Moriah College

Year 12

2008 EXTENSION 2 MATHEMATICS

ASSESSSMENT TASK 2 (PRE-TRIAL)

Time Allowed: $\quad 3$ hours plus 5 minutes reading time.
Examiners: Greg Wagner, Evie Apfelbaum

Instructions:

- All necessary working should be shown in every question.
- Marks may be deducted for careless or badly arranged work.
- Standard integrals are at the end of the paper.

Question 1 (15 marks)

a) Show that $\int x \sin x d x=\sin x-x \cos x$
b) Hence, find the exact value of $\int_{0}^{\frac{\pi}{2}} x^{2} \cos x d x$
c) $A B C D E F G H$ is a regular octagon drawn on an Argand diagram with vertex A at the point $(2,0)$ The origin O is the centre of the octagon.

i) Find, in the form $r \operatorname{cis} \theta$, the complex number ω that represents the point B.
ii) Hence, express ω in the form $x+i y$
iii) If B is represented by the complex number ω, then which points are represented by the following complex numbers:
$\alpha) \quad i \omega$
B) $-\omega$
iv) Use $\triangle E B O$ to explain why $\arg (w+2)=\frac{\pi}{8}$
v) Find the exact value of $|w+2|^{2}$
vi) Hence, find the exact value of $\cos ^{2} \frac{\pi}{8}$
vii) Write down a polynomial equation whose real and complex solutions are represented by the 8 vertices of the octagon.

Question 2 (15 marks)

a)
i) By expanding $(\text { cis } \theta)^{3}$ in two different ways, show that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
ii) Hence, find $\int \sin 3 \theta \cos \theta d \theta$
b)
i) Find B and C such that $\frac{4 x-3}{(x-1)(x-3)}=\frac{B}{(x-1)}+\frac{C}{(x-3)}$
ii) Hence, find $\int \frac{4 x-3}{x^{2}-4 x+3} d x$
c) Use the substitution $t=\tan \frac{x}{2}$ to evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{2+\cos x} d x$
d)
i) Show that $\int \frac{1}{x \sqrt{x^{2}-1}} d x=\cos ^{-1}\left(\frac{1}{x}\right)+c$ using the substitution $x=\sec \theta$
ii) Hence, show that $\int_{2}^{3} \frac{1}{x \sqrt{x^{2}-1}} d x=\cos ^{-1}\left(\frac{1+2 \sqrt{6}}{6}\right)$

Question 3 (15 marks)

a) The graph below shows the curve $f(x)=x^{2}-\frac{x^{4}}{4}$. The maximum turning points are at $(-\sqrt{2}, 1)$ and $(\sqrt{2}, 1)$

$$
f(x)=x^{2}-\frac{x^{4}}{4}
$$

Sketch the graphs of the following on separate number planes.
Show the coordinates of all stationary points on the graphs of i), ii) and iii). There is no need to show the stationary points on iv).
i) $y=\frac{1}{f(x)}$
ii) $\quad y=[f(x)]^{2}$
iii) $\quad y=\tan ^{-1}(f(x))$
iv) $\quad y=x f(x)$
b) Consider the curve given implicitly by the equation $4 y^{3}-3 y=x^{3}+x-1$
i) Use implicit differentiation to show that $\frac{d y}{d x}=\frac{3 x^{2}+1}{12 y^{2}-3}$
ii) Find the equation of the tangent to $4 y^{3}-3 y=x^{3}+x-1$ at the point $(0,-1)$
iii) The curve intersects or meets the y-axis at one other point.

Find the equation of the tangent at this point.

Question 4 (15 marks)

a) The complex number z satisfies the following equations:

$$
|z|=1 \text { and } \arg z=\frac{\pi}{6}
$$

i) Find the quadratic equation for which z and \bar{z} are both roots.
ii) If the points represented by the complex numbers $z, 0$ and ω form an equilateral triangle, then find all complex numbers ω.
b) Consider the function $f(x)=\frac{1}{\sqrt{(x-1)(x-3)}}$
i) Find the domain of $f(x)$
ii) Find $\int \frac{1}{\sqrt{(x-1)(x-3)}} d x$
c) The equation $x^{3}-2 x^{2}+b x-16=0$ has roots α, β and γ such that $\alpha \beta=8$.
i) Show that $b=8$
ii) Hence, find α and β.
iii) Find the cubic equation with roots given by α^{2}, β^{2} and γ^{2}
iv) Hence find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.

Question 5 (15 marks)

a) Consider the function $f(x)=\frac{x}{\log _{e} x}$
i) Find the equation of the vertical asymptote of $y=f(x)$
ii) Show that the coordinates of the minimum turning point are (e, e)
(2)
iii) Find $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)$
(1)
iv) Sketch the curve $y=\frac{x}{\log _{e} x}$
(2)
v) Explain using your graph and part ii), why $\frac{e}{\log e}<\frac{\pi}{\log \pi}$.
vi) Hence, show that $\pi^{e}<e^{\pi}$.
b) The curve $y=x^{3}-2 x^{2}+x$ intersects the line $y=k$ at three distinct points A, B and C. The x-coordinates of these points are α, β and γ respectively.
i) By considering the stationary points of $y=x^{3}-2 x^{2}+x$, find the possible values of k.
ii) Find the value of k such that B is the midpoint of $A C$.
iii) Use symmetry to explain why B is the inflexion point of $y=x^{3}-2 x^{2}+x$.

Question 6 (15 marks)

a) Factorise the cubic polynomial $z^{3}+8$
i) over the real field of numbers.
ii) over the complex field of numbers.
b) Let w be one of the complex roots of the equation $z^{3}+8=0$.
i) Using part a), show that $w^{2}+4=2 w$
ii) Hence simplify $\left(w^{2}+4\right)^{3}$.
c) Copy and complete the following in order to write $\frac{x}{\sqrt{x^{2}}}$ in piecewise form.

$$
\frac{x}{\sqrt{x^{2}}}=\left\{\begin{array}{ccc}
1 & \text { if } & 0<x \leq 1 \\
& \text { if } & -1 \leq x<0 \\
& \text { if } & \mathrm{x}=0
\end{array}\right\}
$$

d) Consider the even function $f(x)=\sin ^{-1} \sqrt{1-x^{2}}$ where $-1 \leq x \leq 1$
i) Use part c) to find $f^{\prime}(x)$ in piecewise form, carefully defining its domain
ii) The curve $y=f(x)$ has a cusp at the point where its two branches meet the y-axis. Show that these two branches meet at 90°.
iii) Carefully sketch the curve $y=f(x)$
iv) The region bounded by the curve $y=f(x)$ and the x-axis is rotated
through 180° about the y-axis to form a solid of revolution.
Find the volume of this solid.

Question 7 (15 marks)

a) Consider the polynomial $P(x)=(x+2)^{2} Q(x)+R(x)$
i) Explain why $R(x)$ is a linear polynomial
ii) When $P(x)$ and $P^{\prime}(x)$ are both divided by $(x+2)$, the remainder in each case is 6 . Find $R(x)$

Question 7 continued on next page

b) The diagram below shows the curve $f(x)=e^{x}$.

The area bounded by the curve, the coordinate axes and the line $x=1$ can be approximated using upper and lower rectangles.
Some of these rectangles have been drawn on the diagram.
There are n upper rectangles and n lower rectangles, each of width $\frac{1}{n}$.

Let A_{k} be the area of the rectangle with height $e^{\frac{k}{n}}$, where $0 \leq k \leq n$ and k is an integer.
i) Show that the sum of the upper rectangles can be given by $\sum_{k=1}^{k=n} A_{k}=\frac{1}{n}\left[\frac{e^{\frac{1}{n}}(e-1)}{e^{\frac{1}{n}}-1}\right]$
ii) Find the exact value of the area.
iii) Use parts i) and ii) to show that $e^{\frac{1}{n}}<\frac{n}{n-1}$
iv) Use the sum of the lower rectangles and part ii) to show that $\frac{n+1}{n}<e^{\frac{1}{n}}$
(2)
v) If $\left(\frac{11}{10}\right)^{p}<e^{300}<\left(\frac{10}{9}\right)^{p}$, then find an integer value of p.

Question 8 (15 marks)

a) i) Use factorisation to show that $\left(1-x^{2}\right)^{n-1}-\left(1-x^{2}\right)^{n}=x^{2}\left(1-x^{2}\right)^{n-1}$
ii) If $I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n} d x$ for $n \geq 0$, then use integration by parts to show that

$$
I_{n}=\frac{2 n}{2 n+1} I_{n-1} \text { for } n \geq 1
$$

b) i) Sketch the function $f(x)=\frac{e^{x}+e^{-x}}{2}$ and the line $y=x$ on the same set of axes.
ii) Find the largest domain containing positive values of x such that $f(x)$ has an inverse function $f^{-1}(x)$.
iii) Sketch the inverse function $y=f^{-1}(x)$ on the same diagram as part i)
iv) Find the inverse function $f^{-1}(x)$
v) Find the coordinates of the point P on the curve $f(x)=\frac{e^{x}+e^{-x}}{2}$ such that the distance between $f(x)$ and $f^{-1}(x)$ is a minimum.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\quad \ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { Note } \ln x=\log _{e} x, x>0
\end{aligned}
$$

a)

$$
\begin{aligned}
& \frac{d}{d x}(\sin x-x \cos x+c)=\cos x-(\cos x-x \operatorname{sen} x) \\
& =x \sin x \\
& \therefore \int x \sin x d x=\operatorname{sen} x-x \cos x \\
& \text { untegratebn Ay } \\
& \text { - farb }
\end{aligned}
$$

b)

$$
\left.\begin{array}{rl}
\text { det } \mu=x^{2} \operatorname{and} v^{\prime}=\cos x \\
d u=2 x & v=\operatorname{sen} x
\end{array}\right\}
$$

c) i) $\quad \omega=2 \operatorname{cis} \frac{\pi}{4}$
4) $\quad w=\sqrt{2}+i \sqrt{2}$
u) a) rotaturi througt $\frac{\pi}{2}$ grines D
B) F

1V)

$$
\arg (\omega+2)=\angle B E O=\angle E B O
$$

Hence, $\angle B E O=\frac{7}{8}(\angle \operatorname{sem}$ of $\triangle E B O)$

$$
v)_{C B}^{2}=|w+2|^{2}=2^{2}+2^{2}-2(2)(2) \cos \frac{3 \pi}{4}=8+4 \sqrt{2}=4(2+\sqrt{2})
$$

V) $\cos \frac{\pi}{8}=\frac{E B^{2}+E 0^{2}-8 D^{2}}{2 E B \cdot E D}=\frac{8+4 \sqrt{2}}{4 E B}=\frac{2+\sqrt{2}}{E B}$

$$
\therefore \operatorname{co}^{2} \frac{\pi}{8}=\frac{(2+\sqrt{2})^{2}}{E B^{2}}=\frac{(2+\sqrt{2})^{2}}{4(2+\sqrt{2})}=\frac{2+\sqrt{2}}{4}
$$

Vn)

$$
\begin{aligned}
& z^{8}=2^{8} \\
& z^{8}-156=0
\end{aligned}
$$

Question 2
a)

$$
\text { 1) } \begin{aligned}
(\cos \theta)^{3} & =\cos ^{3} \theta+3 i \cos ^{2} \theta \sin \theta-3 \cos \theta \sin ^{2} \theta-i \sin ^{3} \theta \\
& =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta+i\left(3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta\right)
\end{aligned}
$$

Axo $(\cos \theta)^{3}=\cos 3 \theta+\sin 3 \theta$ (De Morure's Theorem)
Equataig imaquary $\operatorname{sen} 3 \theta=3 \sin \theta\left(1-\sin ^{2} \theta\right)-\sin ^{3} \theta$ pacts

$$
=3 \sin \theta-4 \sin ^{3} \theta
$$

11)

$$
\int 3 \sin \theta \cos \theta-4 \operatorname{sen}^{3} \theta \cos \theta d \theta=\frac{3 \sin ^{2} \theta}{2}-\sin ^{4} \theta+c
$$

b) 1)

$$
\begin{aligned}
& 4 x-3 \equiv B(x-3)+c(x-1) \\
& x=1 \rightarrow-2 B=1 \rightarrow B=-\frac{1}{2} \\
& x=3 \rightarrow 2 c=9 \rightarrow c=\frac{9}{2}
\end{aligned}
$$

II)

$$
\begin{aligned}
I=\int \frac{9}{2(x-3)}-\frac{1}{2(x-1)} d x & =\frac{9}{2} \log |x-3|-\frac{1}{2} \log |x-1| \\
& =\log \frac{|x-3|^{9 / 2}}{|x-1|^{1 / 2}}+c
\end{aligned}
$$

1) $t=\tan \frac{x}{2}$

$$
\left.\begin{array}{rl}
t & =\tan \frac{x}{2} \\
d t & =\frac{1}{2} \sec ^{2} \frac{x}{2} d x \\
\frac{2 d t}{1+t^{2}} & =d x \\
x & =0, t=0 \\
x & =\frac{\pi}{2}, t=1
\end{array}\right\} \begin{aligned}
1 & \frac{1}{2+\frac{1-t^{2}}{1+t^{2}}} \cdot \frac{2 d t}{1+t^{2}} \\
& =\int_{0}^{1} \frac{2}{3+t^{2}} d t \\
& =\frac{2}{\sqrt{3}}\left[\tan ^{1} \frac{t}{\sqrt{3}}\right]_{0}^{1} \\
& =\frac{\sqrt{3} \pi}{9}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
11 \ln & =\sec \theta \\
d x & =\sec \theta \tan \theta d \theta \\
\frac{d x}{x \sqrt{x^{2}-1}}=d \theta
\end{array}\right\} \quad I=\left\{d \theta=\theta^{1}+c^{1}=\cos ^{-1}\left(\frac{1}{x}\right)+c\right.
$$

QUESTION 3
1)

in)

b) 1) $12 y^{2} \frac{d y}{d x}-3 \frac{d y}{d x}=3 x^{2}+1 \rightarrow \frac{d y}{d x}=\frac{3 x^{2}+1}{12 y^{2}-3}$
11) at $(0,-1) \quad \frac{d y}{d x}=\frac{1}{9}$

$$
y+1=\frac{1}{9}(x-0) \longrightarrow x-9 y-9=0
$$

(11) when $x=0,4 y^{3}-3 y+1=0 \ldots$ (1)
from 1) we know $y=-1$ is a root of (1)

$$
\begin{aligned}
\therefore \quad 4 y^{3}-3 y+1 & =(y+1)\left(4 y^{2}-4 y+1\right) \\
& =(y+1)(2 y-1)^{2}
\end{aligned}
$$

\therefore Double root when $y=\frac{1}{2}, x=0$
\therefore Vertical tangent at $\left(0, \frac{1}{2}\right)$
Equation of the tangent is $x=0(y$ anis)

QUESTION A
a) i) $z=\cos \frac{\pi}{6}$ and $\bar{z}=\cos \left(\frac{-\pi}{6}\right)$

$$
z+\bar{z}=2 \cos \frac{\pi}{b}=\sqrt{3} \text { and } z \bar{z}=\cos 0=1
$$

$\therefore z$ and z are roots of $x^{2}-\sqrt{3} x+1=0$
11)

$$
w=\bar{z}=\cos \left(-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}-\frac{i}{2}
$$

OR

$$
w=i
$$

b) $11(x-1)(x-3)>0 \rightarrow D=\{x<1$ or $x>3\}$
II)

$$
I=\int \frac{1}{\sqrt{(x-2)^{2}-1}} d x=\log \left|x-2+\sqrt{(x-2)^{2}-1}\right|+c
$$

() 1$) \quad \alpha \beta \gamma=\frac{-d}{a}=16 \longrightarrow 8 \gamma=16 \rightarrow \gamma=2$
sub. $\gamma=2 \rightarrow 8-8+2 b-16=0 \rightarrow b=8$
11)

$$
\begin{aligned}
x^{3}-2 x^{2}+8 x-16 & =0 \\
\left(x^{2}+8\right)(x-2) & =0 \\
\therefore x & =2, \pm 2 \sqrt{2} i
\end{aligned} \quad \Rightarrow \quad \beta=-2 \sqrt{2} i
$$

III) Root are $\alpha^{2}, \beta^{2}, d^{2}=-8,-8,4$
\therefore Equation is $(x+8)^{2}(x-4)=0$

$$
\text { e } x^{3}+12 x^{2}-256=0
$$

(V)

$$
\begin{aligned}
\alpha^{3}+\beta^{3}+\gamma^{3} & =2\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-8(\alpha+\beta+\gamma)+4 \beta \\
& =2(-12)-8(2)+48 \\
& =8
\end{aligned}
$$

O O simply $2^{3}+(2 \sqrt{2} i)^{3}+(-2 \sqrt{2} i)^{3}=8$

Question 5
a) 1) $x=1$
11) $f^{\prime}(x)=\frac{\log _{e} x-1}{\left(\log _{e} x\right)^{2}}$ and $f^{\prime}(e)=\frac{\log _{e} e-1}{\left(\log _{e} e\right)^{2}}=0$

x	2	e	3
$f(x)$	-	0	+

iii) $f^{\prime}(x)=\frac{1}{\log _{e} x}-\frac{1}{\left(\log _{e} x\right)^{2}} \longrightarrow$ as $x \rightarrow 0^{+}, f^{\prime}(x) \rightarrow 0^{-}$
v)

vi)

$$
e \log \pi<\pi \log e \longrightarrow \log \pi^{e}<\log e^{\pi} \longrightarrow \pi^{e}<e^{\pi}
$$

b) 1)

$$
y=x(x-1)^{2}
$$

$\operatorname{xnd} \frac{d y}{d x}=3 x^{2}-4 x+1$
11) B is the nudpont of $A C \longrightarrow \beta=\frac{\alpha+\gamma}{2} \longrightarrow \alpha+\gamma=2 \beta$

Now α, β, γ are roots of $x^{3}-2 x^{2}+x-k=0 \cdots(1)$
Sum of roots $=3 \beta=2 \rightarrow \beta=\frac{2}{3}$
Substitution un (1) qavis $k=\frac{2}{27}$
(Ii) AM cubes have point symmetry, $y=k$ is a horgontal hire If $A B=B C$ then C reflect 180° to A around B. Hence, symmetry about B and B so the iflexron port

Question 6
a) 1) $(z+2)\left(z^{2}-2 z+4\right)$
11) $\quad(z+2)\left[(z-1)^{2}-(\sqrt{3} i)^{2}\right]=(z+2)(z-1-\sqrt{3} i)(z-1+\sqrt{3} i)$
b) 1) $z^{3}+8=0 \longrightarrow z=-2$ or $\quad z^{2}-2 z+4=0$
since ω is complex $\longrightarrow w^{2}-2 \omega+4=0$

$$
w^{2}+4=2 w
$$

11) $\left(w^{2}+4\right)^{3}=(2 w)^{3}=8 w^{3}=8 x-8=-64$
$\Rightarrow \quad \frac{x}{\sqrt{x^{2}}}=\left\{\begin{array}{ccc}1 & \text { if } & 0<x \leq 1 \\ -1 & \text { if } & -1 \leq x<0 \\ \text { undefined } & \text { i } x=0\end{array}\right\}$
12) 13)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{\sqrt{1-\left(1-x^{2}\right)}} \cdot \frac{-x}{\sqrt{1-x^{2}}} \\
& =\frac{-x}{\sqrt{x^{2}} \sqrt{1-x^{2}}} \\
& = \begin{cases}\frac{-1}{\sqrt{1-x^{2}}} & \text { if } 0<x<1 \\
\frac{1}{\sqrt{1-x^{2}}} & \text { if }-1<x<0 \\
\text { ind. } & \text { if } x=0, \pm 1\end{cases}
\end{aligned}
$$

11)

as $x \rightarrow 0^{-}, f^{\prime}(x) \rightarrow 1$
as $x \rightarrow 0^{+}, f^{\prime}(x) \rightarrow-1$

$$
f(0)=\sin ^{-1}(1)=\frac{\pi}{2}
$$

Since at $\left(0, \frac{\pi}{2}\right)$ $m_{1} \times m_{2}=-1$ then branches meet at 90°
iii)

vertical tangents at $(\pm 1,0)$ r
(v)

$$
\begin{aligned}
V & =\pi \int_{0}^{\pi / 2} \cos ^{2} y d y \\
& =\frac{\pi}{2} \int_{0}^{\pi / 2} 1+\cos 2 y d y \\
& =\frac{\pi}{2}\left[y+\frac{1}{2} \operatorname{sen} 2 y\right]_{0}^{\frac{\pi}{2}}
\end{aligned}
$$

Question 7
a) 1) $P(x)$ is dined by a quadratic polynomial. Hence, the remainder $k(x)$ is Linear, since $\operatorname{dog}(R(x))<\operatorname{dog}(x+2)^{2}$.
11)

$$
\begin{aligned}
& P(x)=(x+2)^{2} Q(x)+A x+B \text { from 1) } \\
& P^{\prime}(x)=(x+2)^{2} Q^{\prime}(x)+2(x+2) Q(x)+A
\end{aligned}
$$

Now $P^{\prime}(-2)=A=6$ and $P(-2)=6(-2)+B=6 \rightarrow B=18$

$$
\therefore R(x)=6 x+18
$$

b) 1) $A_{1}=\frac{1}{n} e^{\frac{1}{n}}, A_{2}=\frac{1}{n} e^{\frac{2}{n}}, A_{3}=\frac{1}{n} e^{\frac{3}{n}}$

Now $\frac{A_{2}}{A_{1}}=\frac{A_{3}}{A_{2}}=e^{\frac{1}{n}}$ and the semis is geometric

$$
\begin{aligned}
\therefore A_{1}+A_{2}+\ldots+A_{n} & =\frac{a\left(r^{n}-1\right)}{r-1} \text { where }\left(\begin{array}{l}
a=A_{1} \\
r=n \\
i \quad e^{\frac{1}{n}}
\end{array}\right) \\
& =\frac{\frac{1}{n} e^{\frac{1}{n}}\left[\left(e^{\left.\left.\frac{1}{n}\right)^{n}-1\right]}\right.\right.}{\sum_{k=1}^{1 / n} A_{k}-1} \\
& =\frac{1}{n}\left[\frac{e^{1 / n}(e-1)}{e^{1 / n}-1}\right]
\end{aligned}
$$

11) $A=\int_{0}^{1} e^{x} d x=\left[e^{x}\right]_{0}^{1}=e-1$
(ii)

$$
\begin{aligned}
& e-1<\frac{1}{n}\left[\frac{e^{1 / n}(e-1)}{e^{1 / n}-1}\right]^{\checkmark} \rightarrow n\left(e^{\left.\frac{1}{n}-1\right)<e^{1 / n} \rightarrow} \ggg e^{1 / n}(n-1)<n \rightarrow e^{1 / n}<\frac{n}{n-1}\right. \\
\rightarrow & n e^{1 / n}-e^{1 / n}<n \rightarrow e^{1}
\end{aligned}
$$

iv) Sun e of lower rectangles $=A_{0}+A_{1}+\ldots+A_{n-1}$ where $A_{0}=\frac{1}{n}$

Now $\sum_{k=0}^{n-1} A_{k}=\frac{1}{n}\left[\frac{1(e-1)}{e^{1 / n}-1}\right]<e-1$ using 11) and 1$)$
$\dot{\varphi} \quad \frac{1}{n}<e^{1 / n}-1 \rightarrow \frac{v+1}{n}<e^{1 / n}$
v) $\frac{n+1}{n}<e^{1 / n}<\frac{n}{n-1}$
here $\left.n=10 \rightarrow \frac{11}{10}<e^{1 / 10}<\frac{10}{9}\right\} \quad \therefore \quad \rho=3000$

Question 8
a)

$$
\text { 1) } \begin{aligned}
\text { L.H.S. } & =\left(1-x^{2}\right)^{n-1}\left[1-\left(1-x^{2}\right)\right] \\
& =x^{2}\left(1-x^{2}\right)^{n-1} \\
& =\text { RUS }
\end{aligned}
$$

11) In $I_{n}\left[x\left(1-x^{2}\right)^{n}\right]_{0}^{1}+2 n \int_{0}^{1} x^{2}\left(1-x^{2}\right)^{n-1}\left(1 e t \quad u=\left(1-x^{2}\right)^{n} ; r^{\prime}=1\right.$

$$
\begin{aligned}
& \left.I_{n}=2 n \int_{0}^{1}\left(1-x^{2}\right)^{n-1}-\left(1-x^{2}\right)^{n} d x \text { from } 1\right) \\
& I_{n}=2 n I_{n-1}-2 n I_{n} \\
& I_{n}(1+2 n)=2 n I_{n-1} \longrightarrow I_{n}=\frac{2 n}{2 n+1} I_{n-1}
\end{aligned}
$$

b) 1)

(v)

$$
\begin{aligned}
& 2 x=e^{y}+\frac{1}{e^{y}} \\
& e^{2 y}-2 x e^{y}+1=0 \\
& e^{y}=\frac{2 x \pm \sqrt{4 x^{2}-4}}{2} \\
&=x \pm \sqrt{x^{2}-1} \\
& y=\log \left(x \pm \sqrt{x^{2}-1}\right)
\end{aligned}
$$

since $x \geqslant 1$ and $y \geqslant 0$

$$
f^{-1}(x)=\log \left(x+\sqrt{x^{2}-1}\right)
$$

11) Largest domain

$$
\text { is } x \geqslant 0
$$

v) The distance between $f(x)$ and $f^{\prime \prime}(x)$ is a minimum if the distance hetwreen $f(x)$ and $y=x$ is a minimum.
We need to fund the distance D in term of x.

Now,

$$
D=\frac{\left|x-\frac{e^{x}+e^{-x}}{2}\right|}{\sqrt{2}}
$$

since $\frac{e^{x}+e^{-x}}{2}>x$ (see graph es)
then

$$
\begin{aligned}
D & =\frac{1}{\sqrt{2}}\left(\frac{e^{x}+e^{-x}}{2}-x\right) \\
\frac{d D}{d x} & =\frac{1}{\sqrt{2}}\left(\frac{e^{x}-e^{-x}}{2}-1\right)
\end{aligned}
$$

and solving $\frac{d D}{d x}=0$ grues $e^{x}-\frac{1}{e^{x}}=2$
ie $e^{2 x}-2 e^{x}-1=0 \ldots(1)$
(1) $\rightarrow e^{x}=\frac{2 \pm \sqrt{8}}{2}$ and $e^{x}=1+\sqrt{2}$ as $e^{x}>0$

As D can only be a minimum e as there is not a maximum then D is a minimum when $e^{x}=1+\sqrt{2}$

$$
\text { wi } x=\log (1+\sqrt{2})
$$

Now $e^{-x}=\frac{1}{1+\sqrt{2}}=\sqrt{2}-1$ and $\frac{e^{x}+e^{-x}}{2}=\sqrt{2}$
\therefore Coordinates of P are $(\log (1+\sqrt{2}), \sqrt{2})$

