt{X}\right)^2 + 9 = 0$	1 correct approach
$X\sqrt{X} - 3X + 9 = 0$	
$X\sqrt{X} = 3X - 9$	
$\left(X\sqrt{X}\right)^2 = \left(3X - 9\right)^2$	
$X^2 \cdot X = 9X^2 - 54X + 81$	
$X^3 - 9X^2 + 54X - 81 = 0$	
$\therefore \alpha^2, \beta^2, \gamma^2$ are the roots of $x^3 - 9x^2 + 54x - 81 = 0$	
<i>ii</i>) $\alpha^2, \beta^2, \gamma^2$ are the roots of $x^3 - 9x^2 + 54x - 81 = 0$	2 correct
$\therefore \alpha^2 + \beta^2 + \gamma^2 = \frac{-b}{2}$	solution
	4 67 11
=9	1 finding $a^2 + R^2 + a^2$
α, β, γ are the roots of $x - 3x + 9 = 0$	$\alpha + \rho + \gamma$ and
$\therefore \alpha^3 - 3\alpha^2 + 9 = 0$	attempting
$\beta^3 - 3\beta^2 + 9 = 0$	the hence
$\frac{\gamma^3 - 3\gamma^2 + 9 = 0}{2}$	
$\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)-3\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+27=0$	
$(\alpha^{3} + \beta^{3} + \gamma^{3}) - 3(9) + 27 = 0$	
$\alpha^3 + \beta^3 + \gamma^3 = 0$	
Question 15	
a) $x^3 + 3y^2 = 6xy - 3x$	2 correct
Differentiate implicitly	solution
$3x^2 + 6y\frac{dy}{dx} = 6x\frac{dy}{dx} + 6y - 3$	1 correct
dy = 2	and the former of the former o
$(6x-6y)\frac{y}{dx} = 3x^2 - 6y + 3$	
$\frac{dy}{dt} = \frac{3x^2 - 6y + 3}{3x^2 - 6y + 3}$	
$dx \qquad 6x - 6y$	
$=\frac{x^2-2y+1}{2}$	
2x-2y	

b) $(z-3+i)(\overline{z}-3-i) \le 9$	2 correct
Let $z = x + iy$	graph
$((x-3)+(y+1)i)((x-3)-i(y+1)) \le 9$	
Difference of two squares	1 correct
$(r-3)^2 + (v+1)^2 \le 9$	attempt to
$(\lambda^{-5}) + (y+1) \leq 5$	mia locus
Interior of a circle centre (3,-1) and radius 3	
Im(z)	
4 🕂	
2	
\triangleleft + + + \mid + + + + + + \downarrow	
-2 (31)	
-4	
$(c)i) / PNB = / PLC = 90^{\circ}$	1 correct
The exterior angle is equal to the interior opposite angle	reason
: PNCL is a cyclic quadrilateral	
ii) In PBCA	2 correct
$\angle PBM = \angle PCA$ (angles in the same segment are equal)	show
In PNCL	
$\angle PCL = \angle PNL$ (angles in the same segment are equal)	1
$\therefore \angle PBM = \angle PNM$ (both equal to $\angle PCA$)	
iii) Construct PM	3 correct
$\angle PBN = \angle PNM$ (from ii)	show
PMNB is a cyclic quadrilateral	2 correct
as B and N lie on the same side of the interval	show with
PB and the angles subtended at these two points by	minor
the interval are equal, then the two points and the	error
endpoints of the interval are concyclic.	1 correct
$\therefore \angle PMN = \angle PNB = 90^{\circ}$ (angles in the same segment are equal)	approach
$\therefore PM$ is perpendicular to AB.	

d(i) At the point of intersection of the curve and the line	1
$y = x^4 + 4x^3 and y = mx + b$	explantion
$Then \qquad x^4 + 4x^3 = mx + b$	
$\therefore x^4 + 4x^3 - mx - b = 0$	
As $y = mx + b$ is a tangent at both $x = \alpha$ and $x = \beta$	
then both α and β must be double roots.	
Thus the zeroes of $x^4 + 4x^3 - mx - b = 0$ are α, α, β and β .	
<i>ii</i>) $x^4 + 4x^3 - mx - b = 0$ has roots $\alpha, \alpha, \beta, \beta$	
Sum of roots $=\frac{-b}{a}$	
$\alpha + \alpha + \beta + \beta = -4$	
$\alpha + \beta = -2$	
Sum of roots two at a time= $\frac{c}{c}$	
a	
$\alpha + \alpha p + \alpha p + \alpha p + \alpha p + \beta = 0$	
$\left(\alpha^{2}+2\alpha\beta+\beta^{2}\right)+2\alpha\beta=0$	
$\left(\alpha+\beta\right)^2+2\alpha\beta=0$	
$2\alpha\beta = -4$	
$\alpha\beta = -2$	
Now product of the roots $=\frac{e}{a}$	
$\alpha \alpha \beta \beta = -b$	
$(\alpha\beta)^2 = -b$	
(o,p) = -4	
-d	
Summing three at a time $= \frac{a}{a}$	
$\alpha^2\beta + \alpha^2\beta + \alpha\beta^2 + \alpha\beta^2 = m$	
$\alpha\beta(2\alpha+2\beta) = m$	
$\therefore m = -2(2 \times -2)$	
m = 8	
$\therefore m = 8 \text{ and } b = -4$	
Question 16	
<i>a)i)</i> If ω is a complex root of $x^3 = 1$	1 show
then $\omega^3 = 1$	
Now $\left(\omega^2\right)^3 = \left(\omega^3\right)^2 = 1$	
$\therefore \omega^2$ is also the other complex root of $x^3 = 1$	

<i>ii</i>) The complex roots of $x^3 - 1 = 0$ are ω and ω^2 .	1 show
The real root is 1.	
The sum of the roots = $\frac{-Coefficient of x^2}{Coefficient of x^3}$	
$\therefore 1 + \omega + \omega^2 = 0$	
<i>iii)</i> For $3, 2\omega + \omega^2, 2\omega^2 + \omega$	3 correct
Sum of roots 1 at a time = $3+2\omega + \omega^2 + 2\omega^2 + \omega$	equation
$=3(1+\omega+\omega^2)$	2
=0	
Sum of roots 2 at a time= $3(2\omega + \omega^2) + 3(2\omega^2 + \omega) + (2\omega + \omega^2)(2\omega^2 + \omega)$	1
$= 6\omega + 3\omega^2 + 6\omega^2 + 3\omega + 4\omega^3 + 2\omega^2 + 2\omega^4 + \omega^3$	
$= 6\omega + 3\omega^2 + 6\omega^2 + 3\omega + 4 + 2\omega^2 + 2\omega + 1 \qquad as$	
$=11(\omega+\omega^2)+5$	
$= -11 + 5 \qquad As 1 + \omega + \omega^2 = 0$	
=-6	
Sum of roots 3 at a time = $3(2\omega + \omega^2)(2\omega^2 + \omega)$	
$=3(4\omega^3+2\omega^2+2\omega^4+\omega^3)$	
$= 3(4+2(\omega^2+\omega)+1)$	
=3(4-2+1)	
= 9	
$\therefore 3, 2\omega + \omega^2, 2\omega^2 + \omega$ solve the cubic equation	
$x^3 - 0x^2 - 6x - 9 = 0$	
b)i) $OP^2 + OQ^2 = (a\cos\theta)^2 + (b\sin\theta)^2 + (-a\sin\theta)^2 + (b\cos\theta)^2$	1 show
$= a^2 \cos^2 \theta + b^2 \sin^2 \theta + a^2 \sin^2 \theta + b^2 \cos^2 \theta$	
$=a^{2}\left(\cos^{2}\theta+\sin^{2}\theta\right)+b^{2}\left(\cos^{2}\theta+\sin^{2}\theta\right)$	
$=a^2+b^2$	

At T
$$\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1 \qquad x\cos\theta$$
$$\frac{-x\sin\theta}{a} + \frac{y\cos\theta}{b} = 1 \qquad x\sin\theta$$
$$\therefore \frac{x\cos^2\theta}{a} + \frac{y\sin\theta\cos\theta}{b} = \cos\theta$$
$$\frac{-x\sin^2\theta}{a} + \frac{y\cos\theta\sin\theta}{b} = \sin\theta$$
$$\therefore \frac{x\cos^2\theta}{a} + \frac{x\sin^2\theta}{a} = \cos\theta - \sin\theta$$
$$\frac{x}{a}(\cos^2\theta + \sin^2\theta) = \cos\theta - \sin\theta$$
$$x = a(\cos\theta - \sin\theta)$$
$$\therefore AT T \qquad \frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$$
$$\frac{d}{(\cos\theta - \sin\theta)\cos\theta} + \frac{y\sin\theta}{b} = 1$$
$$\frac{\frac{d}{(\cos\theta - \sin\theta)\cos\theta}}{d} + \frac{y\sin\theta}{b} = 1$$
$$\frac{y\sin\theta}{b} = 1 - \cos^2\theta + \sin\theta\cos\theta$$
$$\frac{y\sin\theta}{b} = \sin\theta(\sin\theta + \cos\theta)$$
$$y = b (\sin\theta + \cos\theta)$$
$$\therefore T (a(\cos\theta - \sin\theta), b (\sin\theta + \cos\theta))$$

iii)At T $x = a(\cos\theta - \sin\theta)$	
$y = b(\cos\theta + \sin\theta)$	
$\therefore \left(\cos\theta - \sin\theta\right)^2 = \left(\frac{x}{a}\right)^2$	
$\left(\cos\theta + \sin\theta\right)^2 = \left(\frac{y}{b}\right)^2$	
$\therefore \cos^2 \theta - 2\sin \theta \cos \theta + \sin^2 \theta = \frac{x^2}{a^2}$	
$\cos^2\theta + 2\sin\theta\cos\theta + \sin^2\theta = \frac{y^2}{b^2}$	
$\therefore 1 - 2\sin\theta\cos\theta = \frac{x^2}{a^2}$	
$1 + 2\sin\theta\cos\theta = \frac{y^2}{b^2}$	
$\therefore 2 = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	

iv) Tangent at
$$P = \frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$$

 $\frac{y\sin\theta}{b} = 1 - \frac{x\cos\theta}{a}$
 $y = \frac{b}{\sin\theta} \left(1 - \frac{x\cos\theta}{a} \right)$
 $m_p = \frac{-b\cos\theta}{a}$
Tangent at $Q = \frac{-x\sin\theta}{a} + \frac{y\cos\theta}{b} = 1$
 $\frac{y\cos\theta}{b} = 1 + \frac{x\sin\theta}{a}$
 $y = \frac{b}{\cos\theta} \left(1 + \frac{x\sin\theta}{a} \right)$
 $m_q = \frac{b\sin\theta}{a\cos\theta}$
 $\tan \alpha = \frac{m_q - m_p}{1 + m_q m_p}$
 $= \frac{\frac{b\sin\theta}{a\cos\theta} - \frac{-b\cos\theta}{a\sin\theta}}{1 + \frac{b\sin\theta}{a\cos\theta} - \frac{-b\cos\theta}{a\sin\theta}}$
 $= \frac{\frac{b\sin^2\theta}{a\cos\theta} - \frac{-b\cos\theta}{a\sin\theta}}{1 + \frac{b\sin\theta}{a^2} - b^2 \cos\theta}$
 $= \frac{\frac{b}{a\cos\theta} \cdot \frac{a^2}{a^2 - b^2}}{\frac{a}{\sin2\theta} \cdot \frac{1}{1 - 1(1 - e^2)}}$
 $= \frac{2b}{a\sin2\theta} \cdot \frac{1}{1 - 1(1 - e^2)}$
 $= \frac{2\sqrt{1 - e^2}}{ae^2 \sin 2\theta}$ as $b^2 = a^2(1 - e^2)$
 $= \frac{2\sqrt{1 - e^2}}{e^2 \sin 2\theta}$

